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Abstract: The treatment of multiple myeloma (MM) has entered into a new era of immunotherapy.
Novel immunotherapies will significantly improve patient outcome via simultaneously targeting
malignant plasma cell (PC) and reversing immunocompromised bone marrow (BM) microenvironment.
B-cell maturation antigen (BCMA), selectively expressed in PCs and a key receptor for A
proliferation-inducing ligand (APRIL), is highly expressed in MM cells from patients at all stages.
The APRIL/BCMA signal cascades promote the survival and drug resistance of MM cells and
further modulate immunosuppressive BM milieu. Impressively, anti-BCMA immunotherapeutic
reagents, including chimeric antigen receptor (CAR), antibody-drug conjugate (ADC) and bispecific
T cell engager (BiTE) have all shown high response rates in their first clinical trials in relapse and
refractory patients with very limited treatment options. These results rapidly inspired numerous
development of next-generation anti-BCMA biotherapeutics, i.e., bispecific molecule, bispecific or
trispecific antibodies, a novel form of CAR T/NK cells and T Cell Antigen Coupler (TAC) receptors,
antibody-coupled T cell receptor (ACTR) as well as a cancer vaccine. We here highlight seminal
preclinical and clinical studies on novel BCMA-based immunotherapies as effective monotherapy and
discuss their potential in combination with current anti-MM and novel checkpoint drugs in earlier
disease stages to further achieve durable responses in patients.

Keywords: multiple myeloma; MM; targeted immunotherapy; B-cell maturation antigen; BCMA;
tumor targeting; tumor-associated antigen; monoclonal antibody; MoAb; chimeric antigen receptor T
cell; CAR T; bispecific T cell engager; BiTE; antibody drug conjugate; ADC; bone marrow; BM; T cell
dependent cytotoxicity; TDCC; antibody-dependent cellular cytotoxicity; ADCC; antibody-dependent
cellular phagocytosis; ADCP; natural killer cell; NK cell; signal transduction

1. Introduction

Multiple myeloma (MM), the second most hematologic malignancy, is characterized by excessive
growth of malignant plasma cells in the bone marrow (BM), excessive production of monoclonal
immunoglobulin, osteolytic bone lesions, impaired renal function, and immunosuppression [1].
The development of novel therapies incorporating proteasome inhibitors (PIs) and immunomodulatory
drugs (IMiDs, i.e., lenalidomide, pomalidomide) have significantly improved the prognosis and
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survival of patients with MM for the last two decades. Therapeutic monocloncal antibodies (MoAbs)
targeting CD38 (daratumumab, isatuximab) and SLAMF7 (elotuzumab) further improved outcomes
of patients with relapsed/refractory MM (RRMM) [2–5]. Specifically, daratumumab and elotuzumab
were approved by US Food and Drug Administration (FDA) in combination with lenalidomide and
dexamethasone for the treatment of RRMM in 2015. In early March 2020, the second anti-CD38 MoAb
isatuximab was approved in combination with pomalidomide and dexamethasone in patients who
have received at least two prior therapies including lenalidomide and a PI. However, MM remains an
almost incurable disease. The overall survival (OS) is extremely low in patients with relapses after
treatment with PIs and IMiDs [6,7]. Thus, there remains urgent need to develop new therapeutics
targeting different mechanisms and with superior potency to overcome drug resistance and minimize
the risk of relapse.

The identification and validation of specific MM antigens are crucial in developing effective
targeted immunotherapies for MM. B-cell maturation antigen (BCMA), also termed tumor necrosis
factor receptor superfamily member 17 (TNFRS17) or CD269, is a type III transmembrane protein
containing cysteine-rich extracellular domains [8,9]. BCMA, together with B-cell activation factor
receptor (BAFF-R) and transmembrane activator and calcium modulator and cyclophilin ligand
interactor (TACI), are critical regulators during the maturation and differentiation of B-cells into plasma
cells (PCs). Among them, BCMA is selectively expressed from the late stage of B-cell maturation to
terminal differentiation of antibody-producing PCs, concomitantly with the loss of BAFF-R. These three
functionally related receptors contribute to the long-term survival of B-cell during its development
by binding to BAFF and/or A proliferation-inducing ligand (APRIL) [10–12]. In MM, BAFF supports
MM cell adhesion and survival via a paracrine mechanism [13,14]. Compared with BAFF, APRIL
does not bind to BAFF-R and is predominantly produced by MM-supporting BM accessory cells,
i.e., macrophages, osteoclasts, and other myeloid lineage cells [15–19]. APRIL also binds to BCMA
with a significantly higher affinity (>2-log) [12] and specificity than BAFF, and promotes MM cell
growth and survival in vivo [19,20]. The APRIL/BCMA signaling pathway supports drug resistance of
MM cells [15,19,21] and immunosuppressive MM BM microenvironment via direct induction of key
downstream anti-apoptotic genes (Mcl-1, Bcl-2/Bcl-xL) and immune regulatory genes (IL-10, PD-L1,
VEGF, TGF-β) in MM cells [18,19,22]. Moreover, APRIL binding to TACI induces anti-apoptotic and
immune inhibitory factors in MM cells and myeloma-promoting regulatory T (Treg) cells [15,19,23–25]
(Figure 1).

Analysis of patient samples from various cohorts demonstrated that BCMA mRNA and protein
levels are highly and specifically expressed in PCs but no other normal tissues [26–31]. Besides PCs,
only plasmacytoid dendritic cells which protect MM cell growth and survival have detectable BCMA
transcript and protein, but its levels are significantly lower in these cells when compared with in paired
MM cells from the same patients [28]. BCMA expression is significantly elevated in malignant vs.
normal PCs and throughout disease progression. Since BCMA is a substrate for gamma-secretase,
the extracellular domain of BCMA is shed [32]. Soluble BCMA (sBCMA) is detected in patient sera and
supernatants from MM cell culture [29,33]. Soluble BCMA may act as a decoy and prevent BAFF from
binding to membrane-bound BCMA to inhibit normal B-cell differentiation to PCs [34]. In addition,
MM patients have higher levels of surface BCMA expression and sBCMA than health individuals [33],
in accordance with increased BCMA transcript levels in patient MM cells vs. normal PCs of healthy
donors [26,28]. Levels of BCMA transcript and proteins, either membrane or soluble forms, were not
affected by certain anti-MM treatment, including PIs or IMiDs. Furthermore, higher sBCMA levels in
patient serum is associated with higher MM disease burden and poorer clinical outcome [33,35,36].

Because of its significant pathophysiologic and clinical relevance, BCMA holds great promise for
targeted immunotherapy in MM.
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Figure 1. The A-proliferation inducing ligand/B cell maturation antigen (APRIL/BCMA) pathway and
its biological effect in the multiple myeloma bone marrow microenvironment. APRIL is mainly secreted
from macrophages and osteoclasts in the bone marrow (BM) microenvironment. It binds to BCMA with
significantly higher affinity than B-cell activation factor (BAFF) to critically regulate multiple myeloma
(MM) cell growth, survival, and drug resistance. BCMA is expressed at significantly higher levels than
transmembrane activator and calcium modulator and cyclophilin ligand interactor (TACI) in MM cells to
constitutively transmit tumor-promoting signaling. In addition to upregulate key cell cycle progression
(i.e., CCND1/2), anti-apoptotic proteins (i.e., Mcl1, Bcl-2, Bcl-xL, BIRC3), osteoclast-promoting factors
(i.e., CCL3/4, SDF-1), and adhesion molecules (i.e., ICAM-1, CD44), APRIL/BCMA signaling cascade
further induces major immunosuppressive factors (i.e., IL-10, PD-L1, TGF-β, VEGF) in MM cells.
BCMA on the cell membrane of MM cells is shed by γ-secretase and soluble BCMA (sBCMA) is detected
in serum samples of MM patients. Inhibitors blocking cleavage by γ-secretase can reduce the generation
of sBCMA. MM cells further stimulate proliferation of regulatory T cells (Treg) via cell–cell contact
and cytokine factor-dependent mechanisms. Despite no BCMA expression, regulatory T cells (Treg)
utilizes TACI to deliver APRIL signaling pathway while conventional T cells (Tcon) rarely express TACI
when compared with Treg. The interaction of APRIL with TACI induces the expression of proliferation
and survival genes as well as central immunosuppressive markers (Foxp3, IL-10, PD-L1, TGF-β) in
Treg but not Tcon. This signaling pathway enhances the inhibitory effects of Treg on conventional
T cells (Tcon), thereby decreasing the proliferation and function of Tcon. Significantly, these signaling
pathways contribute to the pathophysiology of MM cells and MM-induced immune suppression in the
BM microenvironment.

1.1. BCMA Is an Excellent Target for Anti-MM Immunotherapy: Comparison with the Other
Therapeutic Targets

In MM, several surface molecules or molecular pathways are druggable and targeted, including
CD38, CD56, SLAMF7, CD138, programmed cell death-ligand 1(PD-L1), and BCMA [19,37–39].
Anti-CD38 MoAbs effectively eradicate MM cells and induce immunomodulatory effects to potentially
restore immune effector cell function and mitigate immunosuppressive cells [40–43]. Like anti-CD38,
anti-SLAMF7 MoAb elotuzumab induces antibody-dependent cellular cytotoxicity (ADCC) against
MM cells mediated by natural-killer (NK) cells [37]. However, normal key immune effector cells (NK, T)
and certain hematopoietic cells, especially when activated, also express CD38, CD56, or SLAMF7 on
their surface [44,45].
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Program cell death 1 (PD1)/PD-Ligand 1(PD-L1) immune checkpoint pathway is another druggable
target for MM immunotherapy and IMiDs enhanced the anti-MM activity of anti-PD1 or anti-PD-L1
MoAbs in a preclinical study [38]. However, in a phase 1 trial investigating nivolumab monotherapy
in 27 RRMM patients, no significant objective response was observed [46]. Although a combination
of pembrolizumab with lenalidomide and dexamethasone showed higher overall response rate
(ORR) (50%) [47], the phase 3 studies which combined IMiDs with PD1 or PD-L1 inhibitors were
stopped due to high toxicity and the high risk of mortalities which may be caused by uncontrolled
immunoreactivity [48].

