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Stroke is one of the world’s leading causes of disability and death. Antiplatelet

agents are administered to acute ischemic stroke patients as secondary prevention.

Clopidogrel involves biotransformation by cytochrome P450 (CYP) enzymes into an

active metabolite, and single nucleotide polymorphisms (SNPs) can influence the

efficacy of this biotransformation. Despite the therapeutic advantages of aspirin, there is

significant inter-individual heterogeneity in response to this antiplatelet drug. In this clinical

review, the recent advances in the biomarkers of antiplatelet agents in acute ischemic

stroke are discussed. The studies reviewed herein highlight the clinical relevance of

antiplatelet resistance, pharmacotherapy of antiplatelet agents predicting drug response,

strategies for identifying aspirin resistance, pharmacogenetic variants of antiplatelet

agents, miRNAs, and extracellular vesicles (EVs) as biomarkers toward the personalized

approach in the management of acute ischemic stroke. The precise pathways

contributing to antiplatelet resistance are not very well known but are presumably

multi-factorial. It is essential to understand the clinical relevance of clopidogrel and

aspirin-related single nucleotide polymorphism (SNPs) as potential predictive and

prognostic biomarkers. Prasugrel is a next-generation antiplatelet agent that prevents

ADP-platelet activation by binding irreversibly to P2Y12 receptor. There are sporadic

reports of prasugrel resistance and polymorphisms in the Platelet endothelial aggregation

receptor-1 (PEAR1) that may contribute to a change in the pharmacodynamics response.

Ticagrelor, a direct-acting P2Y12-receptor antagonist, is easily absorbed and partly

metabolized to major AR-C124910XX metabolite (ARC). Ticagrelor’s primary active

metabolite, ARC124910XX (ARC), is formed via the most abundant hepatic cytochrome

P450 (CYP) enzyme, CYP3A4, and CYP3A5. The integration of specific biomarkers,

genotype as well as phenotype-related data in antiplatelet therapy stratification in patients

with acute ischemic stroke will be of great clinical significance and could be used as a

guiding tool for more effective, personalized therapy.
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INTRODUCTION

Acute ischemic stroke (AIS) is an atherosclerotic arterial disease,
which is the major cause of death worldwide, leading to an
estimated 5.5 million deaths each year (1). The etiology of stroke
is established to be multi-factorial. Antiplatelet therapy plays a
major role in the primary and secondary prevention of AIS.
Most of the stroke occurrence is ischemic and is commonly
due to the formation and traveling of the formed emulous into
the large vessels, which compromises the blood flow into the
brain (2). Neuroimaging is the technique used in the diagnosis
and management of the AIS. It plays a major role, as it helps
in the differentiation of the hemorrhagic and ischemic stroke
where it is important in further management (3). Despite the
therapeutic advances in recurrent ischemic stroke management,
it affects the quality of life in most people. The treatment failure
occurs due to resistance toward antiplatelet therapy or clinically
referred to as high on-treatment platelet reactivity (HTPR) (4–
6). To overcome this, many platelet function tests are being used,
which helps in the platelet function guided antiplatelet therapy,
i.e., personalized antiplatelet therapy (7, 8). In recent years,
the use of novel biomarkers and pharmacogenetic related data
correlating the antiplatelet response and translating it to clinical
care has been an area of focus. The incorporation of genomics
data along with the clinical markers will be of a paradigm
shift in personalized neurology. Hence, this review focuses on
interindividual variability and discusses the significance of novel
biomarkers and pharmacogenetic data toward the personalized
approach in the management of acute ischemic stroke.

ACUTE ISCHEMIC STROKE (AIS)

AIS is defined as the occlusion of the brain, retina, or spinal cord
supplying arteries, and this results in focal tissue infarction and
corresponding sudden neurological deficits. AIS is the leading
cause of death worldwide and the third major cause of disability
in stroke. More than 7,00,000 cases are estimated to occur
worldwide every year (1–3).

For effective diagnosis of AIS, it is important to know about
the presence of etiology and risk factors. Most of the patients
with etiology have more than two risk factors, and these can
be modifiable or non-modifiable. The greater part of the stroke
is due to embolisms from heart- cervical arteries or to the
atherosclerotic plaque in the aortic arch. The most important
mechanism of stroke occurs through intracranial atherosclerosis
(2, 9). Based on this mechanism the etiology is subdivided into
five major subtypes of (1) large-artery atherosclerosis (embolus
or thromboembolism in cervical carotid arteries), (2) cardio
embolism (secondary to clot formation in the heart), (3) small-
vessel occlusion (lacunar infarct), (4) unusual cause or stroke
of other determined causes, and (5) stroke of undetermined
causes this classification is based on the Trial of Org 10172
in Acute Stroke Treatment (TOAST), which was developed to
categorize the causes of AIS (2, 9). Age is the major factor
to which it varies the causes of the presence of stroke in the
patients. In children, the occurrence of stroke can be following
inflammatory arteriopathy infection. The age of incidence is

TABLE 1 | Etiology and parameters in diagnosis of AIS.

