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Epigenetic regulation contributes to the dysregulation of gene
expression involved in cancer biology. Nevertheless, the roles of
epigenetic regulators (ERs) in tumor immunity and immune
response remain basically unclear. Here, we developed the
epigenetic regulator in immunology (EPRIM) approach to
identify immune-related ERs and comprehensively dissected
the ER regulation in tumor immune response across 33 can-
cers. The identified immune-related ERs were related to im-
mune infiltration and could stratify cancer patients into two
risk groups in multiple independent datasets. These patient
groups were characterized by distinct immune functions, im-
mune infiltrates, driver gene mutations, and prognoses.
Furthermore, we constructed an immune ER-based signature
and highlighted its potential utility in predicting clinical
benefit from immunotherapy and selecting therapeutic agents.
Taken together, our identification and evaluation of immune-
related ERs highlight the usefulness of EPRIM for the under-
standing of ERs in immune regulation and the clinical rele-
vance in evaluation of cancer patient prognosis and response
to immune checkpoint blockade therapy.

INTRODUCTION
Tumors are complex ecosystems reflected by complicated and dy-
namic crosstalk among cellular and molecular components. The im-
mune system is important for killing tumor cells and its dysregulation
serves profound roles in cancer development.1 Benefiting from cancer
immunotherapy, the success of clinical treatment has been achieved
in multiple cancers, including melanoma, and lung and gastric can-
cer.2,3 However, tumor cells can evade immune surveillance by regu-
lating immune-related pathways, such as loss of antigen presenta-
tion,4,5 leading to limited clinical efficacy. Thus, understanding
molecular mechanisms behind the dysregulated immune microenvi-
ronment is of great importance.

Epigenetics studies how environment factors cause the heritable
events in a cellular phenotype, in contrast to the changes encoded
in DNA sequences.6 The heritable events usually confer covalent
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modifications to histones or nucleic acids (e.g., DNA methylation
and histone acetylation), as key regulatory mechanisms behind cancer
biology.7,8 Recently, researchers have highlighted the role of epige-
netic machinery in tumor immunity.9 Epigenetic regulators (ERs),
which made covalent modifications to confer those heritable epige-
netic alternations (e.g., methyltransferases), emerged as crucial regu-
lators in gene expression, affecting cell development and cancer pro-
gression.10–13 Gene silencing against molecules linked to cancer
provided an effective treatment strategy, and gene expression analysis
was widely used for identifying such key molecules.14,15 Recent prog-
ress in cancer studies demonstrated that ERs could modulate the tu-
mor immune microenvironment.8,16 For example, the expression of
ER additional sex combs-like 2 (ASXL2) was correlated to immune
infiltration and clinical outcomes for cancer patients.17 The ER cat
eye syndrome chromosome region candidate 2 (CECR2) expression
promoted the proliferation or polarization of tumor-associated mac-
rophages to drive tumor metastasis, and was nominated as a prom-
ising target through its depletion or inhibition for cancer treatment.18

Lysine demethylase 3A (KDM3A) could suppress anti-tumor immu-
nity by remodeling the T cell inflamed state and regulated immuno-
therapy response, and its depletion could sensitize tumors to immu-
notherapy in combination with other drugs.19 Another study
constructed an ER signature related to immune infiltration and
immunotherapy response in liver cancer based on gene expression
analysis.20 Nevertheless, a detailed compilation and characterization
of the ERs implicated in immune regulation and cancer treatment
is still lacking.
herapy: Nucleic Acids Vol. 35 March 2024 ª 2023 The Author(s). 1
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Here, we developed the epigenetic regulator in immunology (EPRIM)
method to identify immune-related ERs and characterized the iden-
tified ERs across 33 cancer types based on the integrated gene expres-
sion and immune profile data. Immune infiltrates and independent
datasets analysis validated their potential roles in immune regulation.
Furthermore, an immune ER-based signature that we constructed re-
vealed its predictive potential for cancer patient survival and therapy
response.

RESULTS
Pan-cancer identification of immune-related epigenetic

regulator genes

Transcriptional profiles have been widely used to study the function
of biological regulators in cancer. Our hypothesis is that ERs may be
involved in immune regulation, if the ranked gene set of correlated
genes of ERs can be enriched in specific gene sets in immune path-
ways. Based on this, we designed an approach termed EPRIM
(epigenetic regulator in immunology) to infer ERs that have poten-
tial implications in immune regulation (Figure 1A). In brief, the
gene expression data of tumor samples and the collected immune
signature gene set were needed as the inputs. The effect of ER
expression on immune pathways regulation was evaluated by their
correlated signature genes after correcting for tumor purity. Gene
set enrichment analysis (GSEA),21 an intuitive method to measure
the coherence of coordinately changed signature genes in the rank
list, was used to prioritize ERs implicated in immune pathways. A
correlation score combining the p value and enrichment score
was defined to indicate the correlation of each significant ER-im-
mune pathway pair.

