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Abstract: The prevalence of sarcopenic obesity is increasing worldwide, particularly amongst
aging populations. Insulin resistance is the core mechanism of sarcopenic obesity and is also
associated with variable cardiometabolic diseases such as cardiovascular disease, type 2 diabetes
mellitus, and non-alcoholic fatty liver disease. Fat accumulation in muscle tissue promotes a
proinflammatory cascade and oxidative stress, leading to mitochondrial dysfunction, impaired insulin
signaling, and muscle atrophy. To compound the problem, decreased muscle mass aggravates insulin
resistance. In addition, the crosstalk between myokines and adipokines leads to negative feedback,
which in turn aggravates sarcopenic obesity and insulin resistance. In this review, we focus on the
molecular mechanisms linking sarcopenic obesity and insulin resistance with various biological
pathways. We also discuss the impact and mechanism of sarcopenic obesity and insulin resistance on
cardiometabolic disease.
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1. Introduction

Aging and obesity are the common public health issues worldwide. People older than 65 years
comprise 13% of the global population, and this percentage is increasing at a more rapid rate compared
to the percentage of any other age group [1]. With aging, the loss of muscle mass and strength occurs
naturally, and is defined as primary sarcopenia. In addition, secondary sarcopenia can develop because
of physical inactivity, malnutrition, and diseases, such as neurodegenerative disease, endocrine disease,
or malignancy [2]. Reduced muscle mass synergistically accompanies accumulation of fat mass,
resulting in sarcopenic obesity [3]. Compared to obesity alone, sarcopenic obesity is associated with a
heightened risk of adverse health outcomes, such as disability or impairment, cardiometabolic diseases,
other comorbidities, and mortality [4–7].

Cardiometabolic diseases, including cardiovascular diseases, type 2 diabetes mellitus,
and non-alcoholic fatty liver disease (NAFLD), are the leading causes of death worldwide.
Among several risk factors, obesity, excess calorie intake, and low levels of physical activity are
the main contributors [8], and insulin resistance (IR) is a common mechanism associated with the
disease [9]. IR is the core of the pathophysiological characteristics of sarcopenic obesity. Skeletal muscle
is the largest insulin-sensitive tissue and has the largest requirement for postprandial glucose through
insulin dependent mechanism. Hence, impaired insulin signaling is commonly observed in sarcopenic
obesity [10,11].

In this review, we describe the molecular pathogenesis of sarcopenic obesity with a particular
focus on IR. We discuss its roles in cardiometabolic diseases, including atherosclerosis, cardiovascular
disease, chronic heart failure, type 2 diabetes mellitus, metabolic syndrome, and NAFLD.
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2. Sarcopenia and Sarcopenic Obesity

2.1. Definition

Sarcopenia presents as a decline in skeletal muscle mass and strength. This decline is part of a
normal physiological aging process; however, several factors exacerbate this situation, including low
physical activity, inadequate nutrition, neurodegenerative disease, and inflammatory conditions.
These factors result in increasing frailty and an increased risk of mortality [2,12]. Sarcopenic
obesity, a combination of sarcopenia and obesity, is a concurrence of muscle loss and body fat
increment. This body composition change brings unchanged or similar body weight or BMI; however,
the change shifts toward unfavorable status, including reduced baseline metabolic rate, decreased
mitochondrial number and volume, and increased oxidative stress, which exacerbates the vicious
cycle [13]. This complex disorder results in a 2–3 times higher risk of functional disability than either
sarcopenia or obesity alone [14].

The definition of sarcopenic obesity has not been universally established, and there are various
diagnostic criteria for sarcopenia and obesity (Table 1). We previously reported that different definitions
of sarcopenia resulted in differential impact on cardiometabolic risk factors. [15].

Table 1. Diagnostic criteria for sarcopenic obesity.

