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Simple Summary: Genomic selection is a promising approach to select superior wheat lines with
better resistance to Fusarium head blight. The accuracy of genomic selection is determined by many
factors. In this study, we found a training population with large size, genomic selection models
incorporating biological information, and multi-environment modelling led to considerably better
predictabilities. A training population designed by the coefficient of determination (CDmean) could
increase accuracy of prediction. Relatedness between training population (TP) and testing population
is the key for accuracies of genomic selection across populations.

Abstract: Fusarium head blight (FHB) resistance is quantitatively inherited, controlled by multiple
minor effect genes, and highly affected by the interaction of genotype and environment. This makes
genomic selection (GS) that uses genome-wide molecular marker data to predict the genetic breeding
value as a promising approach to select superior lines with better resistance. However, various factors
can affect accuracies of GS and better understanding how these factors affect GS accuracies could
ensure the success of applying GS to improve FHB resistance in wheat. In this study, we performed
a comprehensive evaluation of factors that affect GS accuracies with a multi-parental population
designed for FHB resistance. We found larger sample sizes could get better accuracies. Training
population designed by CDmean based optimization algorithms significantly increased accuracies
than random sampling approach, while mean of predictor error variance (PEVmean) had the poorest
performance. Different genomic selection models performed similarly for accuracies. Including
prior known large effect quantitative trait loci (QTL) as fixed effect into the GS model considerably
improved the predictability. Multi-traits models had almost no effects, while the multi-environment
model outperformed the single environment model for prediction across different environments. By
comparing within and across family prediction, better accuracies were obtained with the training
population more closely related to the testing population. However, achieving good accuracies for
GS prediction across populations is still a challenging issue for GS application.
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1. Introduction

Fusarium head blight (FHB), or scab, mainly caused by the fungus Fusarium gramin-
earum Schwabe [telomorph: Gibberella zeae Schw. (Petch)], is becoming the most destructive
fungal disease for wheat production in both Canada and USA [1]. Fusarium infected grains
display shrunken shapes (Fusarium damaged kernels [FDK]) and appear white or pink in
color (bleaching) [2]. This results in severe yield and quality losses for wheat crops [1,3]. In
addition, grains infected by the F. graminearum pathogen also accumulate the mycotoxin
deoxynivalenol (DON), which represents a severe food and feed safety concern [1]. Annual
losses attributed to FHB in Canada are in the hundreds of millions of dollars [4]. While in
the USA, during the 2015–2016 season, it was estimated that FHB caused an economic loss
of US $4.2 billion [5].

Integration of agronomic practices and chemical fungicides with genetic resistance is
the most effective means to manage FHB [6,7]. Due to its lower cost, higher efficacy, and
environmental benefit, genetic resistance is favored [7]. The genetic architecture underlying
FHB resistance is quantitative in nature, controlled by multiple minor genes. To date, more
than 500 quantitative trait loci (QTL) for FHB resistance on all 21 wheat chromosomes
have been identified [8–10]. In addition, the genetics of FHB resistance contains multiple
components, which can mainly be defined as four types. These include: (1) resistance to
initial infection (Type I, incidence (INC)); resistance to fungal spread across the wheat head
(Type II, severity (SEV)); resistance to kernel infection (Type III, Fusarium damaged kernels
(FDK)); (2) tolerance to infection, and (3) accumulation of deoxynivalenol (DON) toxin
(Type IV) [2,11–14]. Previous studies indicated that the genetic architectures of these differ-
ent components are either only partially shared, or independent [12,15–17]. In addition to
physiological (active) resistance mechanisms, developmental related traits like flowering
time, plant height, and spike morphological traits also affect FHB resistance levels through
disease escape (passive) mechanisms [12,14,18–26]. For example, a negative association
between plant height and FHB incidence and severity was observed in numerous stud-
ies [19,20,23,25]. Finally, genotype by environmental interactions (GEI) also significantly
affect FHB resistance [2,21,26], thus a lower to moderate heritability has been observed for
FHB resistance traits [27]. These represent challenges in selecting for FHB resistance in the
field using visual selection.