Etiology Diagnostic parameter

Cardiac embolism Echocardiography

Holter/loop recorder

Atherosclerosis CT angiography

MR angiography

Carotid Doppler ultrasonography

Small vessel disease Brain MRI

Arterial dissection CT angiography

MR angiography

Cerebral vasculitis CT angiography

Magnetic resonance angiography

Catheter angiography

Cerebrospinal fluid examination

Brain and leptomeningeal biopsy

around 39–49 years and it is higher in men than in women
according to the estimate (10). Factors include the following:
the presence of hypertension, an increased apolipoprotein B
(Apo B) to Apo-A1 ratio, diet, psychological stress, smoking,
high alcohol consumption, diabetes, chronic kidney disease, and
cardiac conditions like atrial fibrillation (2, 9–13).

The most important thing to note during the diagnosis is the
negative factors that mimic the presence of stroke-like migraine,
seizures, vestibular disturbance, metabolic disturbance, and also
intracranial hemorrhage. Detection based on these symptoms is
the first line for the detection of AIS (14). Globally, it is meant
that computerized tomography (CT) and rapid access through
magnetic resonance imaging (MRI) are the major diagnosing
method used for AIS. In Table 1, the diagnostic parameters based
on stroke etiology are mentioned (15, 16).

Pharmacotherapy of Antiplatelet Agents
Predicting Drug Response
Platelet reactivity phenomena involve platelet adhesion,
aggregation, and activation. Various antiplatelet agents like
aspirin, clopidogrel, glycoprotein IIb/IIIa antagonists, and
P2Y12 agents have been studied to prevent any events of
atherothrombosis. However, variability in platelet reactivity and
response between subjects is of major concern in antiplatelet
therapy. It can result from a variety of factors. Elevated levels
of immature platelet count and reactivity affect the response
to antiplatelet agents. Drug-based factors include drug–drug
interactions (DDIs), dosing, etc. Patient-related factors include
compliance, metabolism, comorbidities like diabetes mellitus,
obesity, abnormal lipid profile, and smoking habits. The Euro
Heart Survey on Diabetes and the Heart (17) revealed patients
with coronary artery disease and diabetes possess a higher risk of
cardiovascular events and mortality, which explains the altered
response to antiplatelet therapy (18); the concurrent occurrence
of both diabetes mellitus and chronic kidney disease (CKD)
increases the risk even more, creating a demand for highly
effective antiplatelet treatment (18, 19). The Platelet Inhibition
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and Patient Outcomes (PLATO) trial comparing clopidogrel
vs. ticagrelor in acute coronary syndrome (ACS) patients has
revealed the possibility of harm from H2 receptor blockers
with clopidogrel therapy (20). Further comparison studies
have supported the use of H2 receptor blockers in the place
of Proton Pump Inhibitors (PPIs) to provide GI protection, as
the latter is associated with adverse health outcomes (21, 22).
Moreover, recurrent strokes are instigated by homocysteine
levels, where patients with higher levels show lower response
to antiplatelet therapy (23–25) supported by several studies
demonstrating the link between hyperhomocysteinemia and
platelet activation and insufficient platelet inhibition (26). The
recurrent stroke and cardiovascular events can be predicted
by baseline homocysteine levels of dual antiplatelet therapy or
aspirin alone in the female patients with acute minor stroke or
high-risk Transient ischemic attack (TIA) (27). The CHANCE
trial (Clopidogrel in High-Risk Patients with Acute Nondisabling
Cerebrovascular Events) demonstrated the superior benefits of
dual therapy with clopidogrel and aspirin in managing recurrent
stroke in patients with high-risk TIA than aspirin alone (28).
Thus, in order to prevent atherothrombotic events in patients
with high risk, varied antiplatelet mechanisms offered by dual
antiplatelet therapy will be of huge benefit (29).

Aspirin
Several factors alter platelet reactivity and turnover and thus
leading to aspirin response variability and “High on-treatment
platelet reactivity” (HTPR). Hyperresponsiveness to aspirin is
multifactorial with altered pathways. Ageing, type 2 diabetes
mellitus (DM), and drug interactions [most common with
non-steroidal anti-inflammatory agents (NSAIDs)] at binding
site Ser529 of COX-1 reduce the response to aspirin (30)
and proton pump inhibitors (PPIs), and myeloproliferative
conditions are some of the contributing factors for variability
in aspirin responses (31, 32). A variety of platelet-activating
mechanisms, elevated levels of platelet production, insufficient
COX-1 inhibition, augmented recovery of COX-2 with increased
platelet turnover, and elevated levels of aspirin-insensitive
agonists may affect the aspirin response at the cellular level.
Along with these factors, genetic polymorphisms also play a vital
role in altered response to aspirin between patients (33). Reduced
response to aspirin is expected after coronary artery bypass graft
(CABG) procedure over a brief time affecting the prevention
of failure of the thrombotic graft. In such cases, aspirin dosing
multiple times per day was found to control the TXB2 generation
efficiently in an early study trial (34), which was confirmed by
a meta-analysis including 7 Randomised Clinical Trials (RCTs),
where therapy with aspirin twice daily has better antiplatelet
efficacy in comparison with a daily dose of one per day (35).