Study Definition of Sarcopenia Definition of Obesity

EWGSOP2 [2]
Use the SARC-F questionnaire to
find subjects with sarcopenia

Decreased muscle mass and Decreased muscle
strength or performance NA

Muscle mass measurement ASM < 20 kg (M),
15 kg (W) ASM/height2 < 7.0 kg/m2 (M),
< 6.0 kg/m2 (W) (DXA)
Muscle strength measurement Hand grip
strength < 27 kg (M), <16 kg (W) Chair stand
> 15 s for five rises
Performance measurement Gait speed ≤ 0.8 m/s
SPPB ≤ 8 TUG ≥ 20 s 400 m walk test
Non-completion or ≥6 min for completion

New Mexico Aging Process Study
[16]

ASM/height2 < 7.26 kg/m2 (M), <5.45 kg/m2 (W)
(DXA)

Body fat > 27% (M),
>38% (W)

NHANES III [17] ALM/height2 < 9.12 kg/m2 (M), <6.53 kg/m2 (W)
Body fat > 27% (M),

>38% (W)

FNIH [18] ALM < 19.75 kg (M), <15.02kg (W) (DXA) NA

Asian Working Group for
Sarcopenia [19]

Decreased muscle mass and Decreased muscle
strength or performance NA

Muscle mass measurement ALM/height2 <
7.0 kg/m2 (M), <5.4 kg/m2 (W) (DXA)
ALM/height2 < 7.0 kg/m2 (M), <5.7 kg/m2 (W)
(BIA)
Muscle strength measurements Hand grip
strength < 26 kg (M), <18 kg (W)
Performance measurement Gait speed ≤ 0.8 m/s

Korea Sarcopenic Obesity Study
[20] SMI < 7.26 kg/m2 (M), < 5.45 kg/m2 (W) (DXA)

Body fat > 27% (M),
>38% (W)

SARC-F is a five-question self-reported questionnaire to screen for sarcopenia risk. The question comprises
the subjects’ perception of his/ her limitations in strength, walking ability, rising from a chair, stair climbing,
and experiences with falls [21]. ALM; appendicular lean mass. ASM; appendicular skeletal muscle mass. SPPB;
Short physical performance battery. TUG; Timed-Up and Go test. SMI; Skeletal muscle index (total skeletal muscle
mass (kg)/height (m)2). VFA; Visceral fat area.

2.2. Molecular Mechanism of Sarcopenic Obesity

In sarcopenic obesity, muscle is present as type II muscle fiber atrophy and increased lipid
deposition and adipocytes [13,22]. Fast type II muscle fibers switch to slow type I muscle fibers
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resulting in decreased muscle mass and strength [23]. A decrease in motor neurons and collagen
deposition is also observed [24].

2.2.1. Fat Accumulation

Intramyocellular lipid (IMCL) develops when the inflow of fatty acid exceeds the oxidative
capacity of skeletal muscle [25]. IMCL predominantly comprises triacylglycerol; however,
other lipid intermediates, such as diacylglycerol (DAG), long-chain acetyl coenzyme A, sterol esters,
and sphingolipids, including ceramides, also exist [26,27]. These lipids activate PKC and phosphorylate
the serine of insulin receptor substrate-1 (IRS-1), interfering with PI3K activation and blocking GLUT4
translocation [28]. GLUT4 is a membrane transporter that transports glucose from blood into myocytes
and its dysfunction results in decreased glucose utilization and increased fatty acid oxidation in the
mitochondria. Increased fatty acid inflow leads to an increase in the ATP/ADP ratio in the mitochondria,
along with a reduced electron transfer chain. This then results in the inhibition of mitochondrial
respiration, increase in ROS formation, myocyte toxicity, and finally, development of sarcopenia [29].
Intermyocellular adipose tissue (IMAT) and IMCL secrete myostatin, CCL2, TNF-α, IL-1β, and IL-6,
thus inducing IR and lipotoxicity, which is discussed in the next section [30].

