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Perspective

Introduction

Our lungs have a vital role in mediating the exchange of 
oxygen and carbon dioxide between the air we breathe and 
the body. This function is under constant pressure as inhaled 
air contains numerous particles, gasses, and microorganisms 
that may cause injury and infection to the lungs. Removal 
and neutralization of potential harmful substances from 
inhaled air is a main function of the airway epithelium. 
This pseudo‑stratified layer of cells covers the surface 
of the conducting airways and plays an important role in 
protecting the alveoli, where gas exchange takes place, 
from injury. The airway epithelium has a range of properties 
that contribute to lung defense, including constitutive 
host defense mechanisms and regulation of airway innate 
immunity. Moreover, epithelial cells display wound‑healing 
properties, which allow rapid recovery of airway tissues upon 
injury. Airway epithelial host defense functions are important 
to maintain proper gas exchange and lung homeostasis. 
Epithelial exposures to inhaled noxious particles and gasses 
may have detrimental outcomes on this host defense function 
of the airway epithelium.

This is  seen in chronic obstructive pulmonary 
disease (COPD), a disease in which an impaired epithelial 
function and epithelial remodeling caused by smoking 
and exposure to other inhaled toxicants contributes to an 
accelerated decline in lung function. COPD is a severe 
inflammatory lung disease, regarded as one of the most 
prevalent burdens in global health[1] and is predicted as the 
3rd cause of death and the leading lung disease worldwide 
by 2030.[2] Airflow limitation in COPD is accompanied by 
persistent inflammation, airway remodeling, and destruction 
of lung tissue, resulting in clinical symptoms such as 
dyspnea, chronic cough, and fatigue. Exposure to biomass, 

occupational dusts, and chemicals are examples of cytotoxic 
insults that are associated with COPD development and 
progression.[3‑5] However, smoking is regarded as the main 
risk factor that is associated with the disease in industrialized 
countries. In addition to a progressive decline in lung 
function in stable COPD, exacerbations  –  defined as an 
acute worsening of symptoms  –  contribute markedly to 
morbidity and mortality in COPD. Respiratory infections are 
considered as an important trigger for COPD exacerbations, 
and patients with frequent exacerbations are more susceptible 
to recurrent exacerbations.[6] This increased colonization and 
infections with opportunistic respiratory pathogens have 
been attributed in part to impaired epithelial host defense 
functions. However, the molecular and cellular mechanisms 
that are affected in the airway epithelium by smoking and 
that may lead to COPD are largely unclear.

Microbial Colonization and Respiratory 
Infections in Chronic Obstructive Pulmonary 
Disease

Microbial colonization and infections are an important 
pathophysiological aspect in certain COPD patients. While 
many studies focused on the detection of respiratory tract 
bacterial and viral infections during disease exacerbations, 
colonization during the stable phase of the disease has now 
been extensively studied. Based on traditional culture‑based 

Airway Epithelial Cell Function and Respiratory Host Defense 
in Chronic Obstructive Pulmonary Disease

Gimano D. Amatngalim1,2, Pieter S. Hiemstra1

1Department of Pulmonology, Leiden University Medical Center, Leiden, The Netherlands
2Department of Pediatrics, Wilhelmina Children’s Hospital, Regenerative Medicine Center Utrecht, University Medical Center Utrecht,  

Utrecht, The Netherlands

Key words: Airway Epithelial Cells; Cell Culture; Chronic Obstructive Pulmonary Disease; Respiratory Infections

Access this article online

Quick Response Code:
Website:  
www.cmj.org

DOI:  
10.4103/0366-6999.230743

Address for correspondence: Prof. Pieter S. Hiemstra, 
Department of Pulmonology, Leiden University Medical Center,  

P. O. Box: 9600, 2300 RC Leiden, The Netherlands  
E‑Mail: p.s.hiemstra@lumc.nl

This is an open access journal, and articles are distributed under the terms of the 
Creative Commons Attribution‑NonCommercial‑ShareAlike 4.0 License, which 
allows others to remix, tweak, and build upon the work non‑commercially, as long as 
appropriate credit is given and the new creations are licensed under the identical terms.