Clopidogrel
This is a prodrug rendering its pharmacological action once
metabolized to its active form by Cytochrome 450 and
Paraoxonase-1 (PON-1). It is a two-step mechanism. The first
step involves the action of CYP2C19, CYP1A2, and CYP2B6
(36). The second step involves CYP3A4, CYP2C9, and the
Paraoxonase (PON-1) enzyme. Despite this, dual antiplatelet

therapy is efficient in Major Adverse Cardiovascular Events
(MACE) prevention and is considered as the norm in clinical
management. There occurs substantial levels of recurrent
events (∼10%) (37). In secondary prevention of cardio and
cerebrovascular events, clopidogrel is considered a highly
effective antiplatelet therapy, where along with aspirin it acts
as the backbone to preventing major adverse cardiovascular
events (MACE) (38). However, 25% of patients exhibit only a
sub-optimal response to this drug (39). The pharmacodynamics
response to clopidogrel exhibit a wide inter-individual variability
(40). High platelet reactivity with clopidogrel in patients
with DM leads to the impaired antiplatelet response, which
is explained by the altered drug pharmacokinetics (41).
CYP2C19∗2 or ∗3 and PON-1 polymorphisms considerably
diminished the platelet response to clopidogrel while the
former elevates the risk of MACE in Coronary Heart Disease
(CHD) patients after PCI (42). In a meta-analysis conducted
with 28 studies across 17 countries in Asia, ABCB1 C3435T
polymorphism considerably reduced platelet activity in
patients receiving clopidogrel, thereby elevating the risk of
bleeding events (43). A recent systematic review and meta-
analysis study has recommended genotype testing of ABCB1
C3435T SNP for ACS/CAD patients undertaking PCI to
optimize clopidogrel treatment (44). A meta-analysis study
has demonstrated the risk of high PR and MACE in patients
with vascular risk factors receiving clopidogrel therapy. This
substantiates the need for a future individualized method
of antiplatelet treatment based on the personal vascular risk
factors (45).

Ticagrelor and Prasugrel
The Platelet Inhibition and Patient Outcomes (PLATO) trial
demonstrated ticagrelor given at amaintenance dose of 90mg bid
reduced cardiovascular events in comparison with clopidogrel in
ACS patients (20). The POPular AGE trial, involving patients
in the ACS, ticagrelor, and prasugrel groups, showed just a
53% adherence rate during the 1-year follow-up, and this
was in most part due to the side effects and recognized
risk of bleeding events (46). The effect of ticagrelor on
health outcomes in diabetes mellitus patient’s intervention
trial studied ticagrelor versus placebo in addition to aspirin
in stable CAD patients with type 2 diabetes, a considerable
15% reduction in ischaemic events was observed with added
ticagrelor (47). The ticagrelor 60mg bid was studied to
attain the same pharmacokinetic and pharmacodynamic effect
as such of high dose as 90mg bid in the prevention of
cardiovascular events in patients with prior heart attack using
ticagrelor compared to placebo on a background of aspirin–
thrombolysis in myocardial infarction study (48). A long-
term randomized clinical trial comparing standard antiplatelet
therapy and individualized antiplatelet regimen based on the
pharmacogenetic profile of acute ischemic minor stroke (AIMS)
and transient ischemic stroke (TIA) patients in a Chinese
population was undertaken to establish evidence to support
the importance of genomic profiling to select P2Y12 receptor
antagonists in such patients (49).
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ANTIPLATELET RESISTANCE

Antiplatelet therapy is crucial to the secondary prevention of
acute ischemic stroke to prevent Recurrent Ischemic Stroke (RIS)
attacks (4). Despite its effectiveness and the proper intake of
drugs, to some extent, aspirin or clopidogrel fail to produce
pharmacological action, i.e., when it fails to inhibit platelet
aggregation due to a reduction in platelet sensitivity and thus
leads to recurrent adverse vascular events and this phenomenon
led in coining the term “Resistance,” which is now clinically
referred as “High on Treatment Platelet Reactivity (HTPR)”: the
treatment failure of antiplatelet therapy (4–6, 50). Low or non-
responders to antiplatelet treatment are more prone to resistance
and are prone to increased risk of suffering RIS events and early
neurological deterioration (6, 51, 52).

The different approaches used in defining antiplatelet
resistance are (1) laboratory resistance—an increase in the
levels of thromboxane A2 (TXA2) metabolites due to the
inadequate inhibition of TXA2 and platelet aggregation despite
antiplatelet therapy (53–55)—and (2) clinical resistance—when
there is antiplatelet treatment failure (i.e., a failure to prevent
antithrombotic event occurrence in stroke patients) (6, 53,
54). The most important factors for antiplatelet resistance in
patients with AIS are due to poor adherence and concurrent
use of other cyclooxygenase- 1 (COX- 1) inhibitors (56) and
genetic factors like single nucleotide polymorphism (SNP) of
the receptors (P2Y12 , P2Y1, GPIIb − IIIa, collagen receptor,
TXA2, etc.) and enzymes (COX-1&2). Other causes for resistance
include the pharmaceutical preparation, anion efflux pump,
interaction of platelets with other cells like endothelial cells or
monocytes, accelerated platelet turnover, and activation of an
alternate pathway for metabolism (57). Metabolic syndromes
like diabetes mellitus because of hyper glycation of platelet
protein but prediabetes is independent of resistance (56, 58, 59)
hypercholesterolemia, increased body weight (obesity) (60, 61)
smoking (62), and interaction with some drugs like Proton Pump
Inhibitors (PPIs), e.g., esomeprazole and clopidogrel, and Non-
Steroidal Anti-Inflammatory Drugs (NSAIDS), e.g., Ibuprofen
and Aspirin (50, 53–55, 57, 63, 64). Examples of antiplatelet
resistance causes are shown in Figure 1.