Peri-muscular adipose tissue (PMAT) is an ectopic fat deposition surrounding muscle. Increased
PMAT enhanced nuclear translocation of the FoxO (forkhead box O) transcription factors and
upregulates Atrogin1 and MuRF1, which leads to proteolysis in muscle tissues. The amount of PMAT
is correlated with the severity of muscle atrophy [31].

The perilipin family of proteins (PLIN) is embedded in lipid droplets, and functions as a regulator
of skeletal muscle lipid metabolism and mitochondrial oxidation [32,33]. PLIN comprises PLIN1 to
PLIN5, and PLIN2 and PLIN 5 are predominantly found in muscle tissue [34,35]. Overexpression of
PLIN5 in skeletal muscle increases the gene expression involving fatty acid oxidation mediating PPARα
and PGC1α [33]. Ablation of PLIN5 results in reduced TAG storage, but increased sphingolipids such
as ceramide and sphingomyelin, thus leading to IR in the skeletal muscle [36]. In cultured myocytes,
a lipid droplet-associated protein perilipin 2 increases expression of NLRP3 inflammasome, resulting
in impaired insulin-stimulated glucose uptake [37].

These results suggest that increased fat accumulation in muscle impairs energy metabolism as
well as glucose homeostasis, leading to catabolic status and atrophy of the skeletal muscle.

2.2.2. Inflammation

In sarcopenic obesity, adipocytes are accumulated not only in muscle tissue, but also in other
organs. Increased adipose tissue secretes proinflammatory cytokines such as TNF-α, IL-6, and IL-1,
and this promotes infiltration of inflammatory cells, including macrophages. In adipose tissue
from lean subjects, approximately 10% of cells stained positive for macrophages, but in obese
subjects, this number increased to up to 50% [38]. The infiltrated macrophages in muscle tissue
present adipocyte-derived antigens and activate antigen-specific CD4+ T cells [39]. Macrophages
also change the phenotype from M2 to M1, which releases proinflammatory molecules such as
TNF-α, IL-1β, IL-6, and MCP-1/CCL2 [40,41]. These cytokines induce muscle atrophy by increasing
apoptosis and upregulating proteosomal decay of filament proteins [42]. Using a proteomics approach,
the cellular pathways activating macrophages are associated with sterile inflammation, which is
distinct from classical activation by bacterial or viral infection [43,44]. In obesity-induced activation of
macrophages, CD38, CD319, and CD274, are derived from the cell surface and only approximately
5% of the cell surface protein expression patterns overlap [43]. However, macrophages regulate
inflammation in adipose tissue, and have autophagic functions whereby they prevent proinflammatory
M1 macrophage-polarization by delivering cytoplasmic contents to lysosomes to degrade them and
promote homeostasis through an mTOR activation process [44].

Taken together, increased fatty acid uptake and its accumulation in muscle induces inflammation
with adipokines, proinflammatory cytokines, and other molecules, resulting in toxic effects on myocytes
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and ultimately sarcopenia. Sarcopenia results in a decreased metabolic rate, low physical activity,
and myokine deficiency, which collectively leads to the proinflammatory effect, and exacerbates obesity.

2.2.3. Sex-Specific Hormone and Growth Hormone Deficiency

Testosterone is an anabolic hormone that simulates protein synthesis by increasing amino acid
utilization, and it also increases androgen receptor expression in skeletal muscle cells [45]. Consequently,
testosterone increases muscle mass and insulin-like growth factor-1 (IGF-1) concentration and decreases
inflammatory cytokines, such as IL-1 [46]. In obesity, the serum levels of testosterone decrease in
response to increased aromatase activity, which converts testosterone to estradiol aromatization,
resulting in hypogonadotropic hypogonadism [46]. Hypogonadal status also contributes to sarcopenic
obesity by increasing levels of TNF-α and IL-6, which leads to central obesity [11,47].

In menopausal women, decreased levels of estrogen and increased levels of follicle-stimulating
hormone and androgen resulted in increased deposition of visceral adipose tissues and decreased
fat-free mass, leading to sarcopenic obesity [48].