For reprints contact: reprints@medknow.com

© 2018 Chinese Medical Journal  ¦  Produced by Wolters Kluwer ‑ Medknow

Received: 03‑03‑2018 Edited by: Yi Cui
How to cite this article: Amatngalim GD, Hiemstra PS. Airway Epithelial 
Cell Function and Respiratory Host Defense in Chronic Obstructive 
Pulmonary Disease. Chin Med J 2018;131:1099-107.



Chinese Medical Journal  ¦  May 5, 2018  ¦  Volume 131  ¦  Issue 91100

Cigarette smoke exposure of airway tissues induces damage, 
which promotes local inflammatory responses and impairs 
host defense. Microbes further amplify airway inflammatory 
responses, whereas chronic inflammation contributes to 
tissue damage and degenerative repair. The persistence 
of this vicious circle due to repetitive smoking eventually 
modulates tissue repair and leads to remodeling of the 
airways, thereby causing progressive airflow obstruction. In 
line with this, endogenous lung tissue repair may be impaired 
in COPD as demonstrated by decreased nuclear β‑catenin 
staining in emphysematous lung tissue.[20]

Airway Epithelium

The airway epithelium is the first target of inhaled cigarette 
smoke. Furthermore, epithelial cells are the first defense 
lining of the respiratory tract that prevents microbial 
colonization and infections.[21,22] Since the airway epithelium 
is also the first tissue to be exposed to inhaled toxicants such 
as those present in cigarette smoke, the airway epithelium has 
a central role in the vicious circle hypothesis, and alterations 
in host defense and epithelial remodeling may contribute to 
COPD development and progression.

The airway epithelium is a continuous layer that covers 
the surface of the respiratory tract and consists of cells that 
are connected by adhesion and tight junctions.[23,24] Two 
morphological and functional distinct types of epithelium 
are located in, respectively, the conductive airways and 
respiratory units in the lung peripheral tissue [Figure 2a]. 
The conductive airways start at the nasal cavity and end at 
the small bronchioles in the lower airways. In these regions, 
the epithelium facilitates the moistening and warming of 
inhaled air before reaching the alveoli in the respiratory units 
where gas exchange takes place. The airway epithelium of 
the conductive airways furthermore has an active role in 
protecting the lungs against inhaled microorganisms, and 
this role is closely linked to the morphology and composition 
of the epithelium.

In contrast to the simple columnar and cuboidal lining of 
the bronchioles and alveoli, the epithelium of the large 
conducting airways is characterized by a pseudostratified 
morphology.[23,25] Based on this morphology, epithelial cells 
can be divided into luminal cells (LCs), which are in direct 
contact with the environment, and basal cells  (BCs) that 
are superimposed by LCs and located above the basement 
membrane [Figure 2b]. The main cell types that make up 
the LC population are the ciliated cells and the secretory 
cells which include the club cells and the mucus‑producing 
goblet cells, which are discussed in the next paragraph. LCs 
and BCs have distinct functions in airway host defense, 
which depend on the degree of microbial threat and also 
whether the epithelial layer is intact or damaged. Based 
on this, airway epithelial host defenses can be categorized 
into  (1) constitutive host defense mechanisms by LCs, 
(2) inducible innate immunity, and (3) injury‑induced wound 
repair and defense by airway BCs [Figure 2c]. In addition, 
the airway epithelium plays a central role in instructing 

techniques, it was shown that clinically stable COPD patients 
were colonized with opportunistic respiratory pathogens, 
most notably nontypeable Haemophilus influenzae.[7‑10] 
Colonization with respiratory pathogens was furthermore 
associated with elevated levels of inflammatory markers in 
upper‑ and lower airway fluid samples.[8,9,11,12] This suggests 
a role of microbial colonization in airway inflammation in 
COPD patients. Recent understanding of the presence of 
complex lung microbial communities (the lung microbiome) 
has further supported a role for microbial colonization in 
COPD pathogenesis. Compared to healthy individuals, it 
has been shown in various studies[13,14] that COPD patients 
have altered microbiomes in the upper and lower airways, 
which are characterized by a less diverse microbial 
composition. In line with culture‑based studies, respiratory 
pathogens such as Haemophilus spp., were observed more 
frequently in the airway microbiome of COPD patients.[15,16] 
In addition, the COPD airway microbiome is characterized 
by the absence of microbes that are common in healthy 
individuals.[15,17] These promising findings suggest that an 
imbalance in the microbiome or dysbiosis is a hallmark of 
COPD. Besides colonization in stable COPD, acute bacterial 
or viral infections are associated with approximately 50% 
of disease exacerbations. In particular, acquisition of new 
bacterial strains is assumed to cause acute worsening of 
patient symptoms.[18] Furthermore, recent studies suggest 
alterations in the airway microbiome during COPD 
exacerbations, which are characterized by an increase in 
airway pathogens.[19] Overall, these observational studies 
highlight the importance of a better understanding of the 
role of microbial colonization and infections in COPD 
pathogenesis and its interaction with epithelial host defenses.