Other novel antigens are also explored for MM immunotherapy. For example, the orphan
G protein-coupled receptor, class C group 5 member D (GPRC5D), which is mainly expressed on
CD138+ MM and hair follicular cells [49]. Preclinical studies showed that combined anti-BCMA and
anti-GPRC5D CAR-T may further eradicate MM cells and reduce risk of relapse due to low or lost
BCMA [49,50]. Activated Integrin β 7 (ITGB7) is widely expressed on MM cells but not on other
cells [51]. The preclinical study which constructed CAR-T cell targeting ITGB7 also showed significant
anti-MM activity without causing damage to normal hematopoietic cells. Other antigens for anti-MM
CAR-T therapy include SLAMF7 [45], CD38 [52] and CD229 [53].

BCMA shows its superiority based on its specific expression in PCs, plasmacytoid dendritic cells,
plasmablasts, and mature PCs, but not in earlier phase and memory B cells, hematopoietic cells and
other normal tissue cells [28–30,54]. The APRIL/BCMA pathway in the pathophysiology of MM was
also validated in mice models [19,20]. Furthermore, anti-BCMA antibody was detected after successful
donor lymphocyte infusion in relapsed MM patients after allogeneic stem cell transplant, suggesting
BCMA as a target of donor B-cell immunity [55]. Based on these unique characters, BCMA is an ideal
druggable target for anti-MM immunotherapy with minimal off-target toxicity in other normal tissues.

1.2. Anti-BCMA Immunotherapy: From Bench to Bedside and Back to Bench Studies

The breakthrough of anti-BCMA immunotherapy in MM was reported in preclinical studies on
the first chimeric antigen receptor (CAR) T cells in 2013 [29] and the anti-BCMA J6M0 with engineered
Fc conjugated with MMAF via uncleavable linker in 2014 [28]. These two studies confirmed very
restrictive BCMA expression at both transcript and protein levels in MM PCs but no other normal
tissues. Significantly, both anti-BCMA CAR T-cells and J6M0 MMAF ADC were highly active to
kill patient MM cells in vitro and in vivo [28,29,56]. From then on, several BCMA-based treatment
modalities, including novel chimeric antigen receptor (CAR) T cell therapy, antibody-drug conjugate
(ADC), bispecific T-cell engager (BiTE), bispecific molecule, and bi/tri-specific antibodies as well
as Antibody-Coupled T-Cell receptor (ACTR) [57] and T-cell antigen coupler (TAC) [58] are under
development and investigation [22,25,59,60].

2. Immunotherapies Targeting BCMA

2.1. CAR T-Cell Therapy

CAR T cell therapy, independent of major histocompatibility complex (MHC) restriction, is
characterized by genetically modified T cells to induce powerful anti-tumor cytotoxic ability via
high specificity targeting tumor antigen [61]. In 2017, the first CAR T-cell therapy was approved
by the FDA in CD19+ acute lymphoblastic leukemia (ALL) [62]. In MM, promising early results
reported in late 2016 quickly led to two BCMA CAR T therapies bb2121/Idecabtagene vicleucel and
P-BCMA-101 for Breakthrough Therapy Designation and Regenerative Medicine Advanced Therapy
(RMAT), respectively, granted by US FDA, by late 2018 [25,59]. Table 1 and the following section
highlight impressive clinical responses reported from various trials thus far.
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Table 1. Summary of early phase clinical trials of anti-BCMA CAR T-cell therapy.

Name
(Sponsor) Structure Phase

Key Inclusion
Criteria
(Summarized)

Key Exclusion
Criteria
(Summarized)

Basic Data of Study
Population

Protocol Efficacy Adverse Events (AEs)

Condi-Tioning CAR-T Cell
Dosing ORR MRD- Survival Other CRS or

Neuro-Toxicity Others

Ant-BCMA
CAR [63]
(NIH)

1. γ-retroviral
vector
2. Murine scFv
3.
Co-stimulation
domain: CD28
4. Culture
medium:
Anti-CD3
MoAb and
IL-2

Phase 1
(NCT02215967)

1. 18–73 years
2. ≥3 different
prior
treatment.
3. BCMA
expression on
>50% of PC by
either IHC or
FCM.
4. Measurable
disease
5. ECOG 0–2

1. Any
anticoagulants
(except aspirin)
2. Pregnant or
breast-feeding
3. Active
systemic
infection
4. CNS
involvement
5. Pregnant or
lactating
women

1. RRMM patients, n =
24.
2. Median 9.5 lines of
prior therapy (range
3–19) in highest dose
level group (n = 16).
3. High-risk
cytogenetics: 40% of
evaluable patients at
highest dose.

Cy (300
mg/m2) 3
doses and Flu
(30 mg/m2) 3
doses

Dose
escalation
from (0.3, 1, 3,
9) × 106 CAR T
cells/kg.
a. 10 patients
received 0.3–3
× 106.
b. 16 patients
received 9 ×
106.
(2 patients
received 2
infusions)

(16
evaluable)
ORR:81%
(2 sCR, 8
VGPR, 3 PR)

100% (at 9 ×
106, n = 11), by
8-color FCM.

Median EFS:
31 weeks

(16 evaluable)
1. CRS: 15
(93.75%),
including 2
grade 4, 4
grade 3, 7
grade 2, and 2
grade 1
2. 6 (38%) need
vasopressor
support for
hypotension

(16 evaluable)
1. Grade 3–4 AEs:
leikopenia
(93.75%), anemia
(68.75%),
thrombocytopenia
(62.5%)

bb2121
(Idecabtagene
vicleucel) [64]
(Celgene)

1. Lentivirus
vector
2. Murine scFv
3.
Co-stimulation
domain: 4-1BB
4. Culture
medium:
Anti-CD3/CD28,
OKT3

Phase 1
(NCT02658929)

1. ≥18 years
2. ECOG 0 or 1
3. ≥3 different
prior lines of
therapy
4. Measurable
disease
5. ≥50%
BCMA
expression on
PCs (IHC).

1. CNS disease
2. Inadequate
organ function
(heart, liver,
renal)
3. Inadequate
bone marrow
function
4. Active
systemic
infection
within 72 h
5. Pregnant or
lactating
women
6. Plasma cell
leukemia

1. RRMM patients,
n = 33.
2. Median 7 lines of
prior therapy (range
3–14). All received
auto-HSCT; 71%
received anti-CD38
MoAb; 29% with
penta-refractory
3. High-risk
cytogenetics: 45%

Flu (30
mg/m2)/Cy
(300 mg/m2)
daily for 3
days

One infusion
3+3 design
with dose
levels of 5, 15,
45, 80 and 120
× 107 bb2121
cells.

85% (28/33),
including 3
CR and 12
sCR.

(total 18):
16/16 (100%) at
10−4 nucleated
cell (exclude 2
no response),
by NGS

1. Median
DOR: 10.9
months
2. Median
PFS: 11.8
months

Median
time to
first PR
or better:
1.0
month

1. CRS: 25
(76%), grade 1
or 2 (n = 23,
70%), grade3
(n = 2, 6%)
2. Duration of
CRS:5 days
3. Neurologic
toxic effects:
14 (42%),
including 13
grade 1–2
(39%) and 1
grade 4 (3%).

1. Grade 3–4 AEs
(>10%):
Neutropenia,
leukopenia,
anemia,
thrombocytopenia,
lymphopenia.
2. No DLT
3. Infection: 14
(42%), including 2
grade 3.

bb21217 [65]
(bluebird bio)

1. Lentivirus
vector
2. Murine scFv
3.
Co-stimulation
domain: 4-1BB
4. Add PI3K
inhibitor bb007
in ex vivo
culture

Phase 1,
(CRB-402;
NCT03274219)

1. ≥18 years
old.
2. ECOG 0 or 1.
3. ≥3 different
prior lines of
therapy.
4. Measurable
disease.
5. ≥50%
BCMA
expression on
PCs (IHC).

1. CNS disease
2. Inadequate
organ
function(heart,
liver, renal)
3. Inadequate
bone marrow
function
4. Active
systemic
infection
within 72 h
5. Pregnant or
lactating
women

1. RRMM patients,
n = 22
2. Median 7 lines of
prior therapy (range
4–17).
3. 18 patients had prior
ASCT; 7 had high-risk
cytogenetics. 19
received prior
daratuzumab, 13 had
previously bortezomib,
lenalidomide,
carfilzomib,
pomalidomide, and
daratumumab.
4. Eleven patients had
high tumor burden
(≥50% bone marrow
PCs) before infusion.

Flu (30
mg/m2)/Cy
(300 mg/m2)
daily for 3
days

One infusion
with planned
dose levels of
150, 450, 800,
and 1200 × 106

bb21217 cells.

83% (15/18),
6 of them
progressed

100% (10/10),
at 10−5

nucleated cells
by NGS at
month 1.

