
RESEARCH ARTICLE Open Access

No detectable alloreactive transcriptional
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multiplexed single-cell RNA sequencing of
peripheral blood mononuclear cells
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Abstract

Background: Single-cell RNA sequencing (scRNA-seq) provides high-dimensional measurements of transcript
counts in individual cells. However, high assay costs and artifacts associated with analyzing samples across multiple
sequencing runs limit the study of large numbers of samples. Sample multiplexing technologies such as MULTI-seq
and antibody hashing using single-cell multiplexing kit (SCMK) reagents (BD Biosciences) use sample-specific
sequence tags to enable individual samples to be sequenced in a pooled format, markedly lowering per-sample
processing and sequencing costs while minimizing technical artifacts. Critically, however, pooling samples could
introduce new artifacts, partially negating the benefits of sample multiplexing. In particular, no study to date has
evaluated whether pooling peripheral blood mononuclear cells (PBMCs) from unrelated donors under standard
scRNA-seq sample preparation conditions (e.g., 30 min co-incubation at 4 °C) results in significant changes in gene
expression resulting from alloreactivity (i.e., response to non-self). The ability to demonstrate minimal to no
alloreactivity is crucial to avoid confounded data analyses, particularly for cross-sectional studies evaluating changes
in immunologic gene signatures.

Results: Here, we applied the 10x Genomics scRNA-seq platform to MULTI-seq and/or SCMK-labeled PBMCs from a
single donor with and without pooling with PBMCs from unrelated donors for 30 min at 4 °C. We did not detect
any alloreactivity signal between mixed and unmixed PBMCs across a variety of metrics, including alloreactivity
marker gene expression in CD4+ T cells, cell type proportion shifts, and global gene expression profile comparisons
using Gene Set Enrichment Analysis and Jensen-Shannon Divergence. These results were additionally mirrored in
publicly-available scRNA-seq data generated using a similar experimental design. Moreover, we identified
confounding gene expression signatures linked to PBMC preparation method (e.g., Trima apheresis), as well as
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SCMK sample classification biases against activated CD4+ T cells which were recapitulated in two other SCMK-
incorporating scRNA-seq datasets.

Conclusions: We demonstrate that (i) mixing PBMCs from unrelated donors under standard scRNA-seq sample
preparation conditions (e.g., 30 min co-incubation at 4 °C) does not cause an allogeneic response, and (ii) that Trima
apheresis and PBMC sample multiplexing using SCMK reagents can introduce undesirable technical artifacts into
scRNA-seq data. Collectively, these observations establish important benchmarks for future cross-sectional
immunological scRNA-seq experiments.
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Background
Recent advances in single-cell RNA sequencing (scRNA-
seq) technologies have dramatically increased assay
throughput from ~ 102 to 104–106 cells per experiment
[1]. However, many applications of scRNA-seq workflows
(e.g., 10x Genomics) require individual samples to be
processed in parallel, which translates to prohibitively-
high assay costs for population-scale studies requiring
large numbers of samples. Several scRNA-seq sample
multiplexing techniques have been developed which en-
able users to circumvent this limitation by processing
samples in a pooled format [2–12]. By avoiding the usual
requirement for processing distinct samples individually,
these technologies increase scRNA-seq cell and sample
throughput while minimizing technical confounders (e.g.,
doublets and batch effects). Two main types of sample
multiplexing approaches have been described: (i) in silico
genotyping using natural [7–10] or artificial [11, 12] gen-
omic variants and (ii) tagging cell membranes with
sample-specific DNA barcodes using lipid-modified oligo-
nucleotides (LMOs; e.g., MULTI-seq) [2], DNA-
conjugated antibodies [3–5] (e.g., BD single-cell multiplex-
ing kit (SCMK) [5]), or methyltetrazine-modified DNA
“ClickTags” [6]). Despite the increasing popularity of sam-
ple multiplexing, benchmarking studies aiming to measure
transcriptional changes induced by mixing cell suspen-
sions during scRNA-seq sample preparation have not
been described. Determining the extent to which these
changes might occur is critical, as they would confound
cross-sectional data interpretation.
Mixing-specific transcriptional responses could occur

when peripheral blood mononuclear cells (PBMCs) from
unrelated donors are pooled during scRNA-seq sample
preparation. Co-culturing human leukocyte antigen
(HLA) mismatched PBMCs causes a rapid and potent
allogeneic response wherein T lymphocytes are stimu-
lated through T cell receptor binding to “non-self” major
and minor histocompatibility complex proteins [13–16].
For example, CD154+ alloreactive CD4+ T cells were
detected within 2 h after HLA-mismatched lymphocyte
mixing [13], while bulk transcriptomics identified a ~ 5-
fold increase within 24 h of alloreactivity-associated gene