The nature of FHB resistance traits also represents challenges in the application of the
QTL approach, which relies on sufficient statistical power of the mapping populations to
improve resistance. Genomics selection/prediction (GS) that can address these limitations,
is therefore an ideal approach to improve FHB resistance [14,28–31]. The strength of GS
for FHB resistance is that it uses genome-wide marker information to calculate genomic
estimated breeding values (GEBV) and makes selection based on GEBVs instead of phe-
notypes [32,33]. In addition, GS can increase genetic gain and accelerate selection in the
breeding program [32,33]. Recently, the advent of affordable high-throughput genotyping
approaches, such as SNP arrays and genotyping-by-sequencing, has allowed GS to be a
feasible practice for predicting complex traits in breeding programs.

The success of applying GS for complex traits is mainly determined by the prediction
accuracy/precision (PA). A broad range of factors affect the PA of GS. As reviewed by
Voss-Fels et al. [34] and Xu et al. [35], key factors may include, but are not limited to, trait
heritability, marker density, population size and structure, relatedness between the TP and
the testing population, and statistical models. In general, the PA was found to increase
along with the increase of heritability for the target trait [36]. Depending on the property
of the population, high density markers were required for the natural populations, while
moderate density markers were needed for biparental populations [32,37,38]. Population
size was also critical for the accuracy of the GS. Batternffield et al. [39] showed that
when a population size increased from 250 to 4095 lines, PA for wheat quality traits
increased gradually. A similar pattern was also observed in soybean when TP size reached
4000 lines [40]. However, diminishing returns were observed beyond N = 200 for FHB
resistance traits in barley [28], N = 192 for wheat FHB resistance traits [30] and N = 150
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in rice for flower time and plant height traits [41]. In general, the size of the TP required
depends on the genetic relatedness between the TP and testing population. A smaller
TP with a good PA can be achieved when the TP and testing population are closely
related [42,43]. In addition, by applying optimization algorithms to design the TP, better
accuracies can be achieved [41,44–47].

A broad range of statistical models can be implemented in GS to predict the complex
traits, as reviewed by Xu et al. [35]. These models varied in assumptions with different
parameters and showed varied accuracies on a trait-by-trait basis [48–50]. Models includ-
ing ridge regression best linear unbiased prediction (RR-BLUP; equal to Genomic best
linear unbiased prediction (GBLUP)) and Bayesian’s models [51] have been predominantly
applied in GS. Recently, these models were further advanced from single environment
models to multi-trait and multi-environment models by incorporating the modeling of
GEI [52,53], allowing better predictability of GS across different environments. In addition,
research findings with both simulated and empirical datasets have asserted that PA can
be considerably improved by incorporating prior known large-effect QTL identified by
association mapping or linkage mapping [54–56].

GS has been evaluated to predict FHB resistance traits in a number of previous re-
ports [29–31,57,58]. However, only a limited number of factors contributing to accuracies of
GS for FHB resistance traits were investigated in these studies. Thus, a better understand-
ing of the precision of GS on FHB resistance is needed. In the present study, we aimed to
identify and characterize factors that affect accuracies of GS for FHB resistance by analysis
of a multi-parental population that we developed previously [17]. These factors include
sample size, GS models, TP optimization, the incorporation of prior QTL, multi-trait and
multi-environment models and within family and across family predictions.

2. Materials and Methods
2.1. Plant Materials

A multi-parental spring wheat (Triticum aestivum L.) population (double haploid
population) derived from the cross of FL62R1 (as common parental line) with Stettler,
Muchmore, and Emerson was developed as described previously [17]. FL62R1 is an
Eastern Canadian spring wheat line with comparable resistance to Sumai 3, developed
by Comeau et al. [59] with a systemic breeding approach. Stettler and Muchmore are two
semi-dwarf, high-yielding Canada Western Red Spring (CWRS) wheat cultivars [60,61] and
Emerson is Canada Western Red Winter (CWRW) variety that is the first Canadian wheat
to register as an R rating for FHB resistance [62]. The Stettler population (FS) contained
161 lines and the Muchmore (FM) population consisted of 201 DH lines. The Emerson (FE)
population has 218 spring type DH lines.

2.2. Disease Inoculation and Phenotyping

The multi-parent population was evaluated for FHB resistance in disease nurseries at
Carman, Manitoba (MB) and Ottawa, Ontario (ON) in 2015 and 2016 with three biological
replications and a random complete block design (RCBD) in single meter rows. Disease trait
evaluation and phenotyping were described in detail by Zhang et al. [17]. The evaluated
FHB and related traits included INC, SEV, FDK, and DON levels. Days to anthesis (DA)
and plant height (HT) were also recorded, excluding in 2015 at Carman, MB, where no HT
data was available.