The underlying mechanism linking smoking with microbial 
colonization and infections in COPD can be explained by the 
vicious circle hypothesis.[13] According to this hypothesis, 
smoking stimulates the development and progression of 
COPD by initiating a vicious circle of airway injury, microbial 
colonization/infections, and inflammation  [Figure  1].[13] 

Figure 1: Vicious circle hypothesis of COPD. A model that explains 
the development and progression of COPD, focusing on a persistent 
cycle of microbial colonization and infections, inflammation, and airway 
tissue injury. Adapted from: Mammen and Sethi, 2016. COPD: Chronic 
obstructive pulmonary disease.
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adaptive immunity by interacting with dendritic cells and 
innate lymphoid cells, but this topic is beyond the scope of 
the present review.

Constitutive Luminal Cell Host Defenses

Constitutive epithelial host defense mechanisms are defined 
as those functions mediated by intact airway epithelium at 
baseline, homeostatic conditions [Figure 3a]. This includes 
the physical barrier functions of connected epithelial cells, 
but also active mechanisms mediated by LCs that are directly 
exposed to environmental insults. LCs comprise mature 
high columnar cells with specialized functions. Ciliated 
cells are an abundant LC type and are characterized by their 

multiciliated structures at the apical surface.[23,25] Moreover, 
the luminal epithelium includes specialized secretory cells, 
i.e., goblet and club cells, which are distinctively located in, 
respectively, the large and small airways.[26] The constitutive 
defense of LCs depends on the interaction between ciliated 
and secretory cells in regulating the fluid lining located at the 
epithelial surface. This airway surface liquid (ASL) consists 
of a mixture of host defense proteins and peptides that are 
secreted by the airway epithelium and immune cells.[27‑29] This 
mixture provides a chemical shield against microorganisms 
and is responsible for the relatively low levels of microbes 
in the respiratory tract of healthy individuals. Antimicrobial 
proteins and peptides (AMPs) present in this ASL prevent 

Figure 2: Schematic presentation of the airway epithelium. (a) The human respiratory tract, with the conductive airways highlighted in gray. 
(b) Composition of the pseudostratified airway epithelium, consisting of ciliated, secretory cells (i.e., goblet and club cells located in the upper 
and lower airways, respectively) and basal cells. (c) Airway epithelial host defense mechanisms include constitutive host defense mechanisms, 
inducible innate immunity, activated for instance by microbes, and injury‑induced host defense mechanisms, activated for instance by cigarette 
smoking. Both inducible innate immunity and injury‑induced host defense mechanisms contribute to the chemoattraction and interaction with 
immune cells.
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microbial colonization and infections by displaying direct 
microbial killing activity or by reducing the availability 
of important micronutrients.[30,31] Another host defense 
mechanism is mediated by secreted gel‑forming mucins, 
present in the ASL as discontinuing floating strands or 
rafts.[32,33] These mucins can entrap microorganisms and large 
particles and are subsequently removed through mucociliary 
clearance. During this process, mucus is propelled from 
the airways toward the throat by the continuous ciliary 
beating of ciliated cells.[34] MUC5B and MUC5AC, the 
main mucins of the mucus gel, are mainly produced by the 

goblet cells of the surface epithelium and by the submucosal 
glands.[33] Moreover, it has been reported that club cells 
can produce MUC5B in the lower airways.[35] A second 
constitutive defense lining, the periciliary layer, separates 
the luminal airway epithelium and mucin gel. The fluidity 
and height of this layer is important to allow the cilia to 
move the mucus layer with entrapped particles. Host defense 
mucins that are tethered to the surface of the epithelium and 
present in complexes with the glycosaminoglycan keratin 
sulfate also contribute to host defense.[36] These complexes 
are mainly located at epithelial cilia and are assumed to shape 