A study on 69 patients on the prognostic value of high
platelet reactivity in ischemic stroke depending on etiology based
on large- and small-vessel disease concluded that large vessel
disease worsens early prognosis and in small vessel disease
worsens late prognosis and clinical and functional condition of
the patients, thus resistances is also dependent on the etiology
of the stroke condition (65). This was confirmed in a 3-year
follow-up period study where they also concluded that there is the
large-vessel etiology of AIS is associated with the occurrence of
adverse vascular events in HTPR patients and it is also associated
with large infarct volume in the patients (66) and HTPR also
leads in the formation of ischemic lesions in the brain (67). A
Cytokine Registry in Stroke Patients (CRISP) study conducted
in India based on the response of clopidogrel resistance in
ischemic stroke patients has linked female sex and proton pump
inhibitors use rather than cytochrome polymorphism (68). In
the Chinese population, it was found that clopidogrel resistance
due to a polymorphism of the CYP2C19∗2 allele with or without

hypertension and a P2Y12 receptor variant (68, 69) is associated
with recurrent ischemic stroke, adverse vascular events, and
poor recovery from neurological deficits (70). Another study
postulated that CYP2C19∗2 allele polymorphism or loss of
function of CYP2C19∗3 are at high risk for clopidogrel resistance
(71), and thus it can be assumed that the clopidogrel resistance is
mostly due to CYP2C19 polymorphism which was conformed in
systematic review and meta-analysis by Alakbarzade et al. (71).
Therefore, the cause for resistance from antiplatelet therapy is
multifactorial, and genetic polymorphisms play a major role in
resistance etiology.

Platelet function guided antiplatelet therapy is getting more
important because of increased resistance from antiplatelet drugs
like aspirin and clopidogrel which is included in most AIS
patients, and they experience different adverse vascular events
due to the treatment failure. It also helps in the tailored or
personalized antiplatelet therapy in the patients who have high
on-treatment platelet reactivity and in the early detection of
adverse vascular events (7, 8). So, it is important to measure
the inhibition of the platelet function in patients with AIS who
have HTPR (72). The different platelet function testing methods
are bleeding time, light transmission platelet aggregation (LTA),
impedance platelet aggregation, lumi-aggregometry, and tests
based on platelet function methods combined with viscoelastic
tests, such as Thromboelastographs (TEGs)/platelet mapping
systems, Rotational Thromboelastometry (ROTEM) platelets,
and others, where Flow Cytometry is used to test the platelet
activation, and Radio- or Enzyme-Linked Immuno Assay
measure the thromboxane A2 metabolites (8, 57, 73–75).

Despite the development of these many types of analyses
to test the responsiveness of the antiplatelet therapy there
remain several drawbacks, which ultimately create an upcoming
challenge. The challenges faced during the Platelet Function
Test (PFT)-guided antiplatelet therapy are due to the lack of
consistency and standardization, automation, difficulty in the
process, and inability to fulfill all the parameter needed in
one test; it is also a promising challenge for researchers in
making the assays into the clinical laboratory since most do not
make through it (76, 77). The accuracy to capture the in vivo
platelet function with in vitro platelet function test assays is
still challenging (77). The other parameters reveal equipment
that is expensive and time consuming to use in which a high
volume of the sample is needed, and all the tests need well-
trained staff to run the procedure. It is important to select
the relevant test for the particular drug; it must be defined
clearly. A study comparing PFT in AIS with antiplatelet therapy
concluded that LTA-AA and TEG-AA showed a good correlation
for monitoring the aspirin effect. PFA-EPI may be more likely to
report resistance. TEG-ADPmay not be appropriate for assessing
platelet function in clopidogrel users. CYP2C19 genotyping
will be the better option for the detection of platelet function
(78). Nevertheless, different studies showed different results:
a systematic review and meta-analysis of 1,136 participants
included two retrospective studies based on platelet function
analysis (PFA)-guided antiplatelet therapy in recurrent stroke
with or without antiplatelet therapymodified (ATM) actions (79–
81). Although there are many challenges, the PFT plays a vital
role in the personalized antiplatelet therapy and the prediction
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FIGURE 1 | Causes of antiplatelet resistance. CKD, Chronic kidney disease; HTPR, High on-treatment platelet reactivity; DDI, Drug drug interaction; NSAIDS,

Non-steroidal anti-inflammatory drugs; PPI, Proton pump inhibitors; COX, Cyclooxygenase; TXA2, Thromboxane A2; miRNA, micro Ribonucleic acid; CYP,

Cytochrome; GP, Glycoprotein; PON-1, Paraoxonase 1.

of early occurrence of bleeding and adverse vascular events in
AIS patients.

Strategies for Identifying Aspirin
Resistance
AR is a multifactorial pathological condition that has many
different causes. The aspirin resistance can be identified both
clinically and through laboratory methods. Clinically, it can be
identified from the occurrence of atherothrombotic events in
a patient who is under the therapeutic effect of one dose of
aspirin. But this method is limited because it is mostly non-
specific and can only be identified retrospectively because the
events occur only after the start of the treatment (82, 83). The
laboratory monitoring of PFT is based on the platelet aggregation
and presence of platelet reactivity which is mentioned above.
These PFTs are the most used methods for the detection of
aspirin resistance. Despite its limitations, PFT ismost specific and
considerable over time (84). Aspirin resistance can be relevant
with the prediction of concentration of proteinuria in patients
with AIS, and these are on aspirin therapy. Thus, proteinuria can
be considered as a tool in identifying aspirin resistance (11), and
AR is useful as a prognostic marker for cardiovascular disorders
and other comorbidities of AIS (85).