1. CRS: 13
(59.1%),
including 5
Grade 1, 7
Grade 2, 1
Grade 3. All
responded to
supportive
care.
2. 5
neurotoxicity,
including 1
grade1, 2
grade 2, 1
grade 3, and 1
grade 4

1. No treatment
related mortality
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Table 1. Cont.

Name
(Sponsor) Structure Phase

Key Inclusion
Criteria
(Summarized)

Key Exclusion
Criteria
(Summarized)

Basic Data of Study
Population

Protocol Efficacy Adverse Events (AEs)

Condi-Tioning CAR-T Cell
Dosing ORR MRD- Survival Other CRS or

Neuro-Toxicity Others

BCMA CAR-T
[66] (HRAIN
Biotechnology,
Henan
University)

1. γ-retrovirus
vector
2.
Co-stimulation
domain: 4-1BB
3. Safety
switch
(truncated
EGFR)

Phase 1
(NCT03093168)

1. 18–70 years
2. ≥3 lines of
prior therapy
(PI, or IMiDs,
or both)
3. ≥5% BCMA
expression on
PCs (IHC).
4. ≥90 days
after HSCT
5. ECOG 0–4

1. With CNS
symptoms
2. Another
malignancy
3. Active
hepatitis B or
C, HIV
infections
4. Severe heart
or respiratory
diseases

1. RRMM patient, n = 17
(infused), 14 (evaluable
for efficacy and safety)

Flu (25
mg/m2)/Cy
(300 mg/m2)
daily for 3
days (d-5 to -3)

One infusion
of CAR-T cell:
9 × 106/kg (d0)

79%, 3 sCR, 4
CR and 2
MRD- (2
VGPR)

1 sCR
and 1
VGPR
with the
ongoing
objective
response
≥15
months.

1. Grade≥ 3
CRS: 1(7%)
2. Grade ≥ 3
neurotoxicity:
1(7%)

1. Grade≥ 3
non-hematologic
AEs: 2 pneumonia
(14%), 2
hypophosphatemia
(14%), and 2
hypocalcemia
(14%)

BCMA CAR T
(FCARH143)
[67] (Fred
Hutchinson
Cancer
Research
Center)

1. Lentivirus
vector
2. Fully
human scFv
3.
Co-stimulation
domain: 4-1BB

Phase 1
(NCT03338972)

1. ≥21 years
2. RRMM
(≥10% CD138+
BM PCs, and
≥5% BCMA
expression by
FC).
3. ECOG 0–2
4. Measurable
disease.

1. With
another
primary
malignancy
2. Active
hepatitis B or
C, HIV
infections
3.
Uncontrolled
active
infection
4. CNS
symptoms
5. Pregnant or
lactating
women

1. RRMM patient, n = 7
Cohort A: 10–30% MM
cells in BM
Cohort B: >30% MM
cells in BM
(Median % : 58% (20 to
>80))
2. Median 8 lines of
prior therapy (range
6–11)
3. All with ≥1 high-risk
cytogenetics (71% had
≥2)
4. 71% with prior ASCT,
43% with allo-SCT

Cy + Flu (d-4
to -2)

CAR T cell
dosing (d0)
(1:1 ratio of
CD4+:CD8+
BCMA CAR T
cells)
Cohort A: 5 ×
107

Cohort B: 15 ×
107

100%
(at 28 days)

One
relapsed
with
BCMA-
PC clone

1. No
neurological
toxicity
2. CRS: 6
(85.7%), all
grade 2 or
lower

1. No DLTs

BCMA-CAR T
[68] (Huazong
University)

1. Lentivirus
vector
2. Murine scFv
3.
Co-stimulation
domain: CD28

Phase 0
(ChiCTR-OPC-
16009113)

1. 18 to 70
years.
2. ECOG 0–2.
3. Adequate
organ function
4. With
BCMA+ PC.

1. Pregnancy
and nursing
females
2. Active
hepatitis B or
C, HIV
infections
3. With mental
disorders

1. 28 patients (26
RRMM, 1PCL, 1POEMS)
2. BCMA expression
level
Strong (≥50%): 22
patients
Weak (<50%): 6 patients

Cy + Flu 5.4 to 25 × 106

CAR T cells/kg

Strong: 87%
(73% CR)
Weak:100%
(CR or
VGPR)

Median DFS
(strong vs
weak): 296
vs 64
days3.Median
OS (strong
vs weak):
Not defined
vs 206.5 days

1.4 grade
3CRS.

1. All toxicities
were fully
reversible
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Table 1. Cont.

Name
(Sponsor) Structure Phase

Key Inclusion
Criteria
(Summarized)

Key Exclusion
Criteria
(Summarized)

Basic Data of Study
Population

Protocol Efficacy Adverse Events (AEs)

Condi-Tioning CAR-T Cell
Dosing ORR MRD- Survival Other CRS or

Neuro-Toxicity Others

CART-BCMA
[36]
(University of
Pennsylvania-
Norvartis)

1. Lentivirus
vector
2. Fully
human scFv
3.
Co-stimulation
domain: 4-1BB
4. Culture
medium:
Anti-CD3/CD28
beads and IL-2

Phase 1
(NCT02546167)

1. ≥18 years.
2.RRMM (≥3
prior
treatment, or
≥2 prior
regimens with
double
refractory to PI
and IMiDs).
3. Adequate
organ
functions
4. ECOG 0–2
5. Measurable
disease

1. Pregnant or
lactating
2. Active
hepatitis B or
C, HIV
infections
3. Active or
uncontrolled
infection
4.
Uncontrolled
medical or
psychiatric
diseases

1. RRMM patients, 34
consented, 29 eligible,
25 received infusion
2. Median 7 lines of
prior therapy (range
3–13)
96% refractory to IMiDs
and PIs
72% refractory to
daratumumab
44% penta-refractory
3. 96% with at least one
high-risk cytogenetics
(68% del17p or TP53
mutation)
4. Median 65% of MM
cells on bone marrow
biopsy
28% with
extramedullary disease.

With (Cy) or
without
conditioning
treatment

1. 3 split-dose
infusions of
CAR T cells
(10%, 30%,
60%)
2. 3 cohorts
a. 1–5 × 108

CART cells
b. Cy 1500m
g/m2 + 1–5 ×
107 CART cells
c. Cy 1500
mg/m2 + 1–5 ×
108 CART cells

(≥PR): 48%,
with 55% in
5 × 108

CART-BCMA
cells.
a. Cohort 1:
4 (44%, 1
sCR, 2
VPGR, 1 PR)
b. Cohort 2:
1 (20%, 1 PR)
c. Cohort 3:
7 (64%, 1 CR,
3 VGPR, 3
PR) in cohort
3.

Overall
median OS:
502 days (359
days, 502
days, and
not reached
for cohorts 1,
2, and 3,
respectively)

Detected
CAR T
cells: in
20 (100%)
and 14
(82%)
evaluable
patient at
3 and 6
months
post
infusion.

1. CRS: 22
(88%); 8 grade
3–4 (all 1–5 ×
108 dose)
Medium time
to CRS:4 days
Medium
duration; 6
days
Medium
hospitalization:
7 days
7 (28%)
received
anti-IL-6
agents
2.
Neurotoxicity
(n = 8, 32%): 5
grade 1–2, 3
grade 3–4

1. All grade ≥ 3
AEs: 24 (96%)
2. Grade 3/4 SE:
leukopenia (44%),
neutropenia (44%),
lymphopenia
(36%)
3. One grade 5 AE

CART-BCMA
[69] (Shenzhen
Pregene
Biopharma)

1. One
anti-BCMA
single-domain
antibody
derived from
the alpaca, and
humanized
2.
Co-stimulation
domain: 4-1BB

Phase 1
(NCT03661554)

1. 18–75 years
2. RRMM,
BCMA+
3. ECOG 0–2
4. Adequate
organ function

1. Pregnant or
lactating
2. Active
hepatitis B or
C, HIV
infections
3. Severe
infection
4. Poor organ
function

1. RRMM patients, n =
16(infused)
2. Median 10 lines of
prior therapy

Cy (300–600
mg/m2, d-5, -4)
and Flu (30
mg/m2, d-5 to
d-3)

One infusion
of 2–10 × 106

CAR
cells/kg(d0)

1. 13 patients
without EM
lesion: 84.6%
(d28),
100% (10th
weeks, n =
7), including
3 sCR/CR, 1
VGPR, and 3
PR
2. Three
patients with
EM lesion:
All PR at d28

1. 2 patients
with grade3–4
CRS (0–2 in
other patients)
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Table 1. Cont.

Name
(Sponsor) Structure Phase

Key Inclusion
Criteria
(Summarized)

Key Exclusion
Criteria
(Summarized)

Basic Data of Study
Population

Protocol Efficacy Adverse Events (AEs)

Condi-Tioning CAR-T Cell
Dosing ORR MRD- Survival Other CRS or

Neuro-Toxicity Others

CART-BCMA/CART-19
[70,71] (First
Affiliated
Hospital of
Soochow
University)

1.
Co-stimulation
domain: OX40
and CD28
2. Lentiviral
vector
3. Culture
medium:
Anti-CD3
beads

Phase 1/2
(NCT
03196414)

1. 18–75 years
2. CD138+ or
BCMA+
RRMM
3. Adequate
organ function

1. Pregnant or
lactating
2. Active
hepatitis B or
C, HIV
infections
3.
Uncontrolled
active
infection
4. Poor organ
function

1. RRMM patients, n =
28
2. All resistant to PIs,
IMiDs, or both
3. Average of 3 (2–8)
lines of prior treatment

Cy 300mg/m2
and Flu × 3
days (d-5,-4
and -3)

CART-19 (1 ×
107/kg on day
0) and
CART-BCMA
cells (40% on
d1 and 60% on
d2)

92.6% (88.9%
PR or better),
11 CR or
sCR, 8
VGPR, 5 PR
and 1 MR.

Median OS:
16 months

1. CRS:100%,
19 grade 1–2, 7
grade 3, and 2
grade 4

1. Other AEs:
fatigue (100%),
cytopenia (100%),
anemia (100%),
and prolonged
APTT (82.1%)

Phase 1/2
(NCT
03455972)

1. 18–65 years
old MM
patients
eligible for
auto-HSCT.
2. High-risk
MM (stage III
or failed to
achieve PR
after prior
treatment.).
3. All with
BCMA >50%
without CD19
expression on
PCs.
4. ECOG 0–2.
5. Adequate
organ
function.