Figure 3: Airway epithelial host defense. (a) Constitutive host defense mechanisms of the luminal airway epithelium including barrier function, 
a cellular and tethered mucin barrier, defense through mucociliary clearance and secreted antimicrobial proteins and peptides, and regulation of 
airway surface liquid physiological properties through ion transport channels. (b) Inducible innate immunity can be activated upon recognition 
of microbes by epithelial pattern recognition receptors, which activate signaling pathways, i.e., MAPK and NF‑κB, which promote the expression 
of inducible AMPs and pro‑inflammatory mediators. (c) Epithelial injury results in the activation of EGFR located on basal cells, through various 
EGFR‑ligands (i.e., EGF, TGF‑α, HB‑EGF, and AREG) produced in an autocrine manner or by luminal cells, stromal cells, or immune cells. The 
release of EGF‑ligands is in part mediated through shedding by matrix‑metalloproteases. EGFR activation subsequently promotes wound repair 
and innate immune responses. EGFR: Epidermal growth factor receptor; EGF: Epidermal growth factor; TGF‑α: Transforming growth factor‑alpha; 
HB‑EGF: Heparin‑binding‑epidermal growth factor; AREG: Amphiregulin.
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a periciliary brush, which creates an additional barrier that 
prevents penetration of particles and microorganisms.[37] 
LCs furthermore regulate the physiological conditions of the 
ASL. This is mediated by active ion transport, for instance 
by the cystic fibrosis transmembrane conductance regulator 
protein or calcium‑activated chloride channels such as 
anoctamin‑1 (ANO‑1/TMEM16A).[38,39] Chloride secretion 
and reabsorption of sodium by the epithelial sodium 
channel have been shown to regulate ASL volume.[40] This 
has important consequences for mucociliary clearance as 
it determines the hydration state of the mucus gel, as well 
as the height of the periciliary layer which is an important 
determinant of ciliary movement.[41] Moreover, transport of 
bicarbonate regulates the pH of the ASL,[42] which may affect 
the activity of pH‑sensitive AMPs and mucus viscosity.[43,44]

Inducible Innate Immunity

Constitutive host defense mechanisms provided by LCs 
give baseline protection during relatively low microbial 
exposures. Evasion from host defense mechanisms or 
adaptation to the host microenvironment may allow 
microbial outgrowth, thereby overwhelming constitutive 
airway epithelial defense.[45] Therefore, secondary host 
defense mechanisms are activated upon sensing of 
increased levels of microbes [Figure 3b].[46] This depends 
on recognition of microbes by host cell receptors, which 
is highly conserved between species. It was first observed 
in Drosophila that microbial recognition of the receptor 
toll resulted in the expression of AMPs.[47] Similar 
to Drosophila, human toll‑like receptors are present 
at the surface of airway epithelial cells or located in 
membrane‑enclosed compartments.[48] Moreover, other patter 
recognition receptors (PRRs), such as NOD‑like receptors, 
MDA5, and RIG‑1, are located in the cell cytosol.[49] 
Ligation of PRRs leads to activation of cellular signaling 
transduction pathways such as MAPK and NF‑κB.[50] 
This subsequently leads to expression of AMPs that are 
not produced at baseline conditions or only at very low 
levels. These “inducible” AMPs increase the antimicrobial 
activity of the ASL, counteracting the increased levels of 
microbes.[51,52] In addition to increasing the expression of 
AMPs, activation of downstream signaling pathways also 
leads to epithelial expression of pro‑inflammatory cytokines 
and chemokines.[53] These factors increase the attraction of 
immune cells to the site where increased microbial exposure 
is detected. Initially, innate immune cells, such as dendritic 
cells, macrophages, and neutrophils, are directed to the 
epithelium, but in later stages also, adaptive immune cells 
such as T‑  and B‑lymphocytes are attracted. In addition 
to activation of the inducible innate immune system by 
microbes, airway epithelial cells are furthermore activated 
by the attracted innate and adaptive immune cells, which 
produce cytokines such as interleukin‑1 beta  (IL‑1β) and 
tumor necrosis factor‑alpha.[54] Moreover, airway epithelial 
cells display an autocrine mechanism, in which expression 
of the pro‑inflammatory cytokine IL‑17C leads to maintained 