PHARMACOGENETIC VARIANTS OF
ANTIPLATELET AGENTS

Pharmacogenetics of Aspirin
Multiple factors contribute to lowered aspirin efficacy (86) with
genetic determinants attribute to 30% of cases (87). The patients
with C765G (rs20417) polymorphism of COX-2 was established

to have lowered risk of adverse cardiovascular events in aspirin
users (Odds Ratio (OR): 0.78, 95% CI: 0.70– 0.87) (88). The
PlA1/A2 SNP of the GPIIIa receptor gene was studied to be
associated with lowered aspirin response. The SNP rs5918 in
the ITGB3 gene was significantly associated with an amplified
platelet response to aspirin (89).

Pharmacogenetics of Clopidogrel
Clopidogrel is a widely prescribed drug for the prevention
of recurrent ischemic events in patients with ACS or MI
due to its efficacy and cost-effectiveness compared to other
antiplatelet agents. It is most commonly used along with aspirin
as dual antiplatelet therapy in the prevention of atherothrombotic
events. However, wide variability occurs between patients in
response to clopidogrel therapy, and some even present with
clopidogrel resistance. The CYP2C19 polymorphisms are the
most common and well-studied polymorphisms associated with
clopidogrel response (90). In trial to assess improvement in
therapeutic outcomes by optimizing platelet inhibition with
Prasugrel–Thrombolysis in myocardial infarction 38 trial, ACS
PCI patients with ATP Binding Cassette Subfamily B Member
1 (ABCB1) T-allele homozygotes had adverse cardiovascular
events like recurrent stroke and MI (91). Numerous Loss-of-
Function (LOF) variants in CYP2C19 affect antiplatelet response
to clopidogrel. SNP rs4244285 of CYP2C19∗2 (92)and SNP
rs12248560 of CYP2C19∗17 contribute to altered clopidogrel
response (86). Although, earlier studies have established
the minimal association between polymorphisms such as
CYP1A2∗1F and CYP2C9∗2/3 and response to clopidogrel. The
later studies have failed to replicate any significant association
(86, 93). Through the pharmacogenomics of anti-platelet
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intervention (PAPI) study involving 566 subjects, the missense
polymorphism (G143E, rs71647871) was demonstrated to affect
clopidogrel drug response and reactivity (94). Patients with
Paraoxonase 1 192Q-allele homozygotes had reduced clopidogrel
response and lowered bleeding complications (HR = 0.4, 95%
CI: 0.2–0.8, P = 0.006) (88). ABCB1 C3435T variant in PCI
patients with homozygous T allele showed significantly lower
levels of the drug and hence the antiplatelet activity (95).
Recognizing the impact this has on drug metabolism, the clinical
pharmacogenetics implementation consortium (CPIC) guideline
recommends alternate antiplatelet treatment for ACS/PCI
patients estimated to be altered metabolizers of the drug (90).

Pharmacogenetics of Prasugrel and
Ticagrelor
Numerous studies have investigated the association of
CYP450 variants in response to prasugrel. SNPs rs4244285
and rs12248560 of CYP2C19 were found to be significantly
associated with a prasugrel response. However, no association
was established in CYP2C9, CYP2B6, CYP3A4, or CYP1A2
variants related to prasugrel response (96). Ticagrelor is
a next-generation P2Y12 inhibitor. It gets disintegrated
to an equally effective primary active metabolite, AR-
C124910XX via CYP3A4/5 metabolism (97, 98). A genome-wide
association study was conducted to detect SNPs associated
with Ticagrelor levels and response from the PLATO clinical
trial (99). SNP rs56324128 in CYP3A4, rs62471956 SNP in
CYP3A43, rs61361928 SNP in UGT2B7, and rs4149056 SNP
in SLCO1B1 were significantly associated with decreased
levels of ticagrelor plasma concentrations. SNP rs113681054
of the SLCO1B1 gene, CYP3A4∗1, and CYP3A4∗22 variants
of CYP3A4 were significantly associated with increased
plasma ticagrelor concentrations. SNP rs4661012 in Platelet
Endothelial Aggregation Receptor-1 (PEAR1) gene was
associated with decreased ticagrelor response and SNPs-
rs12566888 & rs12041331 in PEAR1 gene was associated
with increased ticagrelor response. Where, CYP3A4∗1,
CYP3A4∗22 variants are related to high inhibition of
platelet aggregation (100–102). In Table 2, the association
between a pharmacogenetic variant and a drug phenotype
is summarized.