To systematically identify the potential ERs contributing to immune
pathway activity, we applied EPRIM to expression profiles of
>10,000 cases across 33 cancer types from The Cancer Genome
Atlas (TCGA) (Table S1). A comprehensive list of 690 ERs with
their functional annotations (e.g., histone reader) was collected
from our manual curation22 (Table S2). In addition, we derived
17 gene sets indicating distinct immune pathways from the
ImmPort database23 (Table S3). EPRIM identified 585 from 690
ERs (84.8%) as immune pathway regulators. On average, �85 ERs
were significantly correlated with immune pathways (ranging
from 22 in kidney chromophobe [KICH] to 246 in testicular
germ cell tumors [TGCT], false discovery rate [FDR] <0.05, Fig-
ure 1B). These immune-related ERs were mainly involved in the
"TCR Signaling Pathway" and "Antigen Processing and Presenta-
tion" across cancer types (Figure S1). Indeed, when deriving a gen-
eral function of cellular component “APICAL_SURFACE” from
Molecular Signature Database (MSigDB) as control, we found
more ERs associated with the two pathways than control
(p < 0.0001, Figure S1B). We ranked the ER-pathway pairs by their
occurrence in 33 cancer types, and observed a complex relationship
between ERs and immune pathways among the top 100 ER-pathway
pairs, involving 31 ERs and 13 immune pathways (Figure 1C;
Table S4). Noticeably, the most frequently identified pathways
were "T cell receptor (TCR) Signaling Pathway" and "Antigen Pro-
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cessing and Presentation," two key pathways involved in anti-tumor
immune response regulation. For instance, the correlations between
apolipoprotein B mRNA editing enzyme catalytic subunit 3H
(APOBEC3H) and "Antigen Processing and Presentation" pathway
were found in 25 cancers, consistent with previous studies that
demonstrated APOBEC3H’s associations with antigen processing
and presentation, CD8 T cell infiltration and activation in can-
cer.24,25 Chromatin reader speckled protein 140 (SP140), involved
in diverse immune pathways in more than 10 cancer types, was re-
ported to potentially control B cell development26 and activity in
cancer.27

To verify the ER-immune pathway relationships identified by EPRIM,
we evaluated our findings in independent publicly available datasets
of the same cancer type collected from the Gene Expression Omnibus
(GEO). We found that the ER-immune pathway pairs identified in
TCGA data were significantly enriched for those selected in the addi-
tional datasets for all cancer types (hypergeometric test, p value
<0.001, Tables S5 and S6). When applied to artificial bulk profiles,
calculated as the average expression of single cells grouped by patients
(GSE72056 and GSE115978), we still observed a significant overlap
(Table S5).

Identified ERs are associated with immune cell infiltration

Tumor-infiltrating immune cells exert vital roles in anti-tumor im-
mune response. To investigate the correlations of identified ER
expression with immune infiltrates, we obtained the infiltration
abundances for six cell types (e.g., CD8 T cell) from the tumor im-
mune estimation resource (TIMER).28 We observed a high number
of infiltration-related ERs across cancer types (spearman correla-
tion, |R| > 0.2 and p < 0.05, Figure 2A; Table S7). For instance,
in skin cutaneous melanoma (SKCM), 50% of immune ERs were
related to CD8 T cell infiltration. A higher fraction of 57.41% was
observed in stomach adenocarcinoma (STAD) for CD8 T cells.
Interestingly, APOBEC3H and SP140, which we mentioned in the
previous section, showed significant associations with CD8 T cells
in more than 20 cancer types (R > 0.5 for STAD and R > 0.4 for
SKCM, Figures S2A and S2B). Moreover, immune-related ERs
tended to regulate immune infiltration in the majority of cancer
types (Figures 2B–2D and S2C–S2E). In particular, strong correla-
tions for the immune ERs were observed in SKCM and STAD
upon CD8 T cells (Figure 2C, OR = 5.44, p = 1.92E�06 for
SKCM and OR = 6.79, p = 1.46E�10 for STAD, Fisher’s exact
test). For example, the apolipoprotein B mRNA editing enzyme cat-
alytic polypeptide-like 3 (APOBEC3) subfamily member apolipo-
protein B mRNA editing enzyme catalytic subunit 3G
(APOBEC3G) was correlated to CD8 T cell infiltration (Figure 2E),
supported by a result identifying APOBEC3G as a potential
biomarker of infiltrating T cells and improved patient clinical out-
comes.29 Growth factor independent 1 transcriptional repressor
(GFI1) expression showed significant correlations with CD8
T cells (Figure 2F), consistent with previous reports demonstrating
that GFI1 was correlated to infiltrating immune cells and played
important roles in T cell polarization.30,31 Moreover, Cell-type
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Figure 1. Identification of epigenetic regulators (ERs) related to immune pathways across cancer types