Growth hormone (GH) is another anabolic hormone that activates multiple signaling cascades,
and declines with aging and obesity. Low GH levels reduce IGF1 action by sequentially downregulating
the PI3K-AKT/PKB-mTOR pathway, which induces protein synthesis in muscles [49]. The IGF-IR/IR
knockout mice showed decreased skeletal muscle mass [50].

In brief, the process of sarcopenia, due specifically to decreased production of sex-specific hormone
and growth hormone with aging, is aggravated by obesity.

3. Sarcopenic Obesity and Insulin Resistance

Skeletal muscle is the largest major organ for disposal (or reservoir) of postprandial glucose
ingestion via an insulin dependent mechanism [11,51]. IR reflects the status of impaired insulin
signaling, which consequently results in glucose transport and metabolism process that are closely
related to sarcopenic obesity.

3.1. At Skeletal Muscle

In the normal physiology of skeletal muscle, insulin binds to the transmembrane insulin receptor,
autophosphorylates tyrosine residues in the activation loop, activates IRS-1 and IRS-2, and successively
activates PIC3K. PIC3K phosphorylates membrane lipid PIP2, converting it to PIP3. PIP3 binds to Akt,
which catalyzes the phosphorylation of proteins, facilitating glycogen synthesis and translocation of
GLUT4. GLUT4 moves through the plasma membrane and then acts in a dose-dependent manner.
Imported glucose is stored as glycogen or enters the glycolytic pathway, and is either oxidized or
released as lactate [52]. Additionally, insulin is involved in the maintenance of muscle mass via the
p38MAPK and the mTOR/p70S6 kinase pathway, thus suppressing proteolysis [53–55].

In sarcopenic obesity, the increased lipid metabolites, such as including DAG and ceramides,
activate serine/threonine kinases such as PKC, C-Jun NH2-terminal kinase (JNK), and IKK, resulting in
the phosphorylation of serine/threonine in the insulin receptor protein and its substrates, resulting in
impaired insulin signaling [28,56]. In lipid infusion experiments, DAG content in the muscle increases,
and consequently PKCθ is activated, resulting in limited phosphorylation of IRS-1 and glucose uptake
through GLUT4 [9]. PKCθ impairs muscle insulin signaling, inhibiting insulin-mediated glucose
uptake through GLUT4.

IR correlates with impaired lipid oxidation in the mitochondria [57]. The accumulation of lipids
and their metabolites, particularly long chain fatty acids, causes lipotoxicity, and promotes ROS
production and ER stress as a result of inflammation, which in turn leads to impaired mitochondrial
dysfunction [57]. Mitochondrial dysfunction results in further intracellular fatty acid ambulation,
creating a vicious cycle of lipotoxicity [58]. An increase in oxidant compounds activates the stress
pathways including IKK, JNK, and p38-MAPK [59].
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While a report shows that local inflammation induced by muscle MCP-1 overexpression interferes
with insulin signaling in muscle [60], the other study does not report a similar observation [61].
The following signaling pathways are currently being examined for sarcopenic obesity and IR.

3.1.1. IKK/NF-kB Pathway

The IKK/NF-kB pathway is activated by TNF-α, IL-1β, and free-fatty acids [62]. IKK-mediated
serine phosphorylation of IRS-1 or insulin receptor results in impairment of insulin-induced tyrosine
phosphorylation. It results in decreased GLUT4 expression and increased nitric oxide synthase (iNOS)
production, leading to IR [63–65].

3.1.2. MAPK Family

JNK is a member of the MAPK family and is activated by TNF-α, IL-1β, free-fatty acids, ER stress,
and LTB4 [66,67]. JNK causes IR by inducing serine and threonine phosphorylation of IRS and
attenuating downstream insulin signaling [68]. Activated p38 MAPK is also involved in muscle IR [69].
Palmitate-induced IR in myocytes shows increase in JNK activity and knockdown of JNK in mice,
which shows alleviated IR by enhanced fatty acid utilization and glucose oxidation [70,71].