BIOMARKERS IN ACUTE ISCHEMIC
STROKE

Numerous types of biomarkers are investigated in
stroke, including physical, imaging, histological, genetic,
electrophysiological, neuronal, and serum markers. Among
these, genetic biomarkers can aid in personalizing stroke
management through the detection of genetic variations
including heritable cerebrovascular disorders. The Trial of
Org 10172 in Acute Stroke Treatment (TOAST) classification
based on clinical parameters is the currently used method of
ischemic stroke classification (114–116). Stroke occurrence is
multifactorial with various mechanisms involved in its different
subtypes. The development of specific novel and reliable

biomarkers will be of great clinical significance. Platelets play
a vital role in hemostasis. The human genome is estimated
to encode around 1000 miRNAs. More than 100 of these are
detected in human sera of healthy individuals and are termed
circulating miRNAs (117). miRNAs, endogenous non-coding
RNA molecules, are found to be abundant in platelets and are
studied to be associated with platelet activity, inhibition, and
responsiveness, making them good candidates as biomarkers.
They inhibit mRNA translation and are released from platelets
upon activation. Several studies have proposed the use of
miRNAs as potential biomarkers to study platelet response in
patients receiving antiplatelet treatment throughout the course
of therapy as it plays a vital role in pathophysiological processes
of stroke-related injuries. miRNAs and their target genes are
involved in a variety of ischemic stroke pathophysiologies,
including angiogenesis and neurogenesis (118). miRNAs are
found to target many proteins in various regulatory cell signaling
loci and signaling pathways in platelets. Several miRNAs play
roles in both intrinsic and extrinsic apoptosis pathways. In the
extrinsic apoptosis pathway, miR-21 and miR-25 are found
to regulate TNF-α signaling affecting the stroke outcome.
Upregulation of miR-155 reduces inflammation via miR-155–
CARHSP1–TNF-α signaling (119). As a result, miRNA profiling
appears to be a promising diagnostic marker for ischemic stroke
in the future. miR-223, let-7c, and miR19a are the most copious
platelet miRNAs. Reduced levels of miRNAs like miR-191,
miR-126, miR-150, and miR-223 were detected in the plasma
of healthy subjects treated with increasing dose of aspirin with
prasugrel, indicating miRNAs response to platelet inhibition
(120). Similarly, in healthy individuals treated with clopidogrel
and ticagrelor, reduced levels of miR-223∗ and miR-197 were
observed (121). The miR-96, miR-107, miR-200b, miR-223 and
miR- 495 are significantly associated with platelet activation,
secretion, and reactivity (1). miR-128b, miR-124, and miR-1246
have been studied to be associated with ischemic stroke and
are detected to be up-regulated in stroke patients compared to
healthy subjects (122, 123). In ischemic stroke patients with
infarcts >2 cm3, the elevated levels of miRNAs like miR-9-5p,
miR-9-3p, miR-124-3p, and miR-128-3p were detected through
next-generation sequencing technology indicating release of
miRNAs with injury (114).

In patients of T2DM with ischemic stroke, the platelet miR-
144 level was found to be elevated, while levels of platelet miR-
223 and miR-146a were reduced (124). Significant reductions in
levels of plasma miRNAs- miR-223, miR-126, and miR-150 were
observed in patients treated with more potent antiplatelet agents
such as P2Y12 inhibitors (125). Jager et al. (126) in a study on
miRNAs- miR-223, miR-150, miR-126, and miR-21 established
to be related to platelet function, suggested that these miRNAs
may not be used as platelet activation related biomarkers after
cessation of P2Y12 inhibitors treatment. Tiedt et al. (127) in
their comprehensive study, identified three circulating miRNAs,
125a-5p, 125b-5p, and 143-3p, as potential biomarkers after
acute ischemic stroke. Neutrophil extracellular traps (NETs) were
detected in plasma and thrombus of ischemic stroke, suggestive
a new prognostic biomarker in acute ischemic stroke patients
(128, 129).
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TABLE 2 | Pharmacogenetic variant association of antiplatelet drugs.

GENE Ref SNP (rs)

number

Association Condition Population References

CYP3A4 rs56324128 Genotype CC is associated with reduced levels of ticagrelor compared

to genotype CT.

ACS European (101)

SLCO1B1 rs113681054 Allele C in comparison with allele T is associated with elevated

ticagrelor levels.

ACS European (101)

rs4149056 Allele T compared to allele C is associated with reduced levels of

ticagrelor.

ACS European (101)

CYP3A43 rs62471956 Allele G is associated with reduced levels of ticagrelor as compared to

allele A.

ACS European (101)

UGT2B7 rs61361928 Genotype TT is associated with reduced levels of ticagrelor as

compared to genotype CT.

ACS European (101)

PEAR1 rs12566888 Genotype TT is associated with elevated response to ticagrelor as

compared to genotype GT.

Healthy

individuals

Chinese (102)

rs4661012 Genotypes GT + TT is associated with reduced response to ticagrelor

as compared to genotype GG.

Healthy

individuals

Chinese (102)

rs12041331 Genotype AA is associated with augmented response to ticagrelor as

compared to genotypes AG + GG.

Healthy

individuals

Chinese (102)

rs12041331 Genotype AA is associated with increased response to ticagrelor as

compared to genotype GG.

Healthy

individuals

Chinese (102)

P2RY1 rs1065776 Patients with genotype CT may have elevated risk of aspirin-resistant

phenotype as compared to patients with genotype TT.

CAD European (103)

Patients with genotype CT may have reduction in AA-induced platelet

aggregation after aspirin treatment as compared to patients with

genotype CC.

Healthy

individuals

Chinese (104)

ITGB3 rs5918 Patients with genotype TT may have aspirin-depressed thrombin

generation and prolonged bleeding time after aspirin treatment as

compared to patients with genotypes CC + CT.

CAD Poland (105)

Patients with genotypes CC + CT may possess elevated risk of lack of

aspirin response as compared to patients with genotype TT.