(A) Overview of the epigenetic regulator in immunology (EPRIM) method to capture the immune-related ERs. (B) The number (top x axis) and proportion (bottom x axis) of the

immune-related ERs identified across 33 cancer types. (C) Alluvial diagram showing the top 100 ER-pathway association pairs across cancer types. The height of a stream

field represents the number of occurrences in 33 cancer types.
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Identification By Estimating Relative Subsets Of RNA Transcripts
(CIBERSORT) that can estimate infiltration abundance of immune
cells32 identified infiltration-related ERs that were significantly over-
lapped with those by TIMER (hypergeometric test, p values shown
in Table S8). These results suggested that our identified immune-
related ERs were potentially implicated in immune infiltration.
Identified immune ERs classify cancer patients with different

survival

Given the associations with immune cell infiltration for the identified
immune-related ERs, we further explored whether they contributed
to the survival of cancer patients. As a result, significant associations
between the expression of the identified ERs and cancer patients’
Molecular Therapy: Nucleic Acids Vol. 35 March 2024 3
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Figure 2. Associations between immune ERs and immune infiltrates in cancer

(A) The fraction of infiltration-related immune ERs upon different immune cells. (B–D) The odds ratios (dots) and 95% confidence intervals (lines) of the identified immune ERs

upon infiltration-related ERs for immune cell types. Orange color indicates cancer types with p values <0.05. (E and F) Scatterplots showing the associations of estimated

CD8 T cell abundance with expression levels of APOBEC3G (apolipoprotein B mRNA editing enzyme catalytic subunit 3G, E) and GFI1 (growth factor independent 1

transcriptional repressor, F). Spearman’s correlations are indicated.
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overall survival (OS) and progression-free survival (PFS) time were
observed using univariate Cox proportional hazards regression for
various cancers (Tables S9 and S10). Fourteen immune ERs showed
significant associations with OS in SKCM, while a set of six and 24
prognostic ERs were identified in STAD and lung adenocarcinoma
(LUAD), respectively.

We then constructed a prognostic signature using the expression of
the OS-related ERs weighted by their Cox coefficients and finally ob-
tained a risk score for each cancer patient. Using the median value of
risk scores as a cutoff, two patient subgroups were obtained. We
found significant associations between the risk signature and patient
survival outcomes in multiple cancer types (Figures 3 and S3–S5). In
SKCM, the high-risk patients showed obviously worse OS (hazard ra-
tio [HR] = 1.202, 95% confidence interval [CI] = 1.131–1.277, log
rank p < 0.0001) (Figure 3A; Table S11). Through multivariate Cox
regression rectified by available factors containing age, gender, and
tumor stage, the risk signature remained significant (p < 0.0001,
Table S11). Receiver operating characteristic (ROC) evaluations
demonstrated its predictive potential for OS at 1, 3, and 5 years (Fig-
ure S3A). Moreover, compared with other clinical factors, our signa-
ture showed a better discrimination for OS (Figures S3B–S3D). In
three other independent data cohorts, the risk signature could also
stratify patients into different risk groups with significant OS differ-
ence (Figures 3B–3D). The risk signature remained a prognostic po-
tential regarding PFS (Figures S4A–S4D, S5A, and S5B; Table S12).
Similar results were also observed for other cancers, including
STAD, LUAD, and colon adenocarcinoma (COAD). In STAD,
high-risk patients showed shorter OS and PFS (Figures 3E–3H, and
S5E–S5G). Univariate and multivariate analyses collectively demon-
strated the risk characteristic of ER-based signature indicating worse
survival (p < 0.05, Tables S11 and S12). ROC analysis showed a supe-
rior accuracy of the risk signature than other standard clinical traits
for patients’ survival at 1, 3, and 5 years (Figures S3E–S3H, and
S4E–S4H). Especially, in two independent datasets, survival analyses
indicated a higher recurrence risk for high-risk patients (p < 0.01,
Figures S5F and S5G). Survival curve analysis also showed the differ-
ence between patients stratified by the ER-based signature for pa-
tients’ recurrence status (p < 0.05, Figures S5I and S5J) in LUAD.
Taken together, these results demonstrated the power of the immune
ER-defined risk signature used for stratifying patients with differen-
tial survival.