3.1.3. JAK/STAT

IFN-γ activates JAK1 and JAK2 inducing STAT1 phosphorylation. IL-6 and palmitate causes
STAT3 phosphorylation. It is not fully understood how the JAK-STAT pathway leads to IR in muscle
tissues, and controversial results from previous studies have suggested that muscle-specific STAT3 in
mice does not alter IR [72,73].

The suppressor of cytokine signaling (SOCS), particularly SOCS1 and SOCS3, are proteins
inhibiting inflammatory signaling by blocking JAK activity [74]. This suppressing activity interferes
with the crosstalk between the insulin receptor and IRS by inhibiting insulin receptor tyrosine kinase
activity and degrading IRS [74,75]. In mice, macrophage-specific ablation of SOCS1 increases systemic
inflammation and IR [76], and a loss of function of the cavin-1 binding sites on SOCS3 consequently
induces lipodystrophy and IR in mice [77].

3.1.4. PKCs

PKC is a family of serine/threonine kinase activated by phospholipase C and hydrolysis of
membrane phosphoinositides [78]. PKCs are grouped into three classes, as follows: classical PKCs
(α, β1, β2, γ), novel PKCs (δ, ε, η, θ), and atypical PKCs (ζ, λ/ ι) [79]. PKCθ is predominantly expressed
in skeletal muscle and endothelium and is activated by increased DAG content in muscles, via elevated
plasma fatty acid infusion in humans [80] or palmitate treatment in myocytes [64]. Similar to IKK and
JNK pathways, it induces serine or threonine phosphorylation or IR or IRS-1, resulting in impairment
of insulin signaling [80,81].

3.2. Crosstalk Between Myocyte and Adipocytes

3.2.1. IL-6

IL-6 is a cytokine produced by numerous cell types, such as myocytes, adipocytes, and leukocytes,
and it has dual effects in inflammation [82]. As a myokine, IL-6 releases from the skeletal muscle
in condition of acute muscle contraction without damage [83]. Acute increment of IL-6 in healthy
humans in association with classic signaling, improved insulin sensitivity by enhancing glucose uptake,
and increased fatty acid oxidation in myocytes [84]. In the pancreas, IL-6 stimulates insulin secretion
by beta cells by upregulating glucagon-like peptide-1 (GLP-1) [85]. It also induces anti-inflammatory
cytokines, such as IL-10, and inhibits the feedback of the TNF-α pathway [59].

In contrast, in chronic states such as obesity, IL-6 acts as a pro-inflammatory cytokine via the
trans-signaling pathway. A high-fat diet leads to chronically elevated levels of IL-6, which then
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recruits macrophages in the adipose tissue [86]. This results in decreased IGF-1 levels and reduced
muscle mass and strength by elevated expression of SOCS3 [87,88]. Chronically elevated IL-6 levels
increase MAP3K8 expression in adipose tissue, which is a signal transducer that regulates activation
of NF-kB and JNK transcription factors and leads to IR [89]. Long-term increment of serum IL-6
levels prospectively predicts unstable atherosclerotic plaques in patients with internal carotid artery
stenosis [90]. In older, healthy subjects, progressive strength training reduced serum IL-6 levels
compared to that in a control group [91].

Therefore, IL-6 is not only involved in the communication between skeletal muscle and adipose
tissue, but also involved in the crosstalk between the pancreas and liver to control glucose metabolism
and the cardiovascular system, which, in turn, may control sarcopenia and obesity.

3.2.2. Irisin

Irisin is a PPARγ-coactivator-1α (PGCα)-dependent myokine that stimulates browning in
subcutaneous adipose tissues and induces increased energy expenditure, which improves obesity
and IR through the MAPK and ERK pathways [92,93]. Irisin also stimulates beta-cell survival
and glucose-stimulated insulin secretion through the PGA pathway, and inhibits saturated fatty
acid-induced apoptosis in pancreatic beta-cells [94]. A low level of irisin in mice with muscle-specific
constitutive ROCK1 activation suppresses irisin production in muscles, decreasing browning in
adipocytes and leading to impaired insulin sensitivity [95].