CAD Poland (106)

Patients with genotype TT may have elevated risk of inadequate

inhibition of platelet activity as compared to patients with genotypes

CC + CT.

CAD Tunisian (107)

Patients with genotype CT may have reduced aspirin mediated platelet

inhibition as compared to patients with genotype TT.

CAD United States (89)

LPA rs3798220 Patients with genotype CT may have reduced risk of Myocardial

Infarction on aspirin treatment.

Healthy

individuals

European (108)

TBXA2R rs4523 Patients with genotype AA may have elevated risk of residual platelet

reactivity with aspirin treatment as compared to patients with

genotypes AG + GG.

Off-pump

coronary

artery bypass

grafting

Chinese (109)

GP6 rs1613662 Patients with genotype AG may have elevated risk of non-response to

aspirin as compared to patients with genotype GG.

CAD Finland (110)

GP1BA rs6065 Patients with genotypes CT + TT may have elevated response to

aspirin in men as compared to patients with genotype CC.

Healthy

individuals

Japan (111)

CYP2C19 rs4244285 Patients with allele A may possess an elevated risk of platelet reactivity

as compared to patients with genotype GG.

ACS France (112)

Patients with allele A may have increased platelet reactivity index (PRI)

vasodilator-stimulated phosphoprotein (VASP) at 1 month of prasugrel

treatment as compared to patients with genotype GG.

ACS France (112)

rs12248560 Patients with allele T may have reduced platelet reactivity index (PRI)

vasodilator-stimulated phosphoprotein (VASP) at 1 month of prasugrel

treatment as compared to patients with genotype CC.

ACS France (112)

Patients with allele T may have a reduced rate of high on-treatment

platelet reactivity (HTPR) at 1 month of prasugrel treatment as

compared to patients with genotype CC.

ACS France (112)

Patients with allele T may possess escalated rate of hyper-response at

1 month of prasugrel treatment as compared to patients with

genotype CC.

ACS France (112)

(Continued)
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TABLE 2 | Continued

GENE Ref SNP (rs)

number

Association Condition Population References

PEAR1 rs41273215 Patients with genotype TT may have reduced levels of inhibition of

ADP-induced platelet aggregation compared to patients with

genotypes CC + CT.

Healthy

individuals

Chinese (113)

rs3737224 Patients with genotype TT may have reduced levels of inhibition of

ADP-induced platelet aggregation compared to patients with

genotypes CC + CT.

Healthy

individuals

Chinese (113)

rs77235035 Patients with genotype AA may have reduced levels of inhibition of

ADP-induced platelet aggregation as compared to patients with

genotypes AC + CC.

Healthy

individuals

Chinese (113)

rs822442 Patients with genotype AA are associated with reduced levels of

inhibition of ADP-induced platelet aggregation as compared to patients

with genotypes AC + CC.

Healthy

individuals

Chinese (113)

rs822441 Patients with genotype CC are associated with reduced levels of

inhibition of ADP-induced platelet aggregation as compared to patients

with genotypes CG + GG.

Healthy

individuals

Chinese (113)

rs12407843 Patients with genotype AA are associated with reduced inhibition of

ADP-induced platelet aggregation as compared to patients with

genotypes AG + GG.

Healthy

individuals

Chinese (113)

CYP3A4, Cytochrome P450 Family 3 Subfamily A Member 4; SLCO1B1, Solute Carrier Organic Anion Transporter Family Member 1B1; CYP3A43, Cytochrome P450 Family 3

Subfamily A Member 43; UGT2B7, UDP Glucuronosyltransferase Family 2 Member B7; P2RY1, Purinergic Receptor P2Y1; ITGB3, Integrin Subunit Beta 3; LPA, Lipoprotein(A); TBXA2R,

Thromboxane A2 Receptor; GP6, Glycoprotein VI Platelet; GP1BA, Glycoprotein Ib Platelet Subunit Alpha; CYP2C19, Cytochrome P450 Family 2 Subfamily C Member 19; PEAR1,

Platelet Endothelial Aggregation Receptor 1.

Numerous evidence from past studies has established
the relationship between mean platelet volume (MPV) and
cerebrovascular events (130, 131). Some suggested the use of
mean platelet volume (MPV) as a potential diagnostic and
prognostic biomarker of acute ischemic stroke (132). In certain
studies, MPV was detected to be raised both in acute ischemic
stroke and certain hemorrhagic strokes (133). The range of MPV
andMPV/Platelet count (PC) ratio was studied to be significantly
represented in stroke patients than healthy individuals (134,
135). Also the MPV and MPV/PC ratio tests are cost-effective,
relatively simple, and can aid risk identification of stroke (136).
Along with that, MPV levels are suggested to vary among
stroke subtypes depending on the severity of injury and size
of the infarct. The levels of MPV and MPV/PC ratio were
studied to be significantly higher in atrial fibrillation (AF)
stroke than large artery atherosclerosis (LAA) stroke, where both
are subtypes of ischemic stroke (137). Hence, it can act as a
biomarker in stratifying the stroke subtypes and severity and as
a prognostic metric of secondary stroke occurrence (138, 139).
Conversely, some have failed to replicate the association in
their studies. Although those studies are presented with several
limitations (140).