2.3. Genotyping

The multi-parental population was genotyped with the Illumina iSelect 90K SNP
array [63] and raw data were processed and cleaned as described by Wang et al. [63] using
the diploid version of GenomeStudio (Illumina, San Diego, CA, USA). High quality SNP
markers from GenomeStudio were further cleaned with the R/QTL package and redundant
markers were removed. Finally, a high-quality marker dataset with 4205 informative SNP
markers was generated for the GS analysis.
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2.4. Evaluation of GS
2.4.1. Prediction Models

Seven genomics selection (GS) models, including BayesA, BayesB, BayesC, and
Bayesian least absolute shrinkage and selection operator (BLASSO), Bayesian Ridge Re-
gression (BRR), reproducing kernel Hilbert space (RKHS) and RR-BLUP were evaluated by
R packages BGLR or rrBLUP [52,64]. Marker effects were estimated by Y = Xβ + Zµ + ε,
where Y is the vector of phenotypes, β is the vector of fixed effects, µ is the vector of
random marker effect, X and Z are design matrices. ε is the vector of residual error, which
assumed a normal distribution as var(ε) ~N (0, Iδ2

ε). I is defined as the identity matrix
and δ2

ε is the residual variance. When QTL were incorporated as fixed effects, the peak
markers identified from Zhang et al. [17] were passed to X vector, otherwise, vector of
1 was used.

2.4.2. Optimization TP

Two optimization algorithms, mean of the coefficient of determination (CDmean)
and mean of predictor error variance (PEVmean) proposed by Rincent et al. [46] were
implemented in R the package TrainSel [65] to design the training population. A randomly
sampled training population was also applied and compared with these optimized training
populations generated by CDmean and PEVmean. Training populations were set with
sizes 50 and 100 lines.

2.4.3. Bayesian Multi-Trait Multi-Environment (BMTME)

Multi-trait and multi-environment prediction were performed with Bayesian Multi-
Trait Multi-Environment (BMTME) models, proposed by Montesinos-López et al. [66]
which was implemented in the R package BMTME [66]. Briefly, datasets were fitted in
the model: Y = XEB + Z1b1 + Z2b2 + e, where Y is defined as the phenotypic response
with a n × L matrix, n represents observations of a trait and L is the number of traits.
XE is a design matrix for the environmental effects with an n × I order, B is defined as
beta coefficients with an I × L matrix. Z1 is the design matrix of genotypes with n × J
order, and Z2 is the design matrix of genotype x environment interactions with an order
of n × JI. b1 is the matrix for genotypic random effects with an order of J × L, followed
a distribution as b1 ~ M N (0, G, Σt), where M N represents matrix normal distribution
with a mean vector 0 and within and between variance-covariance matrices G and Σt. G
is calculated according to Van Raden [67] and assumed known. Σt is a L × L matrix for
unknown variance -covariance of traits and b2 stands for random effects of genotype x
environment interactions with a matrix of JI × L order with an assumed distribution as
b2 ~ M N (0, ∑E ⊗ G, Σt). e is the matrix for random residual errors with a n × L dimension,
distributed as M N (0, In, Re).

2.4.4. Cross Validations of the Prediction Accuracy (PA)

Prediction accuracies of TP sizes and TP optimizations were obtained by 100 iterations
from these defined TP with the genomic selection model rrBLUP [64]. For all other tests,
predictions accuracies were estimated from the 5-fold cross validation scheme. With this
scheme, lines were randomly divided into 5 subsets and four of the five subsets were
combined as the TP, and the remaining fifth fold was treated as the validation set. This
scheme was applied to each fifth fold of these five subsets and this process was repeated
10 times. Prediction accuracy was calculated as Pearson’s correlation between the GEBVs
obtained from GS models and the observed phenotypic data.

3. Results
3.1. Effects of Training Population (TP) Size, TP Optimization and Models of Prediction

We used the FS population, with data from MB, to assess the effects of the population
size on the accuracy of genomics prediction. For all traits, the prediction accuracy consider-
ably increased by increasing the size of the TP from 25 to 150 lines in both year-independent
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tests (Figure 1). The accuracy did not reach a plateau at the maximum TP size of 150 lines
for any of the traits except DA in 2016 (Figure 1B).