In human studies, the level of plasma irisin was positively associated with muscle mass and
strength and negatively associated with the fasting glucose level [96]. However, the results on the
association between exercise and change in irisin expression are conflicting because of differences
among studies, in the exercise regimen programs prescribes, the characteristic of the study populations,
and the types of measurement assays used [97–99].

Taken together, irisin has a beneficial effect on metabolic homeostasis, but further investigations
are needed to find the role of irisin in sarcopenic obesity and cardiometabolic diseases.

3.2.3. Adiponectin

Adiponectin is one of the adipokines that is released from adipocytes, and regulates appetite
and energy expenditure. In obesity, the serum level of adiponectin decreases. Thus, it facilitates
insulin sensitivity by increasing glucose uptake in skeletal muscle and by stimulating fatty acid
oxidation through activation of the 5′-AMP-activated protein kinase (AMPK) signaling pathway [100].
Adiponectin also decreases inflammation by inhibiting TNF-α and IL-γ secretion and elevating
IL-10 and IL-1 receptor antagonist production from monocytes and macrophages [82]. In contrast,
TNF-α impairs adiponectin signaling, mitochondrial biogenesis, and oxidative capacity, resulting in
impaired functionality of skeletal muscles [101].

In human studies, resistance and aerobic exercise improved sarcopenic obesity and increased
the adiponectin levels in overweight or obese breast cancer survivors [102]. However, there is a
controversy about whether adiponectin reflects skeletal muscle improved by exercise or fat accumulation.
In overweight or obese postmenopausal women, the adiponectin level increased by 9.5% in the diet
intervention group but by 6.5% in both diet and exercise groups [103].

In summary, adiponectin is negatively associated with obesity and has a protective effect for
inflammation and lipid accumulation in skeletal muscle, but further studies are needed to elucidate its
clinical effect, particularly in the subjects with sarcopenic obesity.
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4. Pathophysiological Link among Cardiometabolic Disease, Sarcopenic Obesity,
and Insulin Resistance

4.1. Atherosclerosis and Cardiovascular Disease

Atherogenesis is a complicated process that includes oxidative stress, inflammation, endothelial
dysfunction, vascular proliferation, and thrombosis [104]. Atherosclerotic plaque rupture can lead to
myocardial infarction and stroke [105]. Hyperinsulinemia due to IR impairs the IRS-1/PI3K/Akt pathway,
which causes vasodilation by activating nitric oxide synthase (NOS) and leads to the production of
nitric oxide (NO) [106]. This results in impaired vasodilation and endothelial dysfunction, leading to
the development of atherosclerosis. In contrast, as the MAPK pathway has normal sensitivity to insulin,
hyperinsulinemia activates the MAPK pathway, promoting vascular smooth muscle cell growth and
activating inflammatory pathways, such as IkB/NF-kB and JNK [107,108].

In adipocytes, IR by impaired insulin/mTOR2 signaling results in increased MCP1 production,
which results in increased circulating MCP1. This activates the proinflammatory M1 macrophages
which release cytokines such as TNF-α [109]. When macrophages are under oxidative stress, oxidized
lipids such as 7-hydroperoxide proceed to inactivate CYP27A1, reducing ABCA1/G1 expression and
ultimately leading to impaired cholesterol efflux to the extracellular apoA-I or HDL [110]. Excessive
oxidized LDL cholesterol imported into macrophages leads to the development of foam cells that are
deposited beneath the endothelium in arteries, forming atherosclerotic plaques [110].