Distinct immune microenvironment and activity between

immune ER-based subgroups

Tumor immune microenvironment (TIME) exerted the profound
function for tumor initiation and development. To characterize
Figure 3. Prognostic associations of immune ER-based risk signature in cance

(A–D) Kaplan-Meier curves showing overall survival (OS) according to the ER-based sig

other three independent datasets of melanoma. (E–H) Kaplan-Meier curves showing O

and other three independent datasets of gastric cancer. (I) Kaplan-Meier curves showin

and other two independent datasets of lung cancer. (J) Kaplan-Meier curves showing OS

the other independent dataset of colon cancer.
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the specific state of TIME in the two risk groups, we first investi-
gated the immune characteristics obtained from Thorsson et al.33

As determined by Wilcoxon’s rank-sum test, we observed strong as-
sociations between our risk signature and some key immune func-
tions regulating anti-tumor immune response in different cancer
types. We found significantly higher DNA damage measures of ho-
mologous recombination deficiency (HRD) and copy number vari-
ation burden, tumor cell proliferation, and wound healing scores,
while the lower lymphocyte infiltration signature scores, TCR diver-
sity, interferon (IFN)-gamma and transforming growth factor
(TGF)-beta response for high-risk patients of SKCM (p < 0.05, Fig-
ure 4A, and S6C). A study revealed the potential of HRD as an
effective adjunct to enhance immunogenicity of tumors.34 Similar
results were also observed in LUAD (Figure 4A, and S6E). While,
in STAD, we found an opposite distribution for high-risk patients
(p < 0.05, Figures 4A and S6A). Cancer–immunity cycle depicted
the biological processes in immune reaction and underlined the
mechanisms for cancer–immunity interactions,35 we also obtained
the corresponding seven-step cycle scores of tumor samples
(Figures S6B, S6D, and S6F).36 In both SKCM and LUAD, patients
with high risk scores showed suppressive immune activity with
lower overall immune scores (Figures S6D and S6F) of steps 3–5,
lower infiltration abundance of CD8 T and CD4 T cells measured
by TIMER (Figures 4A, S6D, and S6F), lower levels of cytotoxic
T cell infiltration and major histocompatibility complex class I
(MHC-I) expression (p < 0.05, Figure 4B), while tumors with
high risk scores in STAD had elevated immune cell abundance
(Figures 4A and S6B).

Moreover, we investigated the distribution of six immune subtypes
defined by immune signature sets.33 In SKCM, the C1-wound heal-
ing subtype was enriched in the high-risk patient group, whereas
the C2-interferon-gamma dominant subtype was mainly distrib-
uted in the patient group with low risk scores (Figure 4C).
Compared with previously identified mutation-based molecular
subtypes, the mutant RAS (mainly NRAS [NRAS proto-oncogene,
GTPase]) subtype was dominant in the high-risk group, while the
mutant B-Raf proto-oncogene, serine/threonine kinase (BRAF)
subtype was dominant in the other subgroup (Figure 4C). For
STAD, patients with high risk scores were enriched in the C6-
TGF-beta dominant and C3-inflammatory subtypes; the C2-inter-
feron-gamma dominant subtype was mainly associated with the
patient group with low risk scores (Figure 4C), while we observed
an opposite distribution in LUAD (Figure 4C). Taken together,
these results demonstrated the different immune microenviron-
ment and immune activity for the two ER-defined risk patient
groups in different cancer types.
r

nature in TCGA-SKCM (The Cancer Genome Atlas-skin cutaneous melanoma) and

S according to the ER-based signature in TCGA-STAD (stomach adenocarcinoma)

g OS according to the ER-based signature in TCGA-LUAD (lung adenocarcinoma)

according to the ER-based signature in TCGA-COAD (colon adenocarcinoma) and
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Figure 4. The immunological characterization of different patient groups