innate immune defense mechanisms.[55,56] Finally, the 
micronutrient Vitamin D can also induce antibacterial 
responses, in part through the expression of the antimicrobial 
peptide LL‑37.[57] Taken together, inducible secondary host 
defense mechanisms are increased in the epithelium upon 
microbial exposure, during inflammation, during repair 
processes  (discussed in the next paragraph), and upon 
exposure to Vitamin D, thereby providing protection upon 
outgrowth of microbes in the airways.

Injury‑Induced Innate Defense by Airway Basal 
Cells

The importance of maintaining an intact airway epithelium 
is emphasized by the low epithelial turnover at steady‑state 
levels.[58,59] However, exposure to cytotoxic particles 
and microorganisms may cause epithelial injury, leading 
to shedding and cell death of LCs.[25] Shedding of LCs 
provides defense by removal of infected cells.[60] Moreover, 
epithelial death induced by injury or infection leads to 
the release of components that contain the so‑called 
damage‑associated molecular patterns, which  –  like the 
microbial pathogen‑associated molecular patterns – serve 
as danger signals and activate the innate immune system.[61] 
Nevertheless, elimination of LCs compromises epithelial 
host defense. In this case, airway epithelial BCs play a 
role in providing airway protection [Figure 3c]. BCs serve 
as progenitor cells and comprise approximately 30% of 
the airway epithelium in the large conductive airways, 
whereas their numbers are lower at distal regions of the 
conductive airways.[58] The cells are largely quiescent in 
intact epithelium. However, upon epithelial injury, BCs 
contribute to epithelial host defense by mediating recovery 
of the epithelial lining.[62] Initially, BCs spread and migrate 
on denuded basement membranes, followed by proliferation 
and differentiation toward mature LCs. A  central role in 
the activation of epithelial repair involves activation of 
the epidermal growth factor receptor  (EGFR).[63] This 
Erb family member is restricted to BCs and is activated 
by various ligands, including epidermal growth factor, 
amphiregulin, and transforming growth factor‑alpha.[64‑66] 
These ligands are produced and secreted by stromal cells 
or immune cells; however, EGFR is also activated in 
an autocrine manner. This occurs for instance not only 
through the release of EGF located at the surface of 
damaged luminal airway epithelial cells, but also through 
shedding of membrane‑bound EGFR‑ligands by matrix 
metalloproteinases.[63] In all cases, activation of EGFR leads 
to initiation of wound repair, particularly controlled by 
MAPK signaling transduction and downstream AP‑1 family 
transcription factors. In addition, BCs contribute to airway 
innate immunity upon activation of PRRs.[67] Moreover, 
EGFR activates innate immune responses by promoting the 
expression of antimicrobial peptides and pro‑inflammatory 
factors that lead to chemoattraction of immune cells to the 
site of injury as well as epithelial expression of AMPs. High 
expression of integrins and the cell type‑restricted expression 
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of ICAM‑1 allow homing of immune cells to BCs, which 
may provide protection against microbes at the site of 
injury.[68,69] Moreover, innate immune mediators produced 
by immune cells may increase wound repair or direct LC 
differentiation.[70,71]

Effect of Cigarette Smoke and Chronic 
Obstructive Pulmonary Disease Status on 
Airway Epithelial Host Defense