1. Pregnant or
lactating
2. Active
hepatitis B or
C, HIV
infections
3.
Uncontrolled
active
infection
4. History of
myocardial
infarction

1. Cohort 1: 9 patients,
all BCMA> 50%
without CD19
expression

CART-19 (1 ×
107/kg on d0)
and
CART-BCMA
cells as
split-dose (40%
on d1 and 60%
on d2) were
infused d14 to
d20 after
ASCT

100% (post
CAR-T
treatment),
3CR and 6
VGPR

37.5% after
ASCT to 66.7%
after CAR-T
therapy

1. CRS: 100%,
all grade 1–2
2. No serious
CRS or
neurologic
complications

CART-BCMA
CTL119 [72]
(Abramson
Cancer Center)

1. 4-1BB
co-stimulatory
domain
2. Lentiviral
vector

1. Phase A
(PhA): MM
patients
responding
(≥MR) to ≥3rd
line therapy
(or ≥2nd line if
exposed to all
major agents)
2. Phase B
(PhB):
High-risk
patients.

1. 6 enrolled PhA
patients were infused
2. 4 enrolled PhB
patients were infused (2
CART-BCMA alone, 2
CART-BCMA +
CTL119)
3. Prior lines: 1–9
4. BM PC(%): 1–91

Flu (30 mg/m2)
+ Cy (300
mg/m2) × 3
days

1. Phase A:
CART-BCMA
+ CTL119
Phase B:
CART-BCMA
+/− CTL119
2. CAR-T
infusion (5 ×
108 CAR+ cells
in 3 divided
doses, 10%,
30%, and 60%)
after
conditioning
treatment

80%, 1 CR, 4
VGPR, 3 PR
in 10
evaluable (6
PhA, 2 PhB
combo, and
2 PhB mono)

1. One
PhA
patient
died due
to CNS
progression
before
infusion.
2. All
exhibited
in vivo
CAR-T
cell
expansion

(10 evaluable)
CRS:80%, all
grade 1–2

(10 evaluable)
8 fatigue, 8
cytopenia, 6
anemia, and 5
coagulopathy.
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Table 1. Cont.

Name
(Sponsor) Structure Phase

Key Inclusion
Criteria
(Summarized)

Key Exclusion
Criteria
(Summarized)

Basic Data of Study
Population

Protocol Efficacy Adverse Events (AEs)

Condi-Tioning CAR-T Cell
Dosing ORR MRD- Survival Other CRS or

Neuro-Toxicity Others

CT053 [73]
(CARsgen
Therapeutics
Co.)

1. Fully
human scFv2.
4-1BB
co-stimulatory
domain

Phase 1
(NCT03716856,
NCT03302403,
and
NCT03380039)

1. 18–70 years
old.
2. RRMM
3. BCMA+ PC
(FCM or IHC)
4. Measurable
disease.
5. ECOG 0–1.

1.
lymphocytes
transduction
<10%,
expansion
after
αCD3/CD28
costimulation
<5-fold
2. Hepatitis C
or HIV
infections
3.
Uncontrolled
active
infection

1. RRMM patients, n =
24
(All with ≥50% BCMA
expression on MM cells)
2. Median 4.5 prior
regimen (range 2–11)
3. 41.7% prior ASCT
4. 45.8% with EM
lesions

Flu (20–25
mg/m2) + Cy
(300–500
mg/m2) daily
for 2–4 days

1.5 × 108

CT053 cell
infusion after
conditioning
treatment

87.5%
(21/24),
including 14
sCR and 5
CR

85% (17/20),
≤10−4

nucleated cells

1. 3
neurotoxicity
(all grade 1)
2. CRS: 15 (3
grade 1, 12
grade 2), 8
received
tocilizumab

1. No DLT
2. Grade ≥ 3 AEs:
leukopenia,
thrombocytopenia,
lymphopenia.

CT103A [74]
(Nanjing Iaso
Biotherapeutics
Co, Ltd)

1. Fully
human scFv
2. With CD8a
hinger and
4-1BB
co-stimulatory
domain
3. Lentiviral
vector

Phase 0
(ChiCTR1800018137)

1. 18–70 years
old.
2. BCMA+
PCs
3. Proper
organ function

1. Pregnant or
lactating
2. Active
hepatitis B or
C, HIV
infections
3.
Uncontrolled
active
infection
4. Poor organ
function

1. RRMM, n = 16
2. Median 4 prior
therapy (range 3–5),
including 4 patients
after murine BCMA
CAR-T treatment, and 5
with EM lesions or PCL.

Cy + Flu

3 + 3
dose-escalation
(3 doses at 1, 3,
6 × 106/kg)

1. 100% (6
CR/sCR)
within first 2
weeks.
2. 3 sCR and
1 VGPR in 4
prior BCMA
CAR-T cell
treated
patients

100% in all 15
patients, ≤10−4

nucleated cells
by FCM.

CT103A
cells
detectable
in 12/16
patients,
at the last
evaluation

1. All
developed
CRS (10 grade
1–2, 5 grade 3,
1 grade 4)

JCARH125
[75] (Juno
Therapeutics,
Inc.)

1 Fully human
scFv
2.
Co-stimulation
domain: 4-1BB
3. Lenti-viral
vector

Phase 1/2
(EVOLVE;
NCT
03430011)

1. ≥18 years
old
2. RRMM (≥3
prior regimens,
including PI,
IMiD,
anti-CD38
MoAb, and
auto-HSCT).
3. ECOG 0–1
4. Adequate
renal, BM,
liver, lung, and
heart function
5. Measurable
disease

1. EM lesion,
PCL, WM, or
POEMS
syndrome.
2. CNS
involvement
by malignancy
3. Untreated
or active
infection
4. Poor heart
function

1. RRMM patients (19
enrolled, 13 treated)
Initial 8 patients
1. Median 10 lines of
prior therapy (range
4–15), including 50%
refractory to
bortezomib, carfilzomib,
lenalidomide,
pomalidomide and an
anti-CD38 mAb.
2. 88% had prior ASCT

Flu (30
mg/m2)/Cy
(300 mg/m2)
daily for 3
days

One infusion
of JCARH125
(2 dose levels:
50 and 150 ×
106 CAR+ T
cells)

Evaluable
patients (n =
3), 1PR, 2
sCRs
Unconfirmed
patients (n =
5): 1 CR, 2
VGPR, 1 PR,
1 MR

(8 evaluable)
1. CRS: 6
(75%), all
grade 1or 2
Median onset
of CRS: 9 days
(range 4 – 10)
Median
duration of
CRS: 4.5 days
(range 2 – 19
days)
2.
Neurotoxicity:
3 (2 grade1, 1
grade 3)
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Table 1. Cont.

Name
(Sponsor) Structure Phase

Key Inclusion
Criteria
(Summarized)

Key Exclusion
Criteria
(Summarized)

Basic Data of Study
Population

Protocol Efficacy Adverse Events (AEs)

Condi-Tioning CAR-T Cell
Dosing ORR MRD- Survival Other CRS or

Neuro-Toxicity Others

LCAR-B38M
[76,77] and
[78,79]
(Nanjing
Legend
Biotech Co)

1. Lentivirus
vector
2. Bispecific
anti-BCMA
variable
fragments of
llama
heavy-chain
antibodies
3.
Co-stimulation
domain: 4-1BB
4. Culture
medium: IL-2

Phase 1/2
(LEGEND-2;
NCT
03090659)

1. 18–80 years
2. RRMM (≥3
prior
regimens)
3. BCMA+ PC
(FCM or IHC)

1. Pregnant or
lactating
2. Active
hepatitis B or
C, HIV
infections
3.
Uncontrolled
medical illness

(One of four centers)
1. RRMM patients, n =
57
2. Median 3 prior
regimens (range1–9),
including prior PIs
(68%), IMiDs (86%), and
both (60%)

3 doses of Cy
300 mg/m2

Five days after
Cy,
LCAR-B38M
CAR T cells
(median cell
dose = 0.5 ×
106 cells/kg,
[range,
0.07–2.1 ×
106]), split into
in 3 infusions
(20, 30, and
50% of total
dose) given
over 7 days.

≥PR: 88%
(50/57),
including
42 CR (39
MRD-), 2
VGPR, 6 PR.

92.8% (39/42)
in CR patients,
by 8-color
FCM

1. Median
DOR: 22
months
2 Median
PFS: 20
months (all
patients); 28
months
(MRD-
patients).
3. The
median OS:
NR

Medium
time to
response:
1.2
month

1. CRS: 51
(90%), grade 1
(47%), grade 2
(35%); grade 3
(7%, n = 4).
Medium time
to CRS; 9 days
2.
Neurotoxicity:
1 (grade 1),
dosed at
1.0× 106 CAR+
T cells/kg

1. AE reported in
all patients.
Pyrexia (91%),
thrombocytopenia
(49%), and
leukopenia (47%)
2. Grade ≥3 AE:37
(65%), leukopenia
(30%),
thrombocytopenia
(23%), and
increased
aspartate
aminotransferase
(21%).
3. One grade 5 AE:
pulmonary
embolism

Phase 1/2
(LEGEND-2;
NCT
03090659)

1. 18–80 years
2. RRMM (≥3
prior
regimens)
3. BCMA+ PC
(FCM or IHC)

1. Pregnant or
lactating
2. Active
hepatitis B or
C, HIV
infections
3.
Uncontrolled
medical illness

(The other three centers)
1. RRMM patients, n =
17
2. ≥3 prior regimens
(range3-11), including
prior PIs (88%), IMiDs
(82%), and both (71%),
ASCT (47%)
3.Five patients with EM

Cy 250 mg/m2

+ Flu 25 mg/m2

for 3 days (n =
8) or Cy 300
mg/m2 for 3
days (n = 9).