Figure 1. The effect of training population (TP) size on accuracies of genomic selection for fusarium head blight (FHB)-
related traits in (A) Year 2015; (B) Year 2016. Prediction accuracy is the mean value of 100 iterations from the randomly
sampling TP of the same size. Days to anthesis (DA), incidence (INC), severity (SEV), Fusarium damaged kernels (FDK),
deoxynivalenol (DON) and plant height (HT). Standard error is indicated for each point.

In addition, for all test TP sizes, for DA, a higher accuracy was observed in 2015
(Figure 1A) than in 2016 (Figure 1B). INC and SEV were both observed with higher accu-
racies in 2016 than 2015 (Figure 1). DON consistently showed higher accuracies across
two-year tests, in contrast there was consistently lower accuracies of FDK across years
(Figure 1). HT showed the highest accuracy in 2016 compared to all other traits (Figure 1).

In addition to the TP size, we also evaluated the effect of TP optimization algorithms
with same datasets above. As shown in Figure 2, TP selection using CDmean always
performed better than the PEVmean and random sampling approaches with PEVmean
showing lower accuracies than random sampling for all traits in both 2015 (Figure 2A) and
2016 (Figure 2B). When the TP size was reduced to 50 lines the same trends were observed,
with the best performance from CDmean optimization (Figure S1).

Seven genomic prediction models, including five parametric (rrBLUP, BayesA, BayesB,
BayesC, BL, BRR) and one semiparametric approach (RKPHS) were evaluated with the
same datasets. In the year 2015, each model had a similar performance for all FHB related
traits (Figure 3A). In the year 2016, each model also showed similar accuracy, except rrBLUP
showed higher accuracies for DA and SEV, but lower accuracies for DON (Figure 3B).
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Figure 2. Effects of training population optimization methods on accuracies of fusarium head blight (FHB)-related traits in
(A) Year 2015; (B) Year 2016. Training population (TP) with a size of 100 lines was randomly selected or optimized with
CDmean or PEVmean algorithms. Days to anthesis (DA), incidence (INC), severity (SEV), Fusarium damaged kernels (FDK),
deoxynivalenol (DON) and plant height (HT). Prediction accuracy is the mean value of 100 iterations for each defined TP.

Figure 3. Accuracies of genomic prediction models in (A) Year 2015; (B) Year 2016. Models include five Bayesian’s
approaches: BayesA, BayesB, BayesC, Bayesian least absolute shrinkage and selection operator (BL), Bayesian Ridge
Regression (BRR) and two other models: reproducing kernel Hilbert space (RKHS) and ridge regression-best linear unbiased
prediction (rr-BLUP). Whiskers represent the upper and lower limit, and the box represents the quartiles Q1 (25%), Q2
(median, thick black line within the box), and Q3 (75%). Each model was evaluated by fivefold cross-validations and
repeated 10 times. Days to anthesis (DA), incidence (INC), severity (SEV), Fusarium damaged kernels (FDK), deoxynivalenol
(DON) and plant height (HT).

3.2. Incorporation of Prior Known QTL into the Genomic Prediction Model

We evaluated the effect of including QTL as a fixed effect in the genomics prediction
model, with the datasets of the FS population from MB. As shown in Figure 4A, in 2015,
incorporating QTL into the GS models significantly improved the prediction accuracy for
FHB traits including INC, SEV, FDK and DON, but had almost no effect on DA. A similar
pattern was also observed in the year 2016 (Figure 4B). We also found in 2016, accuracy of
HT prediction was improved by incorporating prior known QTL (Figure 4B).
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Figure 4. Accuracies of genomic prediction incorporating QTL as fixed effects for FHB related traits in (A) Year 2015;
(B) Year 2016. Results were shown with the genomics selection (GS) model with the whole marker dataset, marker datasets
without QTL peak markers (GS−QTL), and GS prediction with QTL as fixed effects (GS+ QTL). Whiskers represent the
upper and lower limit, and the box represents the quartiles Q1 (25%), Q2 (median, thick black line within the box), and
Q3 (75%). Each model was assessed by fivefold cross-validations and repeated 10 times. Days to anthesis (DA), incidence
(INC), severity (SEV), Fusarium damaged kernels (FDK), deoxynivalenol (DON) and plant height (HT).