(A) Comparison of the nonsilent mutation rate, homologous recombination deficiency (HRD) score, interferon (IFN)-gamma response score and infiltration of CD8 T cells in

two risk groups for STAD (left), SKCM (middle), and LUAD (right). (B) The distribution of cytotoxic T lymphocyte (CTL) levels and major histocompatibility complex class I

(MHC-I) expression in two risk groups for STAD (left), SKCM (middle), and LUAD (right). (C) The association between risk groups with immune subtypes in STAD, SKCM, and

LUAD. ns, non-significant, *p < 0.05, **p < 0.01, ***p < 0.001, and ****p < 0.0001.
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Furthermore, we investigated the association of risk groups with mu-
tations for cancer-specific driver genes37 and found several significant
associations (Figures S7A–S7C). For SKCM, BRAF had a higher mu-
tation fraction in low-risk tumors, while NRAS had a higher mutation
fraction in high-risk tumors (Figure S7B). For LUAD, the mutation
rate in tumor protein p53 (TP53) was higher in high-risk tumors,
while serine/threonine kinase 11 (STK11) driver gene was higher in
low-risk tumors (Figure S7C). However, mutations in the selected
driver genes including TP53, phosphatase and tensin homolog
(PTEN), and phosphatidylinositol-4,5-bisphosphate 3-kinase cata-
lytic subunit alpha (PIK3CA) were only enriched in low-risk tumors
for STAD (Figure S7A).
An immune ER-based signature contributes to clinical

outcomes from drug therapy

Given significant associations of risk groups with survival and im-
mune activity, we next explored if the risk signature could predict
immunotherapy response. Tumor immune dysfunction and exclu-
sion (TIDE)38 estimations quantifying the potential response of tu-
mor samples to immune checkpoint blockade (ICB) were calculated.
We noticed higher TIDE values for the high-risk patients and the
estimated non-responders showed higher risk signature scores
than the predicted responders (Figures 5A, 5E, S8A, and S8B), indi-
cating that the high-risk patients were not inclined to gain ICB
benefits.
Molecular Therapy: Nucleic Acids Vol. 35 March 2024 7
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Based on an RNA-sequencing (RNA-seq) profile of melanoma sam-
ples receiving anti-PD1 (programmed death 1) or anti-CTLA4 (cyto-
toxic T-lymphocyte-associated protein 4) treatment (Gide cohort),39

we calculated the risk scores of these samples using the risk signature
model constructed with TCGAdata (sameCox coefficients were used)
and obtained two patient groups using the median value of risk scores
as the cutoff. We noticed a significant association between our risk
signature and the response to therapy (p < 0.05, Figure 5B). Patients
with high risk scores showed dismal OS (HR = 2.075, 95% CI =
0.972–4.428, log rank p = 0.054) and PFS (HR = 2.318, 95% CI =
1.234–4.356, log rank p = 0.007). Multivariate regression analysis
demonstrated the remaining association between our risk signature
and patients’ poor survival after adjusting for age and gender (p =
0.069 for OS and p = 0.011 for PFS, Figure 5C; Tables S13 and S14).
Previous studies have demonstrated the improved clinical outcomes
to ICB for patients with the expression of immune checkpoints,40–42

especially inhibitory checkpoints PD1, programmed death-ligand 1
(PDL1), and CTLA4 expression. As expected, the patients with high
risk scores showed lower expression for inhibitory checkpoints
(p < 0.05 for PD1, PDL1, and CTLA4; Figure S8C).We further group-
ed the patients by checkpoint gene expression and our risk signature,
using themedian values as the cutoffs. The patients whowere stratified
into the high-risk and low-checkpoint groups showed aworse PFS and
OS (Figures 5D and S8D). For the patients with high risk scores, sur-
vival differences were observed between low- and high-checkpoint
groups (Figure 5D). For the patients with low checkpoint expression,
we also observed noticeable survival differences between the two risk
groups (Figure 5D). However, no survival difference was found
regarding patients from the high-checkpoint group.

Similar results were also observed based on RNA-seq data for lung
cancer samples receiving anti-PD1/PDL1 therapy (Jung cohort).43

High-risk patients tended to show poorer PFS (Figure 5F). In multi-
variate analysis adjusting for age, gender, and mutation load, our
risk signature remained associated with patients’ poor survival (p =
0.008 for PFS, Figure 5F; Table S13). In addition, we found lower
expression of checkpoint inhibitors for patients in the high-risk group
(p = 0.012, p = 0.021 for PDL1 and CTLA4, respectively; Figure S8E).
The patients from the high-risk group with low CTLA4 expression
tended to have significantly worse PFS compared with other groups
(p = 0.04, Figure 5G).