LCAR-B38M
cell infusion
5d after the
start of the
conditioning
regimen. (3
infusions in Cy
+ Flu vs 1
infusion in Cy
group)
Mean dose: 0.7
× 106 (range,
0.2–1.5 × 106

cell/kg)

1. 88%
(15/17),
including 14
CR and 1
VGPR 2.
With EM
lesion: 100%,
including 3
sCR, 1VGPR,
and 1 MR

100% in all CR
patients
(8-color FCM)

1. Median
PFS: 12 (all)
and 18
(MRD-)
months
2. Median
OS: NR (all
and MRD-)

Cy + Flu
group
had
better
PFS and
lower
relapse
rate

1. CRS:100%,
including 10
grade 1/2, 6
grade 3, and 1
grade 5. 9
patients
received IL-6R
inhibitor
treatment.
2. No
neurotoxicity

1. AE reported in
all patients.
Pyrexia (100%),
cytopenia (82%),
impaired liver
function (100%)
2. Tumor lysis
syndrome: 3(18%)

MCARH171
[80] (Memorial
Sloan
Kettering
Cancer Center)

1. Human
derived
anti-BCMA
scFv
2.
Co-stimulation
domain: 4-1BB
3. Retroviral
vector
4. Safety
switch
(truncated
EGFR)
5. Culture
medium:
Phytohemagglutinin
or
anti-CD3/CD28
beads and IL-2

Phase 1

1.≥18 years.
2. RRMM (≥2
prior regimens
including an
IMiD and a PI)
3. Adequate
organ function

1. Poor
performance
2. Poor organ
function
3. HIV or
active hepatitis
B or hepatitis
C infection

1. RRMM patients, n =
11
2. Median 6 lines of
prior therapy (range
4–14), all received IMiD,
anti-CD38 MoAb, and
ASCT
3. 82% with high-risk
cytogenetics

(1) Cy 3000
mg/m2 single
dose or (2) Flu
30 mg/m2

daily and Cy
300 mg/m2

daily for 3
days

1-2 divided
doses of
MCARH171
with 4 dose
levels (1) 72 ×
106, (2) 137 ×
106, (3) 475 ×
106, (4) 818 ×
106 viable
CAR T cells

1. ORR:64%
2. 100% ORR
observed in
5 patients
received
higher doses
(≥ 450 X106)

Median
DOR:106
days

(10 evaluable)
1. CRS: 6
(60%), 4 grade
1–2, and 2
grade 3.
2. No grade ≥3
neurotoxicity

(10 evaluable)
1. No DLTs
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Table 1. Cont.

Name
(Sponsor) Structure Phase

Key Inclusion
Criteria
(Summarized)

Key Exclusion
Criteria
(Summarized)

Basic Data of Study
Population

Protocol Efficacy Adverse Events (AEs)

Condi-Tioning CAR-T Cell
Dosing ORR MRD- Survival Other CRS or

Neuro-Toxicity Others

JNJ-68284528
[81] (Janssen)

1. Lentivirus
vector
2. Bispecific
anti-BCMA
variable
fragments of
llama
heavy-chain
antibodies
3.
Co-stimulation
domain: 4-1BB
4. Culture
medium: IL-2
(Identical to
LCAR-B38M)

Phase 1b/2
(CARTITUDE-1/MMY2001;
NCT03548207)

1. ≥18 years
old
2. RRMM (≥3
prior regimens
or double
refractory to a
PI and IMiD,
and received
an anti-CD38
MoAb)
3. Measurable
disease
4. ECOG 0–1

1. Previous
CAR-T
treatment (+)
2. Previous
anti-BCMA
treatment (+)
3. Poor heart
function
4. CNS MM
involvement

1. RRMM patient, n =
25 (infused)
2. Median prior lines of
treatment : 5 (range
3–16)
3. 88% triple-refractory
to a PI, IMiD, and
anti-CD38 antibody,
72% penta-exposed, and
36% penta-refractory

Flu (30
mg/m2)/Cy
(300 mg/m2)
daily for 3
days

One infusion
of JNJ-4528
(target 0.5–1 ×
106 /kg) 5–7
days after
conditioning
treatment

(21
evaluable)
1. ORR:91%,
4 sCR, 2CR, 7
VGPR, and
6PRs

(15 evaluable)
1. 10 MRD- at
the 10−5 level,
2 at the 10−4

level, and 3
had
unidentified
clones.

1. 80% of
patients had
grade 1–2 CRS,
with 1 grade 3
and 1 grade 5.
2. CRS events
occurring at a
median of 7
days (range
2–12)
post-infusion
with a median
duration of 3
days (range
1–60).
4. Tocilizumab
and steroid
used in 91%
and 27% of
patients (n =
22).

1. Treatment
related AE: CRS
(88%), neutropenia
(80%), anemia
(76%), and
thrombocytopenia
(72%)
2. Grade ≥3 AEs:
neutropenia (76%),
thrombocytopenia
(60%), and anemia
(48%)

P-BCMA-101
[82] (Poseida
Therapeutics,
Inc.)

1.
Centyrin-based
binding
domain (small,
fully human)
2. CD3ζ/4-1BB
signaling
domain
3. In vitro
transcribed
mRNA and
plasmid DNA
4. Safety
switch
(truncated
EGFR)
5. Tscm
phenotype

Phase 1
(NCT
03288493)

1. ≥18 years
old.
2. RRMM
(received PI
and IMiDs)
3. Measurable
disease
4. Adequate
organ function

1. Pregnant or
lactating
2. Active
hepatitis B or
C, HIV
infections
3.
Uncontrolled
medical illness
4. With PCL,
WM, or
POEMS
syndrome
5. Active
second
malignancy

1. RRMM patients, n =
12
2. Rang of prior lines:
3–9
3. 100% refractory to PI,
IMiD, and
daratumumab
4. High-risk
cytogenetics: 64%

Flu (30
mg/m2)/Cy
(300 mg/m2)
daily for 3
days

1. 1 infusion of
P-BCMA-101.
2. 3 + 3 design
with planned
dose levels of
48, 50, 55, 118,
122, 124, 143,
155, 164, 238,
324 and 430 ×
106 CAR T
cells.

1. 66.7%(n =
3), 1 PR and
1 near CR
2. Yet
evaluable
patients (n =
6): 1 sCR,
1VGPR, and
3PRs

1. CRS:1
(grade 2)
2. No
neurotoxicity

1. No
unexpected/off-target
toxicities related
to treatment.

The inclusion or exclusion criteria were summarized from published articles or ClinicalTrials.gov website.

ClinicalTrials.gov
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ASCT, Autologous stem cell transplant; BM, bone marrow; Cy, cyclophosphamide; CNS, central
nervous system; CR, complete response; CRS, cytokine releasing syndrome; DFS, disease-free survival;
DLT, dose-limiting toxicity; DOR, duration of response; EGFR, epidermal growth factor receptor;
EFS, event-free survival; EM, extramedullary; FCM, flow cytometry; Flu, fludarabine; IRR, infusion
related reaction; MoAb, monoclonal antibody; MTD, maximum tolerated dose; MR, minimal response;
MRD, minimal residual disease; MRD-, MRD-negative; NR, not reached; OS, overall survival; PCL,
plasma cell leukemia; PD, progressive disease; PFS, progression-free survival; PR, partial response;
RRMM, relapsed and refractory multiple myeloma; scFv, single-chain variable fragment; sCR, stringent
complete response; Tscm, T stem cell memory phenotype; VGPR, very good partial response; WM,
Waldenström’s macroglobulinemia.

New CAR T Therapy Strategies

Newer CAR T cells with modified CAR structure are under rigorous investigation to improve
the efficacy and optimization of production protocols to achieve cost and time effectiveness as well
as durability of cells. A 3rd generation anti-BCMA CAR was generated with fully human BCMA
scFv and 4-1BB, CD3ζ signaling domains and tEGFR safety switch [67]. After conditioning therapy,
such CAR T-cells composed of a 1:1 ratio of CD4+:CD8+ cells were infused in RRMM patients.
In another clinical study reporting 80% ORR, anti-CD19 and anti-BCMA CAR T cells were infused
in RRMM patients after conditioning therapy [83]. Importantly, a patient with progression disease
with presentation of extramedullary lesion after CAR T cell infusion achieved remission after local
injection of anti-BCMA CAR T cells. Moreover, a new CAR-T therapy was reported as a consolidation
treatment after autologous transplantation [70]. Newly diagnosed stage III MM patients who failed
to achieve partial response (PR) after induction received anti-CD19 and BCMA CAR-T therapy 14 to
20 days after transplantation. The ORR was 100% in nine evaluable patients, including 3 complete
response (CRs) and 6 very good partial response (VGPRs). MRD negativity increased from 37.5% after
transplantation to 66.7% after CAR-T therapy. Furthermore, clinical investigations are ongoing for
other BCMA CAR-T treatment approaches.

2.2. Antibody-Drug Conjugate (ADC) Studies

ADC is composed of a therapeutic MoAb and a potent cytotoxic chemicals (payload), which are
covalently connected via a synthetic chemical linker [84]. After administration of ADC, the MoAb
first identifies and binds to the tumor antigen on the tumor cells, and then is internalized with the
payload. Inside the tumor cell, the cytotoxic chemicals are released and specifically kills the tumor cells.
This novel drug class aims to maximize tumor cell death while minimize unspecific toxicity to allow
for a favorable therapeutic window. Currently, several anti-BCMA ADCs for MM treatment are under
development and two ADCs delivering different payloads have entered into clinical investigation.
GSK2857916 (Belantamab mafodotin) have received FDA Breakthrough Therapy Designation status
in 2018.

2.2.1. GSK2857916 (Belantamab Mafodotin) (GlaxoSmithKline)

GSK2857916, the first anti-BCMA ADC entering clinical study, is composed of a humanized IgG1
mAb with increased affinity to effector cells due to its dyfucosylated Fc and high affinity to BCMA
(Kd: ~0.5 nM), a novel non-permeable anti-tubulin agent, MMAF payload, as well as a non-cleavable
linker, maleimidocaproyl (mc) [28,56]. GSK285791 significantly and selectively kills MM cells via
the direct inhibition of proliferation, induction of apoptosis of MM cells, as well as ADCC and
antibody-dependent cellular phagocytosis (ADCP) in vitro and in vivo. GSK285791 rapidly eliminated
MM cells with tumor-free survival up to 3.5 months in mice. The clinical studies of GSK2857916
(Belantamab mafodotin) are shown in Table 2.