expression relative to HLA-matched lymphocytes [14].
Although pooled samples are maintained on ice for
short durations during scRNA-seq sample preparation, it
is unclear whether the allogeneic response may occur at
low temperatures or whether transient periods of warm-
ing (e.g., during droplet emulsion at room temperature)
are sufficient to drive alloreactivity. Considering that
scRNA-seq is sensitive to transcriptional responses in
rare cell sub-populations which are obscured by bulk as-
says, directly assessing whether alloreactivity will con-
found downstream scRNA-seq analyses is a critical
benchmark for large-scale immunological studies [17].
Here, we performed scRNA-seq using the 10x Genom-

ics platform on PBMC samples isolated from eight unre-
lated healthy donors pooled under conditions where
cells from a single donor were processed in isolation or
after donor pooling. Donor identities for each cell were
assigned using SCMK and MULTI-seq data, as well as
the in silico genotyping pipeline, souporcell [8]. We ob-
served cell-type biases among SCMK classification re-
sults which were not due to sub-optimal antibody
labeling conditions or the presence of MULTI-seq
LMOs. We additionally did not observe robust, mixing-
associated changes in PBMC cell type frequencies, global
transcriptional profiles, or alloreactivity-associated gene
expression in any PBMC cell type. Finally, we validated
the observed lack of alloreactivity in a publicly-available
scRNA-seq dataset where PBMCs from two unrelated
donors were sequenced in isolation and after pooling
[18]. As a result, we conclude that pooling PBMCs from
unrelated donors under standard 10x Genomics-based
scRNA-seq sample preparation conditions (e.g., 30 min
co-incubation at 4 °C) does not result in any detectable
alloreactivity at the RNA level.

Study design
To assess whether mixing PBMCs from unrelated donors
causes alloreactivity during scRNA-seq, we performed a
cross-sectional study of PBMCs isolated from 8 unrelated
healthy donors (Fig. 1; Experimental methods). To record
the donor-of-origin for each cell, PBMC samples were
tagged with donor-specific MULTI-seq [2] and/or SCMK
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antibody-DNA [5] barcodes. PBMCs were mixed for 30
min at 4 °C prior to emulsion across four droplet micro-
fluidics lanes (10x Genomics) at room temperature. The
30-min pooled incubation was chosen to mimic the typ-
ical processing time required for preparing samples for
multiplexed scRNA-seq analysis. Following scRNA-seq
data pre-processing, quality-control, cell type annotation,
and sample demultiplexing (Computational Methods), we
compared the expression profile of unmixed donor A
PBMCs (microfluidic lane #1) to donor A PBMCs mixed
with donors B-D (microfluidic lane #2), donors B-H
(microfluidic lane #3), and an unmixed donor A PBMC
technical replicate prepared without antibody-DNA label-
ing (microfluidic lane #4). We hypothesized that if co-
incubation of PBMCs from unrelated donors for 30min at
4 °C causes detectable alloreactivity, then mixed and un-
mixed donor A PBMCs would exhibit more variable gene
expression profiles than what is observed due to technical
variation.

Results
MULTI-seq classifies PBMCs more accurately than SCMK
We first assessed the performance of MULTI-seq and
SCMK by comparing the results of three distinct demul-
tiplexing workflows on donor A-H PBMCs from micro-
fluidic lane #3: (i) deMULTIplex, (ii) demuxEM, and (iii)
souporcell. deMULTIplex [2] and demuxEM [4] are al-
gorithms that function on sample barcode count matri-
ces, while souporcell is an in silico genotyping pipeline
that functions on gene expression data [8]. MULTI-seq
and SCMK classifications were largely consistent with
souporcell (Fig. 2a)—e.g., among cells classified as do-
nors A-H using souporcell, 99.9% and 99.0% of donor
classifications were consistent for MULTI-seq and
SCMK, respectively. However, while 1.5% of cells
remained unclassified following MULTI-seq demulti-
plexing, 36.2% of cells remained unclassified after SCMK

demultiplexing. This decrease in classification efficiency
was also observed when compared to the demuxEM re-
sults (Table 1).
To assess whether cells that remained unclassified fol-

lowing SCMK demultiplexing were randomly distributed
throughout the scRNA-seq data, we computed the fre-
quency of unclassified cells for each PBMC cell type.
This analysis revealed that T lymphocytes and NK cells
were especially likely to remain unclassified in SCMK
data (Fig. 2b). Moreover, activated CD4+ T cells were
particularly prominent among the unclassified CD4+ T
cells (Fig. 2c).
It is conceivable that the presence of LMOs and/or