Tumor mutation burden (TMB) is the promising predictor regarding
ICB, and high TMB usually indicates improved efficacy.44,45 When
stratifying the lung cancer patients with TMB and risk signature, sig-
nificant survival disadvantages were found for the high-risk and low-
TMB patients (p = 0.006, Figure 5H). Particularly, focusing on the
Figure 5. Association between immune ER-based signature and immune chec

(A) Differences of tumor immune dysfunction and exclusion (TIDE) scores for TCGA-SK

anoma patients received ICB. (C) Kaplan-Meier curves for progression-free and overall

survival regarding the melanoma patients grouped by risk signature and checkpoints. (

curves regarding progression-free survival for the lung cancer patients who received ICB

lung cancer patient groups stratified by the risk signature and CTLA-4 (cytotoxic T-lym
low-TMB group only, the high-risk patients still showed poor PFS
(log rank p = 0.007). These observations collectively indicated the pre-
dictive potential of ER-based risk signature for clinical survival out-
comes of ICB therapy and highlighted its usefulness to further
improve the patient stratification.

Compounds strongly correlated with risk scores can show therapeutic
benefits. Using the Genomics of Drug Sensitivity in Cancer (GDSC)46

platform, we evaluated whether our risk signature could predict drug
sensitivity. Half maximal inhibitory concentration (IC50) values of
the 198 compounds for each tumor sample were calculated across
several cancer types. The spearman correlation analysis identified
the candidate compounds for which drug sensitivity was positively
associated with the risk signature (Figures 6A, 6D, 6G, and S9A),
such as BMS-754807, SB-505124, and sepantronium bromide.
High-risk patients showed lower IC50 for the selected compounds,
indicating more drug sensitivity (Wilcoxon p < 0.001, Figures 6B,
6E, 6H, and S9B–S9D). We further annotated the signaling pathways
and proteins targeted by these selected drugs and found that the drugs
mainly targeted pathways including insulin-like growth factor 1 re-
ceptor (IGF1R) and phosphoinositide-3 kinase/mammalian target
of rapamycin (PI3K/mTOR), cell cycle and extracellular signal-regu-
lated kinase/mitogen-activated protein kinase (ERK/MAPK),
apoptosis regulation signaling (Figures 6C, 6F, and 6I). The three
most sensitive drugs BMS-754807, BI-2536, and sepantronium bro-
mide targeted IGF1R, bromodomain containing 4 (BRD4), and survi-
vin, respectively. Among the 13 compounds identified in STAD,
BMS-754807 and JQ1 exhibited the strongest drug sensitivity with
the most negative correlation coefficients (Figure 6A). BMS-754807
was previously shown to effectively inhibit the growth of gastric can-
cer47 and epigenetic drug bromo and extra terminal (BET) inhibitor
JQ1 could suppress the malignant progression of gastric cancer.48–50

For SKCM (Figure 6D), previous studies focused on the efficacy of
combination therapy with the selected drugs, namely SB-505124, tra-
metinib, and ulixertinib, and other molecules.51–54 For example, the
combined delivery of TGF-beta inhibitor SB-505124 with interleukin
(IL)-12 provided a valid immunotherapy in melanoma. A combina-
tion of trametinib and dabrafenib improved the clinical outcomes
of melanoma. For LUAD (Figure 6G), the combination of the selected
drug sepantronium bromide (survivin inhibitor) and other drugs ex-
hibited a favorable safety profile in lung cancer treatment.55,56 Taken
together, our results underscored the utility of the immune ER-based
signature in facilitating the treatment decision for cancer patients.

DISCUSSION
Epigenetic modifications are crucial in gene expression regulation and
they could also modulate the immune microenvironment. Increasing
kpoint blockade (ICB) response

CM. (B) Differences of risk scores for responders and non-responders of the mel-

survival regarding the melanoma patients. (D) Survival analysis for progression-free

E) Differences of the TIDE scores between risk groups for TCGA-LUAD. (F) Survival

therapy. (G and H) Kaplan-Meier analysis for progression-free survival regarding the

phocyte-associated protein 4, G) and TMB (tumor mutation burden, H).
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Figure 6. Evaluation of the correlation between drug sensitivity and risk signature