Eventually, extracellular vesicles (EVs) and their molecules are
being investigated as biomarkers in stroke pathogenesis and in
stratifying stroke subtypes (141). Platelet activation triggers the
release of EVs. It is classified into three types based on their size
and source: microvesicles, exosomes, and apoptotic bodies. It is
regulated by the MISEV2018 guidelines recommended by “The
International Society for Extracellular Vesicles (ISEV)” (142).
Circulating EVs released from platelets stimulate endothelial
cells and vascular smooth muscle cells, increasing vascular

tissue inflammation and repair. The immunomodulatory role of
platelet-derived EVs on CD4+ T cells in promoting platelet and
fibrin aggregation and adhesion on vessel walls increases the risk
of thrombus formation (143). Circulating EVs are elevated in
patients with ACS and atherothrombotic incidents, especially in
the initial hours of the event.

DISCUSSION

Currently, stroke management largely relies on empirical
antiplatelet therapy, though many populations exhibit wide
potential genetic variations leading to therapeutic failure,
presenting with treatment complications and recurrent
thrombotic events. Various genetic determinants of antiplatelet
agents- aspirin, clopidogrel, prasugrel, and ticagrelor have been
identified. They were studied to be associated with antiplatelet
therapy efficacy, response, adverse events, and toxicity. Reduced
response to antiplatelet therapy in patients with genetic variants
has been studied aiding in therapy optimization. For example,
patients with PlA1/A2 SNP of the GPIIIa receptor gene were
demonstrated to have decreased response to aspirin (144).
Likewise, drug toxicity in patients has been detected. For
example, patients with CYP2C19 gain of function variants
receiving clopidogrel therapy have a high risk of presenting
with bleeding complications. Similarly, patients with rs5050
of angiotensinogen (AGT) gene receiving aspirin showed an
elevated risk of peptic ulcer hemorrhage especially with genotype
GG (145). The Clinical Pharmacogenetics Implementation
Consortium (CPIC) tried to compile such adverse events related
to genetic data in clinical algorithms for clopidogrel aiding in
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therapy optimization (146). This necessitates the detection of
more genetic variants associated with antiplatelet drugs. With
the advancement of high-throughput sequencing technologies,
whole-genome sequencing in many populations has become
possible. Newer genetic associations with clopidogrel response
were detected by Genotype Information and Functional Testing
(GIFT) exome study, ATP2B2, and TIAM2 through whole-
exome sequencing (147). The number of physical, genetic,
serum, and plasma biomarkers related to ischemic stroke has
been identified. Specific miRNAs were found to be altered before
the stroke occurrence, and these could be used as diagnostic and
predictive biomarkers of stroke.

The clinical translation of pharmacogenomics testing in
stroke management in using appropriate antiplatelet therapy will
prevent adverse thrombotic events while improving therapeutic
outcomes. Many studies have established the importance of
platelet function testing (PFT)-guided antiplatelet therapy (148,
149). PFT is found to be more cost-effective in detecting
antiplatelet response in comparison with genomic sequencing
technologies (150). However, guidelines on PFT- or genotype-
guided antiplatelet treatment are not well established given the
ambiguity in studies (151, 152). A recent comparative study on
PFTs on ischemic stroke patients has demonstrated that light
transmittance aggregometry arachidonic acid platelet agonist
(LTA-AA) and thromboelastographic arachidonic acid platelet
agonist (TEG-AA) are effective in monitoring aspirin efficacy
and response (78). Dual antiplatelet therapy (DAPT), comprising
clopidogrel and aspirin is an effective strategy in managing the
recurrence of stroke-related events. The dual-antiplatelet therapy
(DAPT) score was developed to predict ischemic and bleeding
risk in patients treated with percutaneous coronary intervention
(PCI) (153, 154). The DAPT score and its decision tool was
validated by several other studies including a meta-analysis,
which concluded that it is helpful in characterizing ischaemic and
bleeding events risk in post PCI patients and helps in deciding
the desired duration of DAPT treatment (155). Another validated
score in predicting bleeding complications while using DAPT is
the PRECISE-DAPT score. The correlative analysis of genotypic
data with clinical phenotyping data and platelet function tests
will be a promising futuristic goal. This was achieved by
Dewey et al. in their study, through whole-exome sequencing
50,000 subjects (88). Studies have been conducted, undertaking

personalized approach based identified genetic variants. In
stable CAD patients of the Chinese population, personalizing
antiplatelet treatment based on maximum aggregation rate
(MAR) in comparison with standard DAPT improved the health
outcome after 180-day follow-up after PCI (156). According
to a meta-analysis conducted recently in patients presenting
with high platelet reactivity (HPR), platelet function test-based
intensification of DAPT led to a reduction in adverse events
(157). As diversity in both genotype and phenotype exists across
different population groups, along with the need to determine the
appropriate therapy for each individual, personalized medicine
is the most promising futuristic approach in managing complex
cerebrovascular events like acute ischemic stroke.

CONCLUSIONS

The integration of specific biomarkers, genotype- as well as
phenotype-related data in antiplatelet therapy stratification
in patients with acute ischemic stroke will be of great clinical
significance. However, the data on genetic determinants and
biomarkers with specificity is limited. Ongoing and future
clinical studies are hoped to yield further valuable evidence
and standardized guidelines in translating a personalized
approach to the management of ischemic stroke. This
futuristic approach is believed to offer better management of
thrombotic events while preventing stroke and antiplatelet drug-
related complications.
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