In a clinical study, patients with sarcopenic obesity had higher carotid intima-media thickness (IMT)
and oxidative stress markers compared to sarcopenic non-obese and/or non-sarcopenic patients [111].
Among patients with myocardial infarction, those with visceral obesity had elevated levels of
proinflammatory cytokines, such as TNF-α, IL-1b, IL-6, IL-8, IL-12, and CRP than those without visceral
obesity [112]. A British regional health study reported that older subjects with sarcopenic obesity had
the highest cardiovascular mortality [113].

These results suggest that sarcopenic obesity mediated IR accompanies vascular smooth muscle
growth and vascular endothelial damage by chronic inflammation and oxidative stress, leading to
atherosclerosis and cardiovascular disease [114].

4.2. Chronic Heart Failure

Chronic heart failure is the status of a clinical endpoint with decreased pumping function, resulting
in impaired organ perfusion usually followed by myocardial infarction or stroke. IR and chronic
inflammation are observed in chronic heart failure. Sarcopenic obesity shares these conditions as well.

Hyperinsulinemia, due to IR, activates the renin-angiotensin-aldosterone system (RAS). Increased
levels of angiotensin II and following increased aldosterone levels activates the angiotensin receptor
1 and mineralocorticoid receptors, respectively, which stimulates mTOR-S6K1 signaling in heart
IR [115,116]. The mTOR-S6K1 pathway increases the expression of epithelial sodium channels in
the vascular cell membrane and activates serum-and-glucocorticoid-regulated kinase 1, which leads
to reduced NO production and increased cardiac stiffness [117]. Moreover, angiotensin II type
1 receptor and mineralocorticoid receptor activate the TGF-β1-SMAD pathway, which increases
myocardial fibrosis and structural remodeling [118]. Increased RAS also activates sympathetic
neurons that contribute to impaired autonomic regulation in heart failure. RAS activity in brain
paraventricular nucleus upregulates MAPK signaling and results in sympathetic excitation in rats with
heart failure [119].

Inflammation due to sarcopenic obesity results in reduced NO, cyclic guanosine monophosphate
(cGMP), and protein kinase G (PKG) activity in cardiomyocytes, leading to LV hypertrophy and
stiffness [120]. Activated macrophages release TNF-α, IL-1b, IL-6, and TGF-β, which stimulate
myofibroblasts, increase collagen production, and decrease protease inhibitor secretion [121,122].
As a result, the extracellular matrix is degraded by Smad-dependent and/or independent signaling
pathways and fibrosis occurs in both cardiac and skeletal muscles [123].
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Reduced mitochondrial function leads to impaired muscle contractile function and cardiomyocyte
death. In rats with heart failure, pro-oxidants such as NADPH oxidase and XO activity were higher,
and antioxidants, such as catalase and superoxide dismutase (SOD), were lower than in corresponding
controls [124].

In a clinical study, patients with sarcopenia and/or obesity had a higher risk of co-morbidity and
poor prognosis with chronic heart failure [125]. Even in subjects without heart failure, myocardial
infarction, and diabetes mellitus, fasting plasma insulin level was positively associated with adverse
echocardiographic features, which predispose them to a risk of heart failure [126]. Furthermore,
patients with chronic heart failure showed adiponectin resistance in myocardial and skeletal muscle
cells through increased oxidative stress [127].

4.3. Type 2 Diabetes Mellitus

IR plays a major role in the pathogenesis of type 2 diabetes mellitus [128]. Even though pancreatic
beta cell dysfunction is the main pathogenesis of type 2 diabetes mellitus, given that the uptake of
postprandial glucose by skeletal muscles is approximately 80–90%, skeletal muscle IR plays a crucial
role in the development and progression of diabetes mellitus [129,130].

In a clinical study, patients with sarcopenic obesity with higher BMI and lower hand grip strength
had a higher risk of type 2 diabetes mellitus than controls did [131]. We also previously reported
that patients with type 2 diabetes mellitus had higher BMI and a low appendicular skeletal mass and
skeletal muscle index [132].