3.3. Multi-Traits and Multi-Environment Prediction

We first compared the single trait and multi-trait model analysis in the year 2015 with
datasets of FS population from MB. As shown in Figure 5A, for FHB related traits, INC,
SEV, FDK, and DON, and their corresponding multi-trait models, INC + DA, SEV + INC +
DA, FDK + INC + DA + SEV, and DON + INC + DA + SEV + FDK, results of multi-trait
models were very similar to the single trait model analysis. For the year 2016, HT was
included in the multi-trait model in addition to DA. We found that only for DON, the
multi-trait model, DON + INC + DA + HT + SEV + FDK performed better than the single
trait model analysis (Figure 5B).

To evaluate the accuracy of the multi-environment prediction model, we adopted
a scenario to simplify the complexity of GEI. We first assessed a scenario of prediction
accuracy in the same location but across different years with datasets of the FS population
from MB. For all FHB related traits, a single environment model built from a one-year trial
always had lower accuracy when applied to the other year (Figure 6A,B). When a multi-
environment model built from multiple years was applied, it achieved better performance
for the prediction across years compared to a single environment model (Figure 6). We then
assessed the multi-environment model from the same year but across different locations
with datasets of the FS population from both MB and ON. As shown in Figure 7A, models
built from the trials at Winnipeg, MB (Western Canada) showed lower accuracy to predict
the performance of FHB related traits at Ottawa, ON (Eastern Canada) in the year 2015.
A similar pattern was observed when an Eastern Canada model was used to predict the
performance in Western Canada (Figure 7B). When a multi-environment model developed
from both locations was applied, it always displayed higher prediction accuracy across
different locations in 2015 (Figure 7). A similar pattern was observed in 2016 (Figure S2),
validating the better performance of the multi-environment model.
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Figure 5. Accuracies of genomic prediction with multi-trait model in (A) Year 2015; (B) Year 2016. Whiskers represent the
upper and lower limit, and the box represents the quartiles Q1 (25%), Q2 (median, thick black line within the box), and Q3
(75%). Each model was assessed by fivefold cross-validations repeated 10 times. Days to anthesis (DA), incidence (INC),
severity (SEV), Fusarium damaged kernels (FDK), deoxynivalenol (DON) and plant height (HT). For FHB resistance traits,
their corresponding multi-trait models with combination of INC, SEV, FDK, DON, DA and HT were defined as shown by
the legend Models.

Figure 6. Accuracies of genomic prediction with multi-environment model built from multiple years in the same location and
predicted for (A) Year 2016; (B) Year 2015. Whiskers represent the upper and lower limit, and the box represents the quartiles
Q1 (25%), Q2 (median, thick black line within the box), and Q3 (75%). Each model was assessed by fivefold cross-validations
repeated 10 times. 15 and 16 represented the year 2015 and 2016. 15_P16 and 16_P15, models were built from 2015 and 2016
and were used to predict performance across the year of 2016 and 2015. 1516_P15 and 1516_P16, models were built from
multiple years 2015 and 2016 and were used to predict the year traits performance in Year 2015 and 2016. Days to anthesis (DA),
incidence (INC), severity (SEV), Fusarium damaged kernels (FDK), deoxynivalenol (DON) and plant height (HT).
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Figure 7. Accuracies of genomic prediction with multi-environment models built from multiple locations to predict
performance across locations in the year 2015 (A) Prediction of traits for Ottawa, Ontario (O); (B) Prediction of traits
for Carman, MB (W). Whiskers represent the upper and lower limit, and the box represents the quartiles Q1 (25%), Q2
(median, thick black line within the box), and Q3 (75%). Each model was assessed by fivefold cross-validations repeated 10
times. 15 represented the year 2015. W and O, represented Carman, MB and Ottawa, Ontario. Models built from single
environment (SE) at Carman, MB (W), and multiple environment model with two locations, Carman, MB and Ottawa,
Ontario (WO) were used to predict traits performance at Ottawa, Ontario (W_PO and WO_PO) and compared to the single
environment model at local environment (W), as shown in (A). Models built from single environment (SE) at Ottawa,
Ontario (O), and multiple environment model with two locations, Carman, MB and Ottawa, Ontario (WO) were used to
predict traits performance at Carman, MB (O_PW and WO_PW) and compared to the single environment model’s prediction
at local environment (O), as shown in (B).