Cancers 2020, 12, 1473 13 of 29

Table 2. Summary clinical study results of anti-BCMA ADC, BiTE, and bispecific antibodies.

Name (Sponsor) Basic Data of Participant Protocol Results and Efficacy Adverse Event (AE)

GSK2857916
(Belantamab mafodotin) [85–87]
(GlaxoSmithKline)

1. Phase 1 trial (BMA117159 /DREAMM-1,
NCT 02064387)
2. RRMM patients
Total: 73 (Part 1: 38; Part 2: 35)
3. Prior treatment
Part 1: 29/38 (76%) ≥ 5 prior treatment lines
Part 2: 20/35 (57%) ≥ 5 prior treatment lines,
97% refractory to PIs, 91% to IMiDs, 37% to
daratumumab

(Part 1, dose escalation)
IV 1 ever 3 weeks
Dose: 0.03, 0.06, 0.12, 0.24, 0.48,
0.96, 1.92, 2.5, 3.4, and 4.6 mg/kg
(Part 2, dose expansion)
IV 1 h ever 3 weeks
Dose; 3.4 mg/kg

(Part 2)
1. ORR: 60% (21/35), including 1
sCRs, 2 CRs, 15 VGPRs, and 3
PRs.
2. Median time to response: 1.4
months
3. Median PFS: 7.9 months

(Part 1)
No DLT was identified
(Part 2)
1. IRR: 8 (23%), mainly grade 1 or 2 (n = 5)
2. Corneal event: 22 (63%), mainly grade 1 or 2
(n = 19), 3 grade 3.
3. Thrombocytopenia: 20 (57%), 12 grade 3–4

1. Phase 2, two-armed, randomized trial
(DREAMM-2, NCT 03525678)
2. 293 RRMM (screened), 196 receive treatment
3. All refractory to IMiDs, PIs, and previously
received an anti-CD38 MoAb

Two cohorts (IV 30 mins or
longer)
1. 2.5 mg/kg (n = 97)
2. 3.4 mg/kg (n = 99)
Treatment every 3 weeks until
PD or unacceptable toxicity

1. ORR: 32.7% (64/196), 30 in the
2.5 mg/kg cohort and 34 in the
3.4 mg/kg cohort, with 18 and
29 achieving VGPR or better
(CR or sCR)
2. DOR: NR (median follow-up
of 6.3 and 6.9 months)
3. Probability of having a DOR≥
4 months: 78% and 87% (2.5 and
3.4 mg/kg cohort)
4. Median PFS: 2.9 and 4.9
months

Safety population, n = 194
1. 93 (98%) of 95 in the 2.5 mg/kg
cohort and 99 (100%) of 99 in the 3.4 mg/kg
cohort had at least one AE.
2. Keratopathy is the most common Grade 1–2
and 3–4 AE.
a. Dose delays for keratopathy started at week
4 in both cohorts
b. Dose reductions started at 13 and 4 weeks
(2.5 and 3.4 mg/kg cohort).
c. Median time to treatment re-initiation: 83
and 63 days (2.5 and 3.4 mg/kg cohort).
3. Other common Grade 3-4 AE:
thrombocytopenia (19/33) and anemia (19/ 25)
4. Serious AE (38/47).
5. Two treatment related death

BI 836909/AMG 420
[88]
(Amgen)

1. Phase 1 trial (NCT02514239)
2. RRMM patients (total: 35)
3. ≥2 prior treatment lines, including PI and
IMiDs

6-week cycles of (1 cycle = 4
weeks continuous IV infusion, 2
weeks off).
Single-patient cohorts [0.2–1.6
µg/day (d)] followed by cohorts
of 3–6 patients (3.2–800 µg/d)

1. 6 CRs (1 each at 6.5, 100, and
200 µg/d, and 3 at 400 µg/d)
2. All patients at 400 µg/d (3/3)
had MRD negative CRs
3. Dose confirmation cohort
(400 µg/d): 2 PR (2/3)
4. Objective response rate at 400
µg/d: 83% (5/6)

1. Serious AEs (n = 17, 49%), including 10
infection, 3 CRS, and 1 each of peripheral
polyneuropathy, cardiac failure, edema,
pyrexia, biliary obstruction, and renal failure.
2. CRS (n = 3, 2 grade 1 and 1 grade 3)
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Table 2. Cont.

Name (Sponsor) Basic Data of Participant Protocol Results and Efficacy Adverse Event (AE)

CC-93269
[89]
(Celgene)

1. Phase 1, dose-finding study
(CC-93269-MM-001; NCT03486067)
2. RRMM patients (total:19), with ≥3 prior
treatment lines
3. Medium 6 lines of prior therapy (range 3–12
lines)
73.7% ASCT
10.5% allogenic stem cell transplantation
100% lenalidomide and 84.2% pomalidomide
100% bortezomib and 84.2% carfilzomib
94.7% daratumumab

Cycles 1–3:
IV over 2 h on Days 1, 8, 15, and
22
Cycles 4–6
Days 1 and 15
Cycle 7 and beyond
Day 1
(all in 28-day cycles)
Doses ranged from 0.15 to 10 mg

1. <6 mg (n = 7), response:0
2. ≥6 mg(n = 12), response: 10,
(4 sCR or CR, 3 VGPR, 3 PR), 9
MRD-

1. Grade 3–4 treatment AE: 15 (78.9%),
including 10 neutropenia, 8 anemia, 5
infections, and 4 thrombocytopenia
2. CRS: 17 (89.5%), grade 1 (n = 11 (57.9%) or
grade 2 (n = 5, 26.3%)

PF-06863135
[90]
(Pfizer)

1. Phase 1 trial (NCT03269136)
2. Relapsed (n = 8) and refractory MM patients
(n = 9).
3. Median prior lines of treatment: 11.5 (All
previously treated with a PI, an IMiD, and an
anti-CD38 MoAb)
4. 5 (29%) patients had received prior
BCMA-targeted therapy (CAR-T or BiTE)

Once weekly, non-continuous,
IV infusion in 6 dose-escalation
groups

16 evaluable
1. 1 MR and 6 SD
2. Clinical benefit: 41%

1. 10 patients experienced treatment AE,
mostly grade 1–2, including CRS (24%),
thrombocytopenia (24%), anemia (18%), and
pyrexia (18%)
2. Three grade 3
3. No grade 4–5 AE
4. One DLT in a patient previously treated
with BCMA CAR-T.

ASCT, autologous stem cell transplant; Cy, cyclophosphamide; CR, compete response; CRS, cytokine releasing syndrome; DLT, dose-limiting toxicity; DOR, duration of response; EGFR,
epidermal growth factor receptor; EM, extramedullary; Flu, fludarabine; IRR, infusion related reaction; MoAb, monoclonal antibody; MTD, maximum tolerated dose; MR, minimal
response; MRD, minimal residual disease; MRD-, MRD-negative; NR, not reached; ORR, overall response rate; OS, overall survival; PFS, progression-free survival; PR, partial response;
PRES, posterior reversible encephalopathy syndrome; RRMM, relapsed and refractory multiple myeloma; SD, stable disease; URI, upper airway infection; UTI, urinary tract infection;
VGPR, very good partial response.
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2.2.2. MEDI2228 (MedImmune LLC)

MEDI2228 is composed of a fully human antibody which specifically conjugates to a
pyrrolobenzodiazepine (PBD) dimer via a protease-cleavable linker [91]. MEDI2228 significantly
induced cytotoxicity against MM cell lines (IC50: 6–210 ng/mL) and quiescent myeloma precursor cells.
Compared with its MMAF ADC homolog, MEDI2228 delivering PBD showed more potent cytotoxicity
in patient MM cells and MM progenitor cells which are not proliferating [92]. Furthermore, MEDI1228
preferentially binds to membrane bound BCMA, thereby minimizing the inhibition of sBCMA on
anti-BCMA mAb-induced anti-MM activity in vitro and in vivo.

Unlike its MMAF ADC homolog, MEDI2228 triggered DNA damage response (DDR) via
phosphorylation of ATM/ATR kinases, CHK1/2, CDK1/2, and H2AX, further inducing DDR-related
gene expression [92]. MEDI2228 induced synthetic lethality when combined with DDR inhibitors
(DDRi s) targeting ATM/ATR/WEE1 checkpoints. Importantly, MEDI2228 and bortezomib combination
enhanced apoptosis of drug-resistant MM cells and superior in vivo efficacy, further prolonging host
survival than monotherapy via increased nuclear γH2AX-expressing micro-foci, irreversible DNA
damages, and irreversible tumor cell death. A Phase 1 clinical study (NCT03489525) is ongoing in
RRMM patients who are either post autologous stem cell transplant or transplant ineligible.

2.2.3. HDP-101

HDP-1 is an antibody-targeted amanitin conjugate (ATAC), composed of compound of
maleimide-amanitin conjugation and engineered cysteine residues in the heavy chain of the humanized
anti-BCMA Thiomab [93,94]. Amanitin binds to the RNA polymerase II in eukaryotic cells and
inhibits the cellular transcription process. In in vivo studies using mice or Cynomolgus monkeys,
administration of HDP-101 resulted in significant tumor regression with good tolerability, therapeutic
index, and long serum half-life of HDP-101 (about 12 days) [94,95].

2.3. Bispecific T-Cell Engager (BiTE) Molecules

BiTE® is a small-sized molecule (55 kDa), which is a single-chain variable fragment (scFv) with
two linked mAbs (bispecific antibodies), with one targeting mainly CD3 on T-cells and the other one
targeting tumor-associated antigens on tumor cells [96,97]. BiTE® molecules simultaneously link
T-cells and tumor cells, leading to the formation of immune synapse followed by lysis of tumor cells
and activation of T cells [98,99].