sub-optimal SCMK labeling buffer conditions caused the
observed classification biases in PBMCs. To address
whether LMOs interfere with SCMK labeling, we gener-
ated scRNA-seq data where cells from 7 PBMC donors
were pooled after labeling with SCMK reagents but not
LMOs. As was observed previously, SCMK classifica-
tions were similarly biased against T lymphocytes and
NK cells (Additional file 1: Figs. S1A, S1D), with acti-
vated CD4+ T cells being particularly difficult to clas-
sify (Additional file 1: Figs. S1B, S1E). To address
whether SCMK classification biases in PBMCs is due
to sub-optimal antibody labeling conditions, we deter-
mined the extent of classification bias in a publicly-
available scRNA-seq dataset provided by the SCMK
reagent supplier where PBMCs were cultured in vitro
for 24 h in the presence or absence of anti-CD3/anti-
CD28 antibodies [19]. In these data, SCMK classifica-
tions were biased against T lymphocytes and NK
cells, despite optimal SCMK labeling conditions (Figs.
S1C, F). Collectively, these results illustrate that
SCMK reagents produce biased classifications when
applied to PBMCs. For these reasons, MULTI-seq
donor classifications were used for all subsequent
gene expression analyses.

Fig. 1 Schematic overview of experimental design. PBMCs from 8 healthy HLA-mismatched donors (tubes on left) were barcoded with MULTI-seq
LMOs (black double-helix hybridized to red DNA barcode) and BD single-cell multiplexing kit (SCMK) antibodies (black antibody conjugated to
teal DNA barcode). Cells were then strategically pooled to directly assess whether mixing HLA-mismatched PBMCs during scRNA-seq
causes alloreactivity
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Trima apheresis introduces biologically-relevant
confounders into PBMC scRNA-seq data
The PBMCs that were used in this study came from
whole blood that was processed using Ficoll-Paque dens-
ity gradient centrifugation. Notably, these samples either
underwent (donors D–H) or did not undergo (donors
A–C) apheresis using Trima filtration, a method to en-
hance leukocyte yield during sample preparation [20,
21]. Initial inspection of MULTI-seq donor classifica-
tions revealed that PBMCs predominantly clustered ac-
cording to the processing method—e.g., Trima vs. Ficoll
(Additional file 1: Fig. S2A). Upon sub-clustering CD14+
classical monocytes and natural killer (NK) cells, we ob-
served that Trima and Ficoll classical monocytes
expressed variable levels of the histone component gene
HIST1H1C, as well as two genes involved in monocyte

differentiation, MNDA and CEBPB (Additional file 1:
Fig. S2B, left) [22]. Moreover, we observed that Trima
and Ficoll NK cells differentially expressed the immune
cytokine IFNG, cytolytic genes GZMA and PRF1, and
the stress marker JUN (Additional file 1: Fig. S2B, right)
[23]. These results suggest that apheresis using Trima
filters induces confounding changes in gene expression
patterns associated with differentiation state, cytolytic
activity, and stress across multiple PBMC cell types.
These signatures are consistent with prior observations
[24] and should be accounted for in future analyses.
Thus, to avoid these confounding effects when compar-
ing donor- and mixing-specific expression profiles, we
restricted our subsequent analyses to PBMC samples
processed without Trima filtration.

Mixing PBMCs from unrelated healthy donors during
scRNA-seq sample preparation does not cause a
detectable allogeneic transcriptional response
To assess whether mixing PBMCs from unrelated do-
nors induces alloreactivity during multiplexed scRNA-
seq, we compared the expression profiles of mixed and
unmixed donor A PBMCs. Mapping the densities of
mixed and unmixed donor A sample classifications onto
PBMC gene expression space (Fig. 3a, top left) did not
reveal any qualitative shifts in global gene expression
profiles (Fig. 3a, bottom). Notably, such shifts in classifi-
cation densities were observed when including PBMCs
from donors B and C (Fig. 3a, top right), suggesting that
natural inter-donor variation is more pronounced than

Table 1 MULTI-seq and SCMK classification performance
summary

Method MULTI-seq SCMK

% Unclassified (deMULTIplex) 1.5% 36.2%

% Unclassified (demuxEM) 2.8% 35.4%

% souporcell Donor Match (deMULTIplex) 99.9% 99.0%

% souporcell Donor Match (demuxEM) 98.8% 97.7%

Classification performance was determined using two statistics: (i) %
Unclassified, proportion of cells classified into donor groups by souporcell that
remain unclassified by MULTI-seq or SCMK; (ii) % Donor Match, proportion of
cells classified into the same donor group by MULTI-seq or SCMK and
souporcell. Both metrics were computed using results from both deMULTIplex
and demuxEM