(A) Associations with the selected Genomics of Drug Sensitivity in Cancer (GDSC)-derived compounds in the STAD cohort. (B) Differences of the calculated half maximal

inhibitory concentration (IC50) values (log-transformed). (C) Targeted signaling pathways (left) of the candidate compounds from GDSC database and the 3D interaction

structure (right) with their target proteins. (D–F) The same as in (A–C), but for SKCM cohort. (G–I) The same as in (A–C), but for the LUAD cohort.
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evidence demonstrates the role of ER genes in the immune system.
However, few immune-related ERs were captured in tumor immune
response. Therefore, an approach that aims to systematically identify
immune-modulating ERs is still needed. In this study, we developed a
dedicated approach, the epigenetic regulator in immunology
(EPRIM), to identify immune-related ERs upon immunity-related
pathways based on publicly available gene expression and immune
profile data. We systematically identified immune-related ERs from
33 cancer types based on 17 immune pathways by using EPRIM.
10 Molecular Therapy: Nucleic Acids Vol. 35 March 2024
To our best knowledge, it is the first dedicated tool that can fulfill
the task. In addition, we provided the EPRIM-predicted results as a
useful resource for the community. Besides, we revealed their poten-
tial roles in immune infiltration regulation. We successfully demon-
strated their clinical relevance for predicting cancer prognosis and
ICB response. Specifically, we established the ER-based risk model
for prognosis and therapy response, and stratified cancer patients
with different immunological characterization, highlighting their po-
tential utility in clinical practice.
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A successful immunotherapy largely depended on the knowledge
on the function of immune system regarding cancer progression. Ge-
netic or epigenetic determinants for dysregulated tumor immune
microenvironment are still needed to fully explore. Emerging studies
demonstrated that ERs were active participants in immune microen-
vironment modulation. However, the poor characterization for im-
mune-related ERs in human tumors motivated us to study their roles
in immune response. We designed an approach EPRIM that can sys-
tematically identify the ERs implicated in immune pathways. Using
EPRIM, we presented the comprehensive landscape of associations
between ER genes expression and 17 immune pathways at the first
time. Across 33 cancer types, we found that ERs are not equally
involved in these pathways, instead, they were mainly correlated to
"TCR signaling pathway" and "antigen processing and presentation."
TCR pathway is a well-known pathway that is important for the im-
mune response,57 which conducts the process of released antigen
signal to T cells.58 The immune-related ERs identified in this work
were related to tumor immune infiltration, especially in SKCM and
STAD. These observations underscored their potential importance
in tumor immunology.

Previous reports have revealed the contribution of mutation to im-
mune escape and resistance to immunotherapy.59,60 Different muta-
tion distribution of driver genes was shown (Figure S7). In SKCM, a
higher mutation frequency of BRAF was observed for the low-risk
group, while more frequent NRAS mutation was observed for high-
risk group (Figure S7B). BRAF mutation was indicated to be associ-
ated with increased immune infiltration, while NRAS was the oppo-
site.61 One recent study characterized the crosstalk of tumor evolution
with the immune system, demonstrating that early immune surveil-
lance can confer a selection pressure with neoantigens depletion by
promoter hypermethylation of genes harboring neoantigenic muta-
tions, causing immune evasion.62 This highlighted the importance
of genetic and epigenetic regulation in tumor immune crosstalk
andmuchmore accurate mechanisms can be elucidated in the context
of multi-omics data in further studies.

The immune ER-based signature identified by EPRIM also has clin-
ical implications. In this work, we examined the effect of immune-
related ERs on patient survival and constructed an ER-based risk
model. Both worse overall and progress-free survival were observed
for high-risk group in multiple independent datasets and cancer types
(Figures 3 and S3–S5). Analyzing immune function and infiltration
data, tumors with a higher risk score exhibited lower immune activity
(Figures 4 and S6).