2.3.1. BI 836909/AMG 420

BI 836909 is the first anti-BCMA BiTE®into preclinical and clinical investigation in MM [99].
BI 836909 consists of two linked scFvs, with one scFv targeting BCMA positioned in N-terminal and the
other scFv targeting CD3ε in C-terminal (followed by a hexahistidine, His6 tag). In mouse xenograft
studies, BI 836909 led to tumor shrinkage and prolonged host survival. The cynomolgus monkey study
showed significant depletion of BCMA+ PCs in the BM after administration of BI 836909. The findings
of BI 836909/AMG 420 clinical study are shown in Table 2.

2.3.2. AMG 701

AMG 701 is the novel form of anti-BCMA BiTE® with an extended serum half-life to 112 h and
demonstrated potent anti-MM activity in the preclinical studies [100]. AMG 701 further induced
robust immunomodulatory effects, including the activation and proliferation of CD4 and CD8 T cells
as well as differentiation of memory T cells [100]. Moreover, a combination of AMG 701 and IMiDs
(lenalidomide or pomalidomide) enhanced anti-MM activity of AMG 701 and upregulated effector cell
function to further prevent disease relapse in the SCID mouse model for human MM. A clinical trial
for AMG 701 in RRMM (NCT03287908) is ongoing.



Cancers 2020, 12, 1473 16 of 29

2.4. Bispecific or Trispecific Antibodies/Molecules

Currently, many bispecific Abs target BCMA on MM cells and CD3 on T cells or CD16 on NK effector
cells. EM801 [30], BCMA-TCB2/EM901 (CC-93269) [30,89], JNJ-7957 [101] and TNB-383B [60,102,103]
all target CD3 on T cells and BCMA on MM cells. AFM26, a tetravalent bispecific Ab targeting BCMA
on MM cells and CD16A on NK cells, showed potent NK-cell-medicated ADCC [104]. HPN217,
a BCMA-targeting tri-specific T-cell activating construct (TriTAC), simultaneously binds to MM cells,
human serum albumin, and CD3 on T cells [104]. Engineering of a human albumin-binding domain
into HPN217 extends serum half-life up to 3 weeks [105] (NCT04184050).

In 2019, the preliminary results were reported for two bispecific antibodies in early phase studies,
CC-93269/EM901 (Bristol–Myers Squibb) and PF-06863135 (Pfizer) (Table 2).

2.5. Other Approaches

2.5.1. Descartes-08 (Cartesian Therapeutics)

Descartes-08, RNA-generated anti-BCMA CD8 CAR T cells, showed CAR-specific suppression
of myeloma maintained throughout the duration of treatment in a mouse model of disseminated
human MM [106]. The magnitude of cytolytic and cytokine responses correlates with the duration
of anti-BCMA CAR expression. This may be more cost-effective and decrease the risk of severe CRS.
A trial of Descartes-08 in patients with RRMM (NCT03448978) is ongoing.

2.5.2. Anti-BCMA Cancer Vaccine

In MM, cancer vaccines are generally considered to be a part of combination therapy together with
other effective immunotherapies [25]. They are under early phase clinical investigation for high-risk
smoldering MM (SMM) or post-autologous transplant setting in MM patients [107]. Engineered
anti-BCMA peptides could increase affinity and stability to HLA-A2 and activate highly functional
BCMA-specific cytotoxic T cells in vitro [25].

2.5.3. Treatment Targeting APRIL/BCMA Pathway

Due to their impressive safety profile and significant APRIL-lowing effect by BION-1301, the first
humanized MoAb against APRIL, in the Phase 1 and 2 study, a rationale was provided for further
combination therapy with BCMA-based immunotherapy or other anti-MM agents [108].

2.5.4. Antibody-Coupled T Cell Receptor (ACTR)

ACTR technology genetically engineers autologous T cell to express extracellular CD16 Fc receptor
targeting NK cells and intracellular T cell signaling and costimulatory domains [109]. However,
the clinical studies of ACTR087 with a 4-1BB-containing receptor combined with an anti-BCMA
MoAb, SEA-BCMA in MM or other hematologic malignancy were halted due to safety concerns
(NCT03266692) [57].

2.5.5. T Cell Antigen Coupler (TAC) T Cell Therapy

TAC technology is a chimeric receptor that includes an antigen-binding domain, CD3ζ-binding
domain, and a CD8/CD4 co-receptor [58]. TAC is cable of directing T cell receptor-CD3 complex
towards a target antigen, leading to T cell activation in an MHC-independent fashion. Compared with
conventional CAR, TAC co-opting endogenous TCR has higher anti-tumor activity, lower off-tumor
effect and cytokine release, as well as no upregulation of immune checkpoint markers or T cell
exhaustion. The BCMA TAC T cells rapidly eradicate MM cells in a murine model. Mice without
tumors after TAC T cell treatment were resistant to the subsequent infusion of fresh tumor cells,
suggesting the persistence of TAC T cells.
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3. Potential Biomarkers for BCMA-Based Immunotherapy

Immunotherapy targeting BCMA achieved a high response rate in clinical investigations. Currently,
there are more BCMA CAR-T clinical trials than other anti-BCMA agents. Data published in these trials
has provided valuable information for further clinical investigation for BCMA-based immunotherapies
in MM.

Several parameters were demonstrated to be predictive for treatment response. First, several studies
showed that the serum level of sBCMA decreased after successful CAR-T treatment. More significant
changes in serum sBCMA level or BCMA expression on MM cells were seen in hematologic
responders than in non-responders [36,63]. In the clinical trial investigating AMG 420, a rapid
and sustained decrease in sBCMA level also suggested an early response [88]. Based on these finding,
the change of sBCMA could be used to predict early response of BCMA-based therapy. However,
more studies are needed to define the optimal fold-change in reduced sBCMA as a reliable indicator of
therapeutic response.

In BCMA CAR-T studies, some parameters were also noted to be linked to treatment outcome.
For example, a higher peak in CAR-T cell or total CAR-T cell expansion was associated with better
clinical response [36,63,64]. Besides, a higher proportion of CD8+ T cells within the leukapheresis
product with a CD45RO-CD27+ memory phenotype was significantly associated with peak CAR-T
cell expansion and better response [36]. Other markers to predict disease progression include the
appearance of anti-CAR T antibody and decreased residual CAR T+ cells [78].

MRD negativity status was utilized to evaluate the clinical efficacy of anti-BCMA
immunotherapeutic in clinical trials [110]. A high MRD negativity rate was observed in some
trials, especially in CAR-T treatment related studies. However, some patients with negative MRD
still suffered from MM relapse or progression after successful CAR-T treatment, raising concerns
regarding the limitations of current MRD detection tools. Currently, multi-color flow cytometry
and next-generation sequencing are major tools to detect MRD in these trials. Both techniques are
characterized by high sensitivity to detect MRD. However, BM aspiration is required for both methods.
The patchy nature of MM cells in the BM may lead to a false negative result, thereby fail to identify some
relapsed patients presented with an extramedullary disease. To address this issue, the incorporation
of novel imagine-based methods, including whole-body positron emission tomography or magnetic
resonance imaging, may reduce this risk [110]. Moreover, the development of novel liquid biopsy
analyzing circulating tumor cells or cell-free DNA may further optimize MRD assessment.

4. Which Anti-BCMA Agent? Each Has Its Own Merits

Preclinical and clinical studies to date have indicated that BCMA is a promising molecule for
disease monitoring and confirmed that BCMA is an important target antigen for immunotherapy in MM.
Several ongoing Phase 2/3 studies continue to show the efficacy of CAR T therapy in RRMM [25,59,60].
Despite a high RR (≥70–100%) and increased survival by CAR-T cell therapy in the heavily pretreated
RRMM patients who have no treatment options left [111], the high incidence of CRS and neurotoxicity,
as well as the toxicity of conditioning chemotherapy are major concerns when selecting patients for
this therapy (Table 3). In patients with high tumor burden, the risk of CRS is even higher, resulting in
exclusion from clinical studies [63]. Moreover, approximately 30% MM patients are older than 75 years
and may not be physically fit for potent conditioning chemotherapy and CAR-T cell production [112].
Besides, current manufacturing process to generate CAR-T cells requires to first collect patient T cells
and it can take from 10 days to two weeks to complete the whole procedure. This could hold up the
treatment for patients with a rapidly progressing disease. We should consider patients’ performance,
disease status, and bridging or salvage therapy when using CAR-T cell therapy for RRMM patients in
real world clinical practice.



Cancers 2020, 12, 1473 18 of 29

Table 3. Comparison of BCMA-based immunotherapeutic agents in an RRMM setting.

Perspective CAR-T cell therapy BiTE/Bispecific
Antibodies Antibody-Drug Conjugate

Strength

1. Most clinical data support
clinical efficacy
2. High response/MTD- rate in
RRMM patients received multiple
lines of prior treatment
3. May be effective for
extramedullary disease
4. Development of long-term
anti-tumor immunity

1. “Off-the shell”
products, no delay in
treatment
2. Clinical benefit
observed in RRMM
patients
3. No lymphodepletion
treatment required

1. “Off-the shell” products, no delay
in treatment
2. Clinical benefit observed in
RRMM patients
3. Potent anti-tumor activity of
payload
4. Clinical efficacy doesn’t rely on
host immune function status

Challenges

1. Long and labor-intensive
manufacturing process
2. Require treatment at a
specialized center
3. High CRS and neurotoxicity
rate
4. Toxicity of lymphodepletion
therapy
5. Clinical activity relies on
adequate number and function of
collected patients T cells
6. High treatment cost

1. Less data in heavily
pretreated patients, may
be less effective in this
subgroup
2. CRS and neurotoxicity
3. Short half-life, need
continuous infusion
4. Clinical activity relies
on adequate number and
function of collected
patient’s effector cells
5. Hight treatment cost

1. High serum level of sBCMA may
affect clinical efficacy
2. Payload related toxicity
3. Multiple treatment leads to
increased cost.