Fig. 2 MULTI-seq and SCMK classifications largely match in silico genotyping, with lower SCMK classification efficiency and bias against activated
CD4+ T cells. a Sample classification results from three demultiplexing pipelines (e.g., deMULTIplex, souporcell, and demuxEM) projected onto
MULTI-seq (top) and SCMK (bottom) sample barcode space. n = 4032 cells from microfluidic lane #3. b Classification frequencies across all PBMC
cell types following SCMK sample demultiplexing. c SCMK unclassified cells in CD4+ T cell gene expression space. n = 6879 CD4+ T cells
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intra-donor variation due to PBMC mixing. Indeed,
PBMC cell-type frequencies were similarly-variable be-
tween donors, while no statistically-significant shifts in
cell-type frequencies were linked to mixing status (Add-
itional file 1: Fig. S3A, S3B).
Next, we focused on CD4+ T cells because of their

known involvement in alloreactivity [13–16]. Mixed and
unmixed donor A CD4+ T cells expressed genes known
to be involved in an allogeneic response [13–16] at simi-
lar levels (Fig. 3b). Similar to the full dataset, mixed and
unmixed donor A cells were clustered together in CD4+
T cell gene expression space (Fig. 3c, top left). Finally,
no statistically-significant shifts in CD4+ T cell subtype
frequencies were linked to mixing status (Additional file
1: Fig. S3C, S3D).

Expanding our analysis to other PBMC cell types, we
next applied two unbiased approaches to measure any
putative allogeneic response signature. First, we used the
dissimilarity metric Jensen-Shannon Divergence (JSD)
[25] to compute sample-level differences for each PBMC
cell type. To control for differences in cell type propor-
tions, we randomly subsetted equal numbers of each cell
type from each experimental group during PBMC sub-
clustering (Fig. 3c) and repeated this workflow 100
times. Across the 100 iterations, we then computed the
average JSD scores between donors, unmixed and mixed
donor A cells, and technical replicates (Computational
methods). For all cell types, inter-donor JSD scores were
greater than those linked to mixing status and technical
replicate, while mixing status JSD scores were greater

Fig. 3 Mixing HLA-mismatched PBMCs does not cause allogenic response during multiplexed scRNA-seq sample preparation. a Sample
classification results plotted as densities in PBMC gene expression space (top left) grouped according to unmixed donor A PBMCs (bottom left),
mixed Donor A PBMCs (bottom right), and Donors A-C PBMCs (top right). b Expression of genes known to be upregulated (e.g., IFNG and
CD40LG) or downregulated (e.g., DUSP1 and FOS) by CD4+ T lymphocytes during an allogenic response across unmixed (black) and mixed (red)
donor A CD4+ T cell subsets. c Representative CD4+ T cell, CD8+ T cell, CD14+ monocyte, CD16+ monocyte, and NK cell gene expression
embeddings following iterative subsetting to select equal numbers from each JSD comparison group. Cells are colored according to donor ID
(e.g., a, b, c) and mixing status (e.g., − = unmixed, + =mixed). n = 1336 CD4+ T cells, 448 CD8+ T cells, 864 CD14+ monocytes, 136 CD16+
monocytes, and 224 NK cells. d JSD analysis summary. Bar plots denote average JSD between PBMC donors (white), mixed/unmixed donor A
cells (beige), technical replicates (gray), and donor A cells following label permutation (red). Difference in JSD scores between mixed/unmixed
and technical replicates depicted in black. Error bars denote +/− 1 standard deviation. n = 100 iterations
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than technical replicate JSD scores for CD8+ T cells,
CD14+ monocytes, and NK cells (Fig. 3d).
To determine the likelihood of observing elevated mix-

ing status JSD scores relative to technical replicates by
chance, we repeated this workflow after permuting
donor A classifications. Specifically, we reasoned that if
permuted JSD scores were greater than the difference
between observed mixing status and technical replicate
JSD scores, then the observed differences are not signifi-
cant. To this end, JSD scores after donor A label permu-
tation were larger than the experimental JSD score
differential in all cell types except CD14+ classical
monocytes (Fig. 3c).
The second unbiased approach we utilized to look

for allogeneic response signatures was Gene Set
Enrichment Analysis (GSEA) [26, 27]. Specifically, we
applied GSEA to donor A cells from each PBMC cell
type to determine whether pathways involved in im-
mune activation and/or alloreactivity were enriched in
mixed relative to unmixed cells. This analysis revealed
that among unmixed donor A cells, activated CD4+ T
cells were enriched for humoral immune response
genes and dendritic cells were enriched for epigenetic
regulation and cell killing (Additional file 2: Supple-
mental Table 1). Notably, these detected gene sets in
unmixed cells are not consistent with an allogeneic
response, and no enriched gene sets were identified
among any mixed donor A cell types.
It is conceivable that the presence of LMOs and