3.4. Prediction within and across Populations

The multi-parental population including FS, FM and FE was evaluated for FHB
resistance with datasets from MB. This multi-parental population was designed as a nested
association mapping (NAM) approach with the FHB resistance line FL62R1, as common
parental line. Principal component analysis (PCA) showed that lines from each individual
population were grouped together (Figure S3). PC1 differentiated the FE population from
both the FS and FM population (Figure S3). Dendrogram of hierarchical cluster analysis on
the genomic relationship of this multiple parental population is also consistent with the
PCA analysis (Figures S3 and S4), showing that the FS and FM population have higher
relatedness to each other, and lower relatedness to the FE population (Figures S3 and S4).

To evaluate predictabilities across populations, we set the FS population as the refer-
ence population and used it to predict performance on the other two test populations. As
shown in Figure 8, when TP composition changed from 0 (all lines were from FS population)
to 100% (all lines were from test populations), accuracies were consistently increased for all
FHB related traits in both two-year tests. When the TP was at 50% of reference population,
lines from the test population can get a relatively reasonable accuracy, varying from ~0.3
to 0.65 for these different traits (Figure 8). When the reference FS population was used
to predict the FM (Figure 8A,C) and FE population (Figure 8B,D), higher accuracies were
observed for the FM population.
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Figure 8. Accuracies of genomic prediction within and across populations. Stetter (FS) population was set as reference
population and was used to predict performance on Muchmore population (FM) in (A) Year 2015 and Emerson population
(FE); (B) in Year 2016 and (C) FM in Year 2016 and (D) FE in Year 2016. Days to anthesis (DA), incidence (INC), severity
(SEV), Fusarium damaged kernels (FDK), deoxynivalenol (DON) and plant height (HT). Prediction accuracy is the mean
value by fivefold cross-validations repeated 10 times. 0–100% presented lines of tested populations in the TP, increased from
0 to 100 percent (and reference population decreased from 100 to 0%). Standard error is indicated for each point.

4. Discussion
4.1. TP Size

The gradual increase in accuracies for FHB related traits along with the increased
TP size agrees with many previous research, including FHB resistance in wheat [30,58]
and barley [28], agronomics traits in winter wheat [68] and maize [69]. The size of the
training set has a big impact on the accuracy of GS, and a TP of sufficient size is required
for good prediction [33,40,48]. However, there are practical reasons the size is constrained
(i.e., additional costs with the larger field tests) and there is a TP size where the gains are
diminished [28,43]. In barley, it was reported that increasing the size of TP beyond 200 lines
has little effect on the accuracy of the FHB resistance prediction [28]. Arruda et al. [30]
found that with a TP size of 192 lines, all FHB related traits in wheat except index reaching
the plateau. Isidro et al. [41] evaluated five agronomic traits in wheat and found that
accuracy prediction plateaued with a TP size at 300 lines. We observed that the prediction
accuracy was still increasing when the TP size reached the maximum of our test, 150 lines.
Considering that FHB resistance is a complex trait that is controlled by many minor genes
that are significantly affected by GEI and with relatively lower phenotyping accuracy, a TP
with a size around 200 lines, or more will be needed to achieve better accuracy for FHB
resistance in wheat.

4.2. Design TP with Optimization Algorithms

Larger training population size tends to increase the accuracy of the genomic selection,
however, a reasonable accuracy can be achieved with a small TP size, given an appropriate
design [44–46,70]. In addition, knowing how well the model predicts could allow breeders
to better allocate resources to apply the GS in the breeding program [41]. Thus, designing
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an optimal TP is central to the success of the GS in the breeding program. CDmean and
PEVmean were originally applied to optimize the TP by Rincent et al. [46] and later these
approaches were advanced to stratified CDmean (StratCDmean) and Selection of Training
Populations by Genetic Algorithm (STPGA) [41,44,45]. In present study, we found that
CDmean consistently outperformed PEVmean for all FHB related traits and at a different
TP size. The better performance of CDmean to design an optimal TP with higher accuracy
agrees with previous findings for complex traits from many other crops [41,46,47,71].
Together, all of these findings indicated that CDmean may be a promising approach to
optimize the TP for better accuracies. Tiede and Smith [71] reported that all optimization
algorithms performed better than random sampling TP. However, in our study, PEVmean
had consistently worse accuracies compared to random sampling in different years and for
all evaluated FHB related traits. Isidro et al. [41] also found that PEVmean showed lower
accuracies for florets per panicle and flowering time in wheat with an intermediate TP size,
a size comparable to the TP size of our study (around 100–150 lines). There is a need to
further explore the cause of this lower accuracy of PEVmean. In addition, most current
optimization algorithms only use the genomics information of the TP, except the STPGA,
which also incorporated the information from the testing population [44]. In the future,
new advanced optimization algorithms that can design the TP with a better predictability
will pave the way for the design of the TP, and thus can broadly benefit the GS application
in the breeding program.