Prospects

1. Allogeneic CAR-T cells
2. Faster manufacturing protocol
3. Structure modification to
reduce toxicity, i.e., safety switch

1. Half-life extended
products
2. Structure (variable)
modification to increase
binding affinity for
tumor associated antigen

1. New design of antibody to
increased binding affinity for
tumor-associated antigen
2. New payload with novel
anti-tumor mechanism and better
safety profile
3. Linker optimization to reduce
off-target effect (slow deconjugation)

Meanwhile, the role of CAR-T therapy as consolidation therapy in high-risk MM patients after
major treatment is under investigation. As mentioned above, one clinical trial evaluating CD19 and
BCMA CAR-T cell therapy after tandem transplant, demonstrated that CAR-T cell therapy further
improved treatment response with acceptable safety [70]. The long-term follow-up result is pending.
Moreover, it is still an open question whether CAR-T therapy can replace conventional ASCT in newly
diagnosed high-risk MM patients. When CAR-T cell therapy can be widely performed, we may expect
a direct comparison to answer this question.

Like CAR-T therapy, the anti-MM mechanism of BiTE and bispecific Abs/molecules are also mainly
via TDCC. The historic data and current AMG 420 study suggested that BiTE might have a better
safety profile regarding to severe CRS and neurotoxicity, compared with CAR T therapy, especially in
patients with a large tumor burden [113]. Furthermore, BiTE and bi-/tri-specific Abs/molecules are
“off-the shell” products and could be immediately administered in patients with rapid progressed
disease [114].

The therapeutic potential of these agents for MM patients in different disease stages are currently
(or will be) tested. The decision should be made individually as to which forms of BCMA-based drugs
should be used. According to the available published and historical data of CD19 BiTE® Blinatumomab
for ALL treatment, BiTE would bring better clinical benefit in patients who received less prior lines
of treatment, since the T effector cell function would be better reserved (or less exhausted) than
patients with heavier prior treatments [115,116]. For the RRMM patients who have received multiple
lines of prior treatments, the function of immune cells would be profoundly compromised, therefore
CAR-T therapy may be the better choice because CAR-T cells are activated during genetic modification
process and these CAR T cell can further expand to develop persistent immunity after single infusion.
Furthermore, CAR-T cell therapy also exerted potent anti-MM activity and induced significant tumor
shrinkage in patients with extramedullary MM involvement [64,78].
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Regarding the role of ADCs, these “off the shelf” products can also be used in patients with rapidly
progressing disease due to their potent direct killing of MM cells without the need for patient effector
cells. ADC could be more suitable in patients with a higher tumor burden since its AEs may be less- or
unrelated to tumor burden, like CRS or the neurotoxicity observed in CAR-T therapy [63]. Anti-BCMA
ADC can be used as major treatment or as a bridging therapy to quickly reduce tumor burden and
allow for the recovery of patient immune effector T cells for subsequent CAR-T cell or BiTE therapy.

5. Future Perspectives

Immunotherapy targeting BCMA has positioned itself in the treatment management for
MM. Large trials are underway, including bb2121, P-BCMA-101 Tscm CAR-T cells, JNJ-68284528,
and Belantamab mafodotin in RRMM patients, in KarMMa-3 (NCT03651128), NCT03288493,
CARTITUDE-4 (NCT04181827), DREAMM 5 (NCT04126200), and DREAMM 7 (NCT04246047) as
monotherapy and/or combination therapies (Figure 2). The number of registered clinical studies has
increased significantly in the last 2 years (Figure 3).
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Figure 2. Immunotherapies targeting BCMA in clinical development. This figure shows various
anti-BCMA agents in current clinical trials. The major enrollment criteria or characteristics of participants
are also indicated. Every effort has been made to obtain reliable data from multiple sources including
http://clinicaltrials.gov/, company, and other web sites, but accuracy cannot be fully guaranteed to date.
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The searching word is “myeloma”. The “Year” indicates the first post year of the trial on Clinicaltrial.gov.
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there are 23 CAR T, 6 ADC, and 5 Bi/Tri-specific Ab/BiTE trials in 2019. Every effort has been made to
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sites, but accuracy cannot be fully guaranteed to date.

In parallel with new anti-BCMA therapy clinical trials, great efforts are making to further optimize
BCMA-based immunotherapy. For CAR-T therapy, new scFv with a higher binding affinity to tumor
antigen (like bb2121 or LCAR-B38M) may exert more potent anti-tumor activity. Using 4-1BB as a
costimulatory domain can increase memory phenotype and enhance the persistence of CAR T cells after
infusion. In addition, humanizing murine or fully humanized scFvs combined with optimized hinge
and transmembrane domains may be less immunogenic with better safety profile [117,118]. A recent
clinical trial demonstrated that the re-infusion of BCMA CAR-T cells with humanized scFv may
overcome treatment failure due to impaired persistence by immune responses against murine scFv [74].
Furthermore, the addition of a safety switch or the development of inhibitory CAR as well as on-switch
CAR may decrease the toxicity of CAR-T therapy [119,120]. Novel autologous mRNA-generated
CAR T cells have a limited lifespan, which may reduce the risk of CRS and increase the treatment
flexibility of multiple dosing [106] (NCT03448978). The addition of a gamma secretase inhibitor is
also being explored to enhance membrane BCMA expression in order to increase CAR T efficacy
(JSMD194 in NCT03502577) [121]. The preliminary data of the first clinical trial showed a high response
rate (100%) and MRD negativity rate (83%) [122]. In addition, pretreatment of a gamma secretase
inhibitor in low-BCMA expression patients can enhance BCMA expression and improve the treatment
response of BCMA CAR-T therapy [123]. Since BCMAlow or BCMA- relapse were observed in CAR-T
trials, dual-targeting CAR or combined two CARs binding to BCMA and other MM-related antigens
including CD19, CD138, and SLAMF7 are also under development, aiming to reduce the risk of low or
lost BCMA expression-related relapse (antigen escape relapse) [59]. Other potential strategies include
a faster ex vivo manufacturing process and allogeneic CAR-T like ALLO-715 (NCT04093596). Another
potential study is to generate CAR-T cells using T cells collected earlier in the disease. Furthermore,
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NK-based cellular therapy may also achieve high treatment response but with a better safety profile
than CAR-T therapy, since NK cells have a shorter lifespan than cytotoxic T cells (NCT03940833).

ADC Belantamab mafodotin has shown promising results in phase 1 and 2 trials, in which
a high percentage of corneal events was also reported. The exact mechanism remains unknown,
but it may be associated with the non-specific uptake of ADC with MMAF or other anti-microtubule
cytotoxins as payload into actively dividing epithelial cells of cornea [124]. Ongoing strategies to further
optimize BCMA ADC include novel payloads with different mechanisms of action like MEDI2228
(NCT03489525), new linkers to further avoid the premature release of drugs, and better design of an
antibody like non-IgG scaffolds or non-internalizing MoAb scaffolds to enhance penetration [84].

Conventional BiTE® molecule AMG 420 and similar bispecific antibody fragments have a
common limitation, a relatively shorter half-life, making continuous infusion necessary to maintain
adequate therapeutic serum level. Although the short half-life of these agents may help to handle
treatment-related side effects like CRS, continuous infusion is also associated with a higher risk of
catheter- or device-related infection [88]. To address this issue, several groups are investigating
novel bispecific antibody constructs with an extended half-life or bispecific Abs in clinical trials with
already-significant anti-MM activities reported in CC-93269 (NCT03486067) [89].

Despite a high RR in clinical trials, about half of patients receiving anti-BCMA treatment
eventually relapse, indicating that treatment resistance remains a critical issue. Hypotheses include the
confounding effect of sBCMA, antigen escape, and immunosuppressive BM microenvironment [59,103].
Strategies are being developed to overcome these issues. First, MEDI2228 preferentially binds to
membrane vs. soluble BCMA [91]. The gamma-secretase inhibitor JSMD194, in the presence of sBCMA,
may enhance the anti-MM effects of BCMA CAR T [121] (NCT03502577). Second, clinical trials of
combination of Belantamab mafodotin with anti-PD1 MoAb or other standard-of-care MM agents are
ongoing (NCT03848845, NCT03544281, and NCT03715478). Other combinations, such as AMG 701
plus IMiDs or MEDI2228 plus bortezomib also demonstrated impressive anti-MM activity in preclinical
studies [92,100]. Third, for low or loss of BCMA expression on MM cells observed in relapsed patients
after CAR-T therapy, the combination of anti-BCMA CAR-T cells with CAR targeting another MM
antigen like CD38, CD138, SLAMF7, or CD19 may decrease the risk of antigen-escape-related treatment
failure. The sequential infusion of CAR-T cells targeting CD19 and BCMA in RRMM patients has
shown high RR [71].

To achieve the deepest response as early as possible, it is rational to next test these agents
in frontline settings and earlier stages, i.e., newly diagnosed and SMM. CAR-T and BiTE therapy
have already achieved a high MRD-negative rate in the sickest RRMM patients. Better preserved
function of immune cells in SMM indicates that anti-BCMA immunotherapies will be more efficacious,
and thereby may even prevent disease progression. A Phase 2 trial has begun in evaluating bortezomib,
lenalidomide, and dexamethasone with or without anti-BCMA ADC belantamab mafodotin in newly
diagnosed and transplant ineligible MM patients (NCT04091126). Another single arm study is also
underway to determine the optimal target dose and safety of bb2121 in high-risk newly diagnosed
MM patients (KarMMa-4 trial; NCT04196491).

6. Conclusions

The unprecedented clinical results of BCMA-based immunotherapies are impacting the treatment
landscape in MM. Optimal clinical benefit will be achieved by their use in combination or in sequence,
as well as treatment in earlier stages. BCMA-based immunotherapies will continue to transform the
treatment management and improve patient outcome in MM for years to come.
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