antibody-DNA barcodes could delay or block any allo-
geneic response between PBMCs from unrelated donors.
To explore this possibility, we repeated our analytical
workflow on a publicly-available scRNA-seq dataset
where PBMCs from two unrelated healthy donors were
sequenced in isolation and after pooling and incubation
on ice for 30 min [18]. Mirroring our previous observa-
tions, mixing was not robustly associated with any
statistically-significant shifts in PBMC cell type propor-
tions (Additional file 1: Fig. S4A, S4B) or CD4+ T cell
subtypes (Additional file 1: Fig. S4C, S4D). Moreover,
cells clustered primarily by donor and not mixing status
(Additional file 1: Fig. S4E), and inter-donor JSD scores
were greater than mixing status JSD scores for all cell
types (Additional file 1: Fig. S4F). Although this experi-
mental design did not allow comparisons between JSD
scores linked to mixing status and technical replicates,
permuted and mixing status JSD scores were on-par for
most cell types (including CD14+ monocytes; Additional
file 1: Fig. S4F). Finally, while GSEA identified a number
of enriched gene sets among mixed PBMCs in these data
(e.g., protein trafficking, translation, non-sense mediated
decay, viral gene expression, and amino acid metabolism;
Additional file 2: Supplemental Table 2), these gene sets
were unrelated to alloreactivity and were shared across

most PBMC cell types, suggesting they were caused by
batch effects between the mixed and unmixed scRNA-
seq libraries.
Collectively, these targeted and unbiased quantita-

tive comparisons across all PBMC cell types in two,
independently-generated scRNA-seq datasets demon-
strate that mixing PBMCs from unrelated donors
under standard multiplexed scRNA-seq sample prep-
aration conditions (e.g., 30 min co-incubation at 4 °C)
does not result in a detectable allogeneic transcriptional
response.

Discussion
Sample multiplexing approaches for scRNA-seq are be-
ing increasingly utilized by the single-cell genomics field
to reduce assay costs while improving data breadth and
quality. However, the impact of pooling PBMCs from
unrelated donors during scRNA-seq sample preparation
on gene expression patterns has not yet been adequately
quantified. Here, we used the 10x Genomics scRNA-seq
platform to directly compare the gene expression pro-
files of PBMCs prepared for sequencing alone or after
mixing with PBMCs from unrelated donors for 30 min
at 4 °C. We found no evidence of global changes in gene
expression profiles in any PBMC cell type (quantified
using JSD and GSEA), PBMC cell type proportions, or
alloreactivity marker gene expression in CD4+ T cells
linked to PBMC mixing status. Although PBMCs ac-
tively participating in an allogeneic response were not
included in this study, these observations were mirrored
in an independently-generated, publicly-available PBMC
scRNA-seq dataset [18], demonstrating that mixing un-
related PBMCs during sample-multiplexed scRNA-seq
sample preparation does not result in a detectable allo-
geneic response. Notably, it is possible that cellular re-
sponses to pooling could be detected by assays
measuring levels of biological information with faster
regulatory kinetics (e.g., cell surface protein assays [28,
29]) or under different scRNA-seq experimental condi-
tions (longer periods of co-incubation at higher temper-
atures, mixing cells from distinct species, etc.). To this
end, the experimental design employed in this study can
be used to benchmark the prevalence of sample mixing-
specific confounders in future single-cell genomics
experiments.
In addition to the alloreactivity analysis, we found that

Trima apheresis can introduce confounding variables
into scRNA-seq data, which suggests that this PBMC
preparation method should be avoided in future experi-
ments. Moreover, we found that SCMK demultiplexing
results were biased against activated CD4+ T cells and
other lymphoid cell types. This observation was mir-
rored in two scRNA-seq datasets generated (i) in the ab-
sence of LMOs and (ii) with optimized SCMK antibody-
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DNA labeling conditions. These findings are in contrast
to the original Cell Hashing report [3], where PBMCs
were systematically demultiplexed following incubation
with a panel of DNA-conjugated antibodies selected for
their uniform targeting of all known PBMC cell popula-
tions. Notably, the exact antigens targeted by the com-
mercial SCMK reagents used in this study are
proprietary and unknown, but our findings suggest that
the “universal” antigens targeted by these antibody-DNA
conjugates may be differentially-expressed by distinct
cell types in ways that interfere with sample classifica-
tion. It remains to be determined whether “universal”
Cell Hashing reagents from BioLegend, which target hu-
man beta-2-microglobulin and CD298, suffer from similar
performance issues. Thus, users should exercise caution be-
fore using SCMK reagents, for example by testing the uni-
formity of antibody binding conducting flow-cytometry
experiments with fluorophore-conjugated DNA probes that
hybridize to SCMK oligonucleotide domains. In any case,
validation of surface antigen expression across all cells in a
given experimental system and/or careful data quality-
control is necessary to avoid systematically-biased
interpretations.

Conclusion
Collectively, this study proposes three critical bench-
marks for future sample-multiplexed scRNA-seq ana-
lyses of PBMCs. First, we demonstrate that alloreactivity
can be disregarded as a potential confounder when ana-
lyzing scRNA-seq data from PBMCs of unrelated donors
pooled under standard multiplexed scRNA-seq sample
preparation conditions. These conclusions may not,
however, be generalizable to all single-cell genomics as-
says or sample preparation workflows. Second, we dem-
onstrate that Trima apheresis of PBMCs introduces
artifactual gene expression signatures which can con-
found downstream scRNA-seq data analyses. Third, we
demonstrate that SCMK reagents are biased against cer-
tain PBMC cell types, which illustrates the importance
of validating antibody-based sample multiplexing tech-
nology performance.