4.3. Models of Prediction

There are a large number of models that can be used to predict phenotypic traits
and these methods can be simply classified into parametric and non-parametric (or semi-
parametric) approaches [72]. These methods varied in their accuracies for different traits
as parameters varied according to different assumptions to appropriately suit the genetic
architecture underlying that targeted trait [48–50]. The majority of models used for ge-
nomic prediction are Bayesian based models and rrBLUP (or GBLUP, equal to rrBLUP)
model [51,64]. In the present study, we found seven models including both parametric and
non-parametric approaches had very similar performance for all FHB related traits across
different years. Heffner et al. [43] also observed no difference for different GS models, tested
on thirteen agronomic traits in wheat. With their findings as ours, GS models may play a
minor effect on the accuracy to predict FHB resistance and agronomics traits in wheat.

4.4. Incorporation of Prior Known QTL

Previous studies with both simulated and empirical datasets in different crops, in-
cluding rice, maize, sorghum and wheat demonstrated that incorporating large effect QTL
as fixed effects into GS can lead to better predictability [54,55,58,73–76]. In our study, we
also found that including QTL into GS model as fixed effects can considerably improve
accuracies for FHB resistance traits including INC, SEV, FDK and DON. This benefit was
also validated by the test in different environments. Arruda et al. [74] also observed that
including QTL as fixed effects can significantly improve accuracies of GS for INC, SEV, FDK,
but with no effect on DON. Beside FHB traits, Herter et al. [58] 2019 found higher accuracies
for the heading date and plant height with QTL as fixed effects in the GS model, while
our study found including fixed effect QTL influenced the prediction accuracy of plant
height but had little or no effect on heading date. A simulation study [54] demonstrated
that including known major genes as fixed effects can increase prediction accuracy when a
substantial amount of phenotypic variance can be explained by major genes. Our previous
study [17] identified that a major QTL from FL62R1 on chromosome 4B contributed to the
FHB resistance and plant height. In addition, FHB1 was found as the second largest QTL
from FL62R1 that conferred FHB resistance [17]. However, only quite minor QTL were
identified for the heading date. Thus, our findings were in agreement with results from
Bernardo [54]. Recently, Larkin et al. [57] reported that GS plus QTL performed worse than
native GS, while Rice and Lipka [76] showed that the benefits of GS plus QTL were on
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a trait-by-trait basis. Therefore, application of the GS plus QTL model should take into
account the trait, effect of QTL, and the property of the genetic architecture underlying the
trait. An additional complication is that candidate genes controlling many traits are still
not yet cloned, and most times, markers associated with the trait were used instead of func-
tional genes. This may affect the accuracy of the GS plus QTL model. Indeed, a negative
impact on the GS was noted by Spindel et al. [55] when inaccurate or inappropriate fixed
effects were incorporated into the GS model.

4.5. Predictability with Multi-Trait and Multi-Environment Models

Many studies, including our previous study on the FHB resistance of FL62R1 identified
that flowering time and plant height are associated with FHB resistance [17,21,23,25]. In
addition, different FHB resistance components, including INC, SEV, FDK and DON may
partially share the same genetic architecture [17,21,25]. Jia and Jannink [52] reported that
for genetically correlated quantitative traits, multivariate genomic selection (MVGS) model
on multiple correlated traits outperformed the single-trait (univariate) GS model. With the
application of the MVGS model on FHB related traits including INC, SEV, FDK and DON
and plant height, Larkin et al. [57] found that MVGS performed better for all these FHB
resistance traits except for DON. In our study, we found MVGS did not perform better than
the single trait prediction model for all these FHB related traits in the test of Year 2015. This
finding was supported by the other independent test in the year of 2016, except for DON,
where MVGS had better accuracy than the single trait model. Previous study in wheat
quality and yield traits, showed that MVGS models did not perform better than the single
trait model except yield [77,78]. These discrepancies on accuracies of MVGS models may
be partially caused by different genetic architecture, mechanism and interactions of genes
underlying genetically correlated traits.