Basic research using cell culture models has markedly 
contributed to our understanding of airway epithelial cell 
biology. These models also serve as an important tool to 
understand epithelial cell responses to stimuli related to 
chronic inflammatory airway diseases or examine and 
compare cell cultures from diseased patients and controls.[72] 
In COPD research, a large number of studies have analyzed 
the effect of cigarette smoke on airway epithelial cell 
cultures. In particular, aqueous solutions of cigarette smoke 
particles, i.e., extract or condensate, have been used to study 
this.[73,74] However, this approach primarily takes the effects 
of the soluble particulate phase of cigarette smoke into 
account and underestimates the effect of the vapor phase 
and especially that of short‑lived oxidants.[75] Therefore, 
instead of the conventional method of using an aqueous 
extract of cigarette smoke, we have set up a whole cigarette 
smoke exposure model.[76,77] In this model, epithelial cells 
are directly exposed to the particulate and vapor phase by 
leading smoke derived from a burning cigarette directly 
to the cells that are grown at the air-liquid interface. This 
allows the exposure of cells to airborne substances in a 
physiologically realistic fashion. Previous studies using 
a comparable exposure model have shown that cigarette 
smoke inhibits the antimicrobial activity of airway epithelial 
cells.[78] These results suggest that further application of the 
whole cigarette smoke exposure model will give insight into 
how other airway epithelial cell host defense functions are 
affected by smoking.

Although smoking is regarded as the primary risk factor of 
COPD, not all smokers develop the disease.[79] Therefore, it 
can be speculated that epithelial cells from COPD patients 
and non‑COPD smokers display differences in host defense 
properties that may explain disease development. Recent 
studies have suggested that differences in airway epithelial 
activities persist in cell culture, such as an impaired airway 
epithelial barrier integrity, reduced wound repair, and 
alterations in cell differentiation.[80‑83] Based on this, we 
hypothesized that persistent differences are present in other 
airway epithelial host defense properties of COPD patients 
and non‑COPD controls. Indeed, in a recent study, we 
demonstrated impaired antimicrobial defenses in air–liquid 
interface cultures of primary airway epithelial cells from 
patients with COPD compared to (ex)‑smoking controls.[84] 
This was accompanied by a lower expression of selected 
antimicrobial peptides, and expression of a range of such 
inducible AMPs was found to be further decreased by 

exposure to cigarette smoke. In this study, we observed 
that acute smoke increases epithelial inflammation and 
decreases host defense by differentially affecting MAP 
kinase and NF‑κB pathways. Recently, we also reported 
that chronic exposure to cigarette smoke of differentiating 
cultured airway epithelial cells causes airway remodeling 
characterized by impaired LC formation and aberrant 
expression of Notch‑signaling target genes, resulting 
in impaired constitutive host defense mechanisms.[85] 
The involvement of the Notch pathway in these in  vitro 
events is in line with reports on the putative role of this 
pathway in aberrant epithelial differentiation in COPD. 
We furthermore observed that cessation of chronic CS 
exposure during differentiation results in the re‑appearance 
of differentiated AEC, except for club cells. This is in line 
with the observation that club cells are very sensitive to 
smoke exposure and may help to explain aberrant epithelial 
repair in COPD in view of the capacity of club cells to 
self‑renew and differentiate into ciliated and goblet cells. 
Interestingly, in another study, we showed that exposure 
of human airway epithelial cell cultures to diesel exhaust 
displayed similar effects on airway epithelial cell innate 
immune function as acute exposure to cigarette smoke.[86] 
These findings highlight the risk of air pollution for the 
development of respiratory diseases. Collectively, these 
studies show that cigarette smoke alters the innate immune 
function of the airway epithelium, resulting in decreased 
host defense and increased inflammation. The observation 
that such responses are also altered in cultured cells outside 
the COPD lung environment indicates that some of the 
aspects of altered epithelial cell function in COPD persist, 
which may in part be explained by epigenetic changes in 
the airway epithelium.

Conclusions

The use of basic and translational science approaches to 
study airway epithelial cell function in COPD has provided 
us with novel insights into dysregulated innate immunity in 
COPD. Impaired host defense in smokers with and without 
COPD can thus be explained by a range of mechanisms, 
including disrupted mucociliary clearance, decreased barrier 
function, and decreased antimicrobial activity of the airway 
epithelium. These are in part explained by acute effects of 
exposure to inhaled toxicants such as cigarette smoke, but 
also result from remodeling of the airway epithelium. The 
observation that some of these dysregulations in airway 
epithelial cell function persist in cultured cells can possibly 
be explained by epigenetic mechanisms. Such epigenetic 
mechanisms may also contribute to the chronicity of impaired 
epithelial host defense and inflammation in COPD. Further 
studying the abnormal function of the airway epithelial 
cell progenitors such as the BCs in COPD may provide 
important clues for understanding COPD pathogenesis and 
development of disease‑modifying treatments.
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