Experimental methods
scRNA-seq sample preparation, 8-donor MULTI-seq/SCMK
PBMC experiment
PBMCs were provided by the Vitalant Research In-
stitute. PBMCs were thawed at 37 °C and washed
one time with warm media (RPMI (Corning, Cat#10-
040-CV), supplemented with 10% FBS (VWR,
Cat#97068-085) and Benzonase (1:1000, Sigma-
Aldrich, Cat#E1014)) and one time with 2% FBS in
PBS (Ca++ and Mg+ free, Corning, Cat#21-031-CV)
before counting cells (Nexcelom K2). Live cells were
then enriched using a dead-cell removal kit (STEM

Cell, Cat#17899). Live cells were then washed with
PBS and labeled with LMOs, as described previously
[2]. LMOs were then quenched while washing cells
with 1% BSA in cold PBS. Cells were then incubated
with 5ul human Fc Block with 95ul 2% FBS in PBS
at 4 °C for 15 min before staining with SCMK and
AbSeq antibodies (BD Biosciences) at 4 °C for 60
min. Notably, AbSeq data was not analyzed in this
study, and a subset of donor A PBMCs were not la-
beled with antibody-DNA conjugates (sequenced in
microfluidics lane 4). Cells were then washed twice
by using 0.04% BSA (non-acetylate, Sigma-Aldrich;
B6917) in cold media before incubation for 30 min
at 4 °C either alone (e.g., donor A) or in a pooled
format (e.g., donors A–D or A–H). Cell viabilities
for each donor prior to pooling ranged from 89 to
97%. Finally, cells were isolated via droplet emulsion
across four 10x Genomics microfluidic lanes (V2) to
yield 5000 cells.

scRNA-seq sample preparation, 7-donor SCMK PBMC
experiment
Healthy donor PBMCs were used from the ImmVar pro-
ject [30], isolated from whole blood, and frozen as de-
scribed therein. Vials from 7 patients, each with 1
million, were thawed at 37 °C and washed once with
warm media before staining with SCMK antibodies.
Briefly, cells were stained for 20 min at room
temperature before being washed 3 times in 2 mL BD
stain buffer. Cells were then counted, pooled, resus-
pended in 0.04% BSA in PBS, and isolated via droplet
emulsion across a single 10x Genomics microfluidic lane
(V2) to yield 50,000 cells.

Next-generation sequencing and library preparation
cDNA expression, MULTI-seq, and SCMK libraries
were prepared as described previously [2] or accord-
ing to supplier recommendations. Notably, following
size-selection of MULTI-seq and SCMK oligos after
cDNA amplification, two separate sample-index PCRs
were performed for the MULTI-seq and SCMK oligos
using separate i7 indices. For the 8-donor and 7-
donor PBMC experiments, cDNA expression and
SCMK libraries were pooled and sequenced on a sin-
gle NovaSeq 6000 lane (one lane per experiment).
MULTI-seq libraries were sequenced separately using
the MiSeq (V3).

Computational methods
Data pre-processing
Eight next-generation sequencing libraries from four
separate experiments were analyzed in this study. Data
pre-processing details for each library are summarized
below:
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Experiment Library Details

8-Donor PBMC scRNA-
seq

Cell Ranger (v3.0.0), hg19 reference, read-
depth normalization. In silico genotyping using
souporcell [8]

8-Donor PBMC MULTI-
seq

deMULTIplex (v1.0.2), Hamming Distance = 1

8-Donor PBMC SCMK deMULTIplex (v1.0.2), Hamming Distance = 5

7-Donor PBMC scRNA-
seq

Cell Ranger (v3.0.0), custom hg19 reference
containing SCMK barcodes. In silico
genotyping using Demuxlet [7] (genotype
error offset = 0.1, alpha = 0.0, 0.5, mapping
quality = 255)

7-Donor PBMC SCMK Cell Ranger (v3.0.0) custom hg19 reference
containing SCMK barcodes. R2 FASTQs
trimmed using Trimmomatic [31] (single-end
mode, HEADCROP = 25, CROP = 45)

Zheng et al.
PBMC

scRNA-
seq

Cell Ranger (v3.0.0), hg19 reference, read-
depth normalization

2-Condition
PBMC (BD)

scRNA-
seq

Downloaded from provider [19]

2-Condition
PBMC (BD)

SCMK Downloaded from provider [19]

Notably, because the MULTI-seq and SCMK barcode
sequences are 8 and 40 nucleotides in length, respect-
ively, the Hamming Distance alignment threshold ap-
plied to SCMK data was increased to 5 (default = 1) to
account for the increased probability of random sequen-
cing errors.