In contrast, when we applied multi-environment (MET) models across different years
or locations, MET models that incorporated GEI always performed better than single
environment models for all FHB related traits and for DA and HT. Lado et al. [79] performed
MET model analysis with 35 location–year combinations and found that higher predictive
ability can be achieved by modeling GEI in the GS models. Lado et al. [79] also found
modeling GEI for GS quite complicated, and that borrowing information from relatives
evaluated in multiple environments and modeling them is important for MET prediction
accuracies. Our findings indicated that designing a TP with phenotypic traits generated
from environments similar to environments of the test population may be crucial for the
success of MET prediction in the breeding program.

4.6. Predictability within and across Populations

The relatedness between the TP and tested population is critical for the prediction
of complex traits [36]. With FS as reference population, we found that changing the TP
compositions from 0% of the tested population to 100% (FS decreased from 100% to 0%),
increased accuracies for all FHB related traits across different years. This was supported
by findings in maize [80] and durum wheat [81], which all indicated that relatedness
between TP and test population should be the key consideration for GS application. In
addition, we found when FS was used as TP, it better predicted the more closely related FM
population than the more distantly related FE population. Parental line Stettler from FS
and Muchmore from FM populations are two Canadian western red spring wheat varieties
that were developed from the AAFC Swift-Current breeding program, and share the same
parent, Superb, in their pedigrees [60,61]. The FE population was generated from Emerson,
a winter wheat that is the only R rated FHB resistance wheat in Canada [62]. This pedigree
information validated the higher genetic relatedness between the FS and FM population
than the FE population. It should be noted that the FS TP and the test populations all share
the major 4B QTL for FHB resistance that derives from the common FHB resistant parental
line FL62R1 [17]. Thus, findings from this study may have limits when attempting to apply
to broad applications.
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5. Conclusions

In this study, with multiple connected bi-parental populations, we evaluated factors
that can affect accuracies for the prediction of FHB related traits in wheat. We found a TP
size around 200 lines, or more, is needed to achieve good accuracies for FHB resistance.
Incorporating prior known QTL information of these traits can significantly improve
predictabilities. Multi-environment modelling and including phenotypic data from the
TP with relevance to the test population led to considerably better predictabilities across
environments. Relatedness between TP and testing population is the key for accuracies,
but accurately applying GS across less related populations remains a challenge.

6. Patents

Not Applicable.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/biology10080756/s1, Figure S1: Effects of training population (TP) optimization on the
accuracy of fusarium head blight (FHB)-related traits in (A) Year 2015; (B) Year 2016. A TP with
a size of 50 lines was randomly selected or optimized with CDmean and PEVmean. Prediction
accuracy is the mean value of 100 iterations for each of these defined TP. Days to anthesis (DA),
incidence (INC), severity (SEV), Fusarium damaged kernels (FDK), deoxynivalenol (DON) and plant
height (HT), Figure S2: Accuracies of genomic prediction with multi-environment models built from
multiple locations predicted performance across locations in the year 2016 (A) Prediction of traits
for Ottawa, Ontario (O); (B) Prediction of traits for Carman, MB (W). Whiskers represent the upper
and lower limit, and the box represents the quartiles Q1 (25%), Q2 (median, thick black line within
the box), and Q3 (75%). Each model was assessed by fivefold cross-validations repeated 10 times.
16 represented the year 2016. W and O, represented Carman, MB and Ottawa, Ontario. Models
built from single environment (SE) at Carman, MB (W), and multiple environment model with two
locations, Carman, MB and Ottawa, Ontario (WO) were used to predict traits performance at Ottawa,
Ontario (W_PO and WO_PO) and compared to the single environment model at local environment
(W), as shown in (A). Models built from single environment (SE) at Ottawa, Ontario (O), and multiple
environment model with two locations, Carman, MB and Ottawa, Ontario (WO) were used to predict
traits performance at Carma, MB (O_PW and WO_PW) and compared to the single environment
model’s prediction at local environment (O), as shown in (B), Figure S3: Principal component analysis
(PCA) of the population structure of the multi-parental population. Blue dots represented Emerson
population (FE), red and green were Stettler population (FS) and Muchmore population (FE). X-axis
and Y-axis represented variations explained by PC1 and PC2, Figure S4: Dendrogram of hierarchical
cluster analysis heatmap of the genomic relationship matrix for the wheat multi-parental population.
Blue branches represented Emerson population (FE), red and green branches were Stettler population
(FS) and Muchmore population (FE).
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