4.4. Metabolic Syndrome

Metabolic syndrome shares risk factors for type 2 diabetes mellitus and atherosclerotic
cardiovascular disease, which tend to namely be abdominal obesity, hyperglycemia, dyslipidemia,
and hypertension. Another name for the syndrome is IR syndrome. It is closely associated with
IR and obesity, and excess energy intake is usually the underlying cause of the syndrome [133].
Fat accumulation increases oxidative stress due to increased ROS production and NADPH oxidase
activation [134]. It causes the dysregulation of adipocytokines, such as adiponectin, PAI-1, IL-6,
and MCP-1, leading to metabolic syndrome [134]. IR also activates SREBP-1c and inhibits
acetyl-coenzyme A carboxylase, leading to reduced PPAR-a expression and the promotion of large-sized
and TG-rich VLDL synthesis and secretion [135].

Most clinical studies have reported that sarcopenic obesity is associated with metabolic
syndrome [136–138]. However, in an Australian study assessing older men, sarcopenic obesity
was associated with metabolic syndrome; however, obesity itself, rather than the sarcopenia measured
by ALM, grip strength, or gait speed was more predictive of metabolic syndrome [139].

4.5. NAFLD

IR is the main characteristic of NAFLD and is observed in the liver, skeletal muscle, and adipose
tissue in sarcopenic obesity [140]. Sarcopenic obesity seems to impair insulin signaling in hepatocytes,
resulting in increased de novo hepatic lipogenesis and inhibited hepatic β-oxidation [141]. Moreover,
obesity accompanies the accumulation of lipids in the liver, thus aggravating insulin resistance in
hepatocytes [141]. In genetic mouse models of muscle-specific IR, by deleting the IRTK [142] or
GLUT4 [143] genes, hepatic steatosis and adiposity were increased [142].

Chronic inflammation releases cytokines TNF-α, IL-6, and CRP in muscle and adipose tissues,
aggravating IR and hepatic injury [144]. Decreased adiponectin levels are also noted in advanced hepatic
injury [145]. When hepatocyte injury occurs, oxidative stress activates Kupffer cells, which release
TNF-α and IL-6, leading to chronic inflammation and liver fibrogenesis progression [146]. Recently,
it was reported that NAFLD affects intestinal microbiota, resulting in decreased immune T-cells and
increased proinflammatory markers, including TNF-α, IL-6, and IFN-γ [147].
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In a longitudinal cohort, subjects with sarcopenia were shown to have a higher risk of NAFLD
and increased skeletal muscle index resolute [148]. Several cross-sectional studies have shown an
association between sarcopenia and/or obesity and NAFD [144,149]. We have also reported that
sarcopenia is independently associated with IR, as measured by HOMA-IR and NAFLD [150].

5. Conclusions

Accumulating evidence indicates that cardiometabolic diseases are associated with sarcopenic
obesity and IR, and both play pivotal roles in disease development and progression. The clinical
definition of sarcopenic obesity has not been unified and each set of diagnostic criteria has different
clinical implications. However, the defining phenomena include decreased muscle mass and reduced
strength of the muscle irrespective of size, and increased adiposity. Sarcopenic obesity is associated
with (i) inflammation cascades that release proinflammatory cytokines, including TNF-α, IL-1, and IL-6,
and activate M1 macrophages, and (ii) alterations in growth hormone, testosterone, and estradiol.
In skeletal muscles, these changes activate several pathways, such as the IKK/NF-kB, JNK, PKC,
and JAK/STAT pathways, which result in IR. In sarcopenic obesity accompanied IR, the proposed
mechanisms lead to multiple cardiometabolic diseases, including cardiovascular disease, atherosclerosis,
chronic heart failure, type 2 diabetes mellitus, metabolic syndrome, and NAFLD. Further studies
are needed to clarify the mechanisms contributing to the conflicting molecular and clinical results
that are evident between cardiometabolic diseases and sarcopenic obesity with IR. Advancing the
understanding of sarcopenic obesity and IR may lead to the emergence of novel therapies to prevent
cardiometabolic diseases in aging populations.
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