Data quality-control
The same quality-control workflows were applied to the
8-donor (Additional file 1: Fig. S5) and Zheng et al.
(Additional file 1: Fig. S6) PBMC datasets using Seurat
[32, 33]. First, cells with fewer than 250 RNA UMIs and
genes with fewer than 3 UMIs across all cells were dis-
carded. These parsed datasets were then normalized
using “SCTransform” prior to unsupervised clustering
and dimensionality reduction using PCA and UMAP.
Low-quality cells selected via membership in clusters as-
sociated with low total RNA UMIs and/or high propor-
tions of mitochondrial gene expression were then
removed (Additional file 1: Fig. S5A, S6A).
Next, we split the cleaned datasets by microfluidic

lane-of-origin and identified heterotypic doublets using
DoubletFinder [34]. Notably, DoubletFinder was run on
each lane independently to ensure that representative
artificial doublets were constructed for each lane (e.g.,
multi-donor doublets were not generated for the un-
mixed data subsets). Moreover, we did not use MULTI-
seq, SCMK, or souporcell classification results for doub-
let detection because each approach would produce dif-
ferent results for each lane (e.g., no doublets would be
detected for single-donor datasets). DoubletFinder

resulted in the removal of 1287 and 1832 heterotypic
doublets in the 8-donor PBMC (Additional file 1: Fig.
S5B) and Zheng et al. PBMC (Additional file 1: Fig. S6B)
datasets, respectively. DoubletFinder parameters were
optimized using the “paramSweep_v3,” “summarizeS-
weep,” and “find.pK” functions in the “DoubletFinder” R
package, as described previously [34]. DoubletFinder pa-
rameters are summarized below:

Dataset pK pN

8-Donor, Lane 1 (A) 0.01 0.25

8-Donor, Lane 2 (A-D) 0.01 0.25

8-Donor, Lane 3 (A-H) 0.01 0.25

8-Donor, Lane 4 (A) 0.01 0.25

Zheng et al., Lane 1 (X) 0.07 0.25

Zheng et al., Lane 2 (Y) 0.09 0.25

Zheng et al., Lane 3 (X,Y) 0.08 0.25

Notably, a simplified quality-control workflow was ap-
plied to the 7-donor and 2-condition PBMC datasets to
assess the influence of (i) LMO labeling and (ii) SCMK
antibody-DNA labeling conditions on SCMK demulti-
plexing performance. More stringent quality-control
steps were not employed because these datasets were
not being used to assess alloreactivity gene expression
signatures. Briefly, raw gene expression matrices were
parsed as described above before the data was log2-
transformed, centered, and scaled. Following unsuper-
vised clustering, the top 2000 variable genes (selection.-
method = “vst”) were then used for dimensionality
reduction using PCA and UMAP. Finally, low-quality
cells were removed as described above. Summary statis-
tics for each dataset following quality-control are as
follows:

Dataset nUMI nGene nCell

8-Donor PBMC 5042 1265 15,340

Zheng et al. PBMC 1883 681 24,325

7-Donor PBMC 2222 695 25,140

2-Condition PBMC 2836 996 5419

PBMC cell type annotation
We annotated cell types within each PBMC dataset
using literature-supported cell type marker genes [32,
33, 35] and identified most major cell types found in
peripheral blood in the 8-donor (Additional file 1: Fig.
S5C), Zheng et al. (Additional file 1: Fig. S6C), 7-donor
(Additional file 1: Fig. S8A), and 2-condition (Additional
file 1: Fig. S8B) PBMC datasets. Marker genes employed
are as follows: CD4+ T lymphocytes (IL7R), CD8+ T
lymphocytes (CD8A), NK cells (SPON2), B lymphocytes
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(MS4A1), classical monocytes (CD14), non-classical
monocytes (FCGR3A), dendritic cells (CLEC10A), plate-
lets (PF4), proliferative cells (MKI67), plasma cells
(MZB1), plasmacytoid dendritic cells (LILRA4), granulo-
cytes (GATA2), neutrophils (LTF), erythrocytes (HBB),
macrophages (GBP1), CD3/CD28-stimulated NK cells
(GNLY), and CD3/CD28-stimulated T cells (ENO1).
We additionally annotated three CD4+ T cell subsets

in the 8-donor (Additional file 1: Fig. S7A), 7-donor
(Additional file 1: Fig. S7B), and Zheng et al. (Additional
file 1: Fig. S7C) PBMC datasets as follows: activated
(SELL-high, S100A4-low, GPR183-high), memory
(SELL-low, S100A4-high, GPR183-high), and naïve
CD4+ T cells (SELL-high, S100A4-low, GPR183-low).

MULTI-seq, SCMK, and souporcell classification
For the 8-donor PBMC dataset, cells were classified into
donor groups using three different workflows. First,
MULTI-seq and SCMK barcode count matrices were fed
into the “classifyCells” and “findThresh” functions in the
deMULTIplex R package [2]. Second, MULTI-seq and
SCMK barcode count matrices and the raw .h5 file (from
Cell Ranger) were fed into demuxEM (p = 8), an alterna-
tive sample classification pipeline [4]. Third, position-
sorted BAM files (from Cell Ranger) were fed into the in
silico genotyping pipeline, souporcell (k = 8) [8]. For the
7-donor PBMC dataset, SCMK barcode count matrices
were only analyzed using deMUTIplex, as deMULTI-
plex, DemuxEM, and souporcell results were observed
to be consistent. For the Zheng et al. PBMC dataset,
donor identifies were inferred using souporcell (k = 2), as
MULTI-seq/SCMK barcode count matrices were un-
available. For the 2-condition PBMC dataset, classifica-
tions were provided from the supplier.

PBMC cell type proportion analysis
To determine whether mixing PBMCs from unrelated
donors results in changes in PBMC cell type proportions
in the 8-donor (Additional file 1: Fig. S3B) and Zheng
et al. (Additional file 1: Fig. S4B) PBMC datasets, we first
computed the frequency of each cell type grouped ac-
cording to donor and microfluidic lane. Statistically-
significant proportional differences between groups were
then identified on a per-cell-type basis using the “pairwi-
se.prop.test” function in the stats R package using de-
fault arguments. Evidence of alloreactivity-associated
shifts in cell type proportions was assessed by comparing
p values for donor A cell type proportions. Statistically-
significant shifts were never identified between donor A
cells from microfluidic lane 1 (A1) and A2/A3 cells, al-
though shifts were detected between A1/A2/A3 and A4,
perhaps due to technical variability. This workflow was
additionally repeated for CD4+ T cell subsets (8-donor:

Additional file 1: Fig. S3D; Zheng et al.: Additional file 1:
Fig. S4D) yielding similar results.

Jensen-Shannon Divergence (JSD) analysis
To perform global comparisons of gene expression
profiles between mixed and unmixed PBMCs in the 8-
donor and Zheng et al. PBMC datasets, we used JSD in
the following workflow. First, each PBMC cell type was
randomly down-sampled to include equal numbers of
cells from each donor and microfluidic lane (representa-
tive UMAPs for 8-donor: Additional file 1: Fig. 3c;
Zheng et al.: Additional file 1: Fig. S4E). Down-sampling
in this fashion ensures that any observed differences are
due to gene expression state and not cell type propor-
tions. Next, UMAP embeddings were computed for each
cell type, and UMAP coordinates for each donor/lane
group were used to compute group-wise 2-dimensional
kernel density estimations with the “kde2d” function in
the “MASS” R package [36]. Next, kernel density estima-
tions were fed into the “JSD” function in the philentropy
R package [37] to generate a JSD matrix representing
the global dissimilarity between each donor/lane group.
Finally, JSD scores for each cell type were scaled from 0
to 1, and this process was repeated 100 times. Notably,
CD4+ T cells were down-sampled to include equal num-
bers of each CD4+ T cell subtype from each donor/lane
group, and cell types with < 50 cells in any donor/lane
group were excluded (e.g., 8-donor: B cells and dendritic
cells; Zheng et al.: CD16+ monocytes, dendritic cells,
and platelets).
Global differences in gene expression were then

summarized as the average and standard deviation of
JSD scores across the 100 iterations. Specifically, we
quantified the difference between donors (donor A cells
from microfluidics lane 1 (A1) vs B2/B3/C2/C3),
between mixed and unmixed donor A cells (A1/A4 vs
A2/A4), and between technical replicates (A1 vs A4).
We then quantified the magnitude of variability due to
algorithm performance by repeating this entire workflow
after permuting donor A classifications 100 times.
Finally, we contextualized the significance of differences
in JSD scores associated with mixing status and
technical noise via comparison to the average and
standard deviation of permuted JSD scores (8-donor:
Additional file 1: Fig. 3D; Zheng et al.: Additional file 1:
Fig. 4F).

Gene Set Enrichment Analysis (GSEA)
To perform global comparisons of gene expression
profiles between mixed and unmixed PBMCs in the 8-
donor and Zheng et al. PBMC datasets, we used GSEA
in the following workflow. First, we used the “FindMar-
kers” differential gene expression analysis function (tes-
t.use = “MAST”; logfc.threshold = 0) in Seurat to
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compute p values for every expressed gene among each
mixed and unmixed donor A PBMC cell type. Signed p
values were then fed into GSEA using “pre-ranked”
mode, and enriched gene sets were identified as those
with nominal p values and false discovery rate q values
below 0.05.
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