In addition, we also observed the association between ER-based
risk signature and response to immunotherapy. A negative correla-
tion regarding clinical outcomes for patients receiving immune
checkpoint therapy was noticed (Figures 5A–5C, 5E, and 5F,
S8A, and S8B). Moreover, we found notably lower expression
values of immune checkpoints for high-risk patients
(Figures S8C and S8E). When stratifying patients with the combi-
nation of our signature and checkpoint molecules, the worst sur-
vivals were observed for the low-checkpoint and high-risk patients
group (Figures 5D and 5G). The survival difference was observed
for patient stratification by combining immune ER-based signature
and TMB, helping the selection of patients with improved clinical
benefits (Figure 5H). We further screened potential compounds
used for high-risk patients, and found some promising compounds
from the GDSC database, such as BMS-754807, SB-505124, and se-
pantronium bromide (Figures 6 and S9), which mainly targeted
pathways including IGF1R and PI3K/mTOR, cell cycle and ERK
MAPK, and apoptosis regulation signaling pathways. Protein mo-
lecular interaction conformations supported the structural basis for
BRD4_JQ1, IGF1R_BMS-754807, BRD4_BI-2536, and survivin_se-
pantronium bromide (Figures 6C, 6F, and 6I), providing mecha-
nistic clues to cure cancer. Pietro et al. evidenced the rationally de-
signed polypharmacology for dual kinase-bromodomain inhibitor
BI-2536, which targeted both the epigenetic reader domain of
BRD4 and the kinase Polo-like kinase 1 (PLK1).63 Interestingly,
recent studies have reported the potentiated efficacy of ICB therapy
by using the drugs by targeting ERs.64,65 Consistently, the epige-
netic drug JQ1, which was found to have high drug sensitivity
for high-risk patients (Figures 6A–6C and S9A), could strengthen
immune response through modulating T cell persistence.66 Taken
together, we demonstrated that the immune-related ERs may
become promising targets by epi-drugs in combination with
immunotherapy, augmenting anti-tumor effects.

In summary, the proposed algorithm EPRIM identified the ERs that
had impact on immune pathways from pan-cancer and cancer-spe-
cific level. Our study also revealed the clinical potential of the identi-
fied immune-related ERs through the analysis of cancer patient sur-
vival and response to immunotherapy. The results shed new light
on the understanding of ER function in immune regulation. The im-
mune ERs therefore deserve to be further studied in mechanisms to
develop and advance immunotherapy strategies and pharmaceuticals
for human cancer.
MATERIALS AND METHODS
Acquisition of ERs

Human ER genes were collected from the previous studies,22,67 which
were annotated by “histone_type” or “methylator_type.” A total of
690 ERs were included for the following analyses (Table S2).
Collection and refinement of immune gene sets

We acquired the signature gene sets of 17 immune pathways from
ImmPort (https://www.immport.org/home),23 which included im-
mune categories of antimicrobials, cytokines, antigen processing,
and presentation. The signature gene list and the pathway annota-
tions used in our study are available in Table S3. Then, for each
gene set, we computed the average expression and filtered
genes by its expression correlation with the average. Spearman corre-
lation was used, and we only retained significantly correlated
genes (p < 0.05).
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Molecular data

The mRNA expression profiles (TPM values, transcripts per kilobase
million) of >10,000 tumor samples from TCGA across 33 cancers
were downloaded (https://osf.io/gqrz9/wiki/home).68 The cancer
types and number of tumor samples are available in Table S1. We
acquired clinical data of these samples and mutation data from the
Pancancer Atlas consortium (https://gdc.cancer.gov/about-data/
publications/pancanatlas). The cancer driver genes identified by a
previous study were also used.37
Immune profile characterizing TCGA patients

The immune characteristics, published molecular subtypes, leukocyte
fraction (LF), and CIBERSORT immune fractions for TCGA tumor
samples were included from a previous study to measure the associ-
ation between the risk signature and immune microenvironment.33

We used immune fractions multiplying LF as absolute proportions
for 22 immune cells in tumor tissue. We also obtained the estimated
abundance of six infiltrating cells from TIMER (version 2.0, https://
cistrome.shinyapps.io/timer), including CD8 T, CD4 T, B cells, neu-
trophils, macrophages, and dendritic cells. MHC-I and cytotoxic T
lymphocyte (CTL) levels were measured by average gene expression
according to previous literature. Genes HLA-A, HLA-B, HLA-C,
and B2M were used to calculate the MHC-I expression level, while
CD8A, CD8B, GZMA, GZMB, and PRF1 were used for CTL
calculation.
EPRIM algorithm rationale

We proposed a computational algorithm EPRIM (Figure 1A) to iden-
tify ERs that were potentially involved in the immune function. In
EPRIM, two types of data are mandatory: gene expression profiles
of bulk samples as well as interested immune gene sets.

We first ranked the protein-coding genes (excluding ER genes) ac-
cording to their expression correlation with a specific ER. Consid-
ering tumor purity was a confounding factor in the cancer gene
expression analysis,69,70 we then calculated the tumor purity of each
sample through the ESTIMATE algorithm.71 The numeric vectors
representing ER m expression, and protein-coding gene n expression
and tumor purity scores of samples from a specific cancer type were
defined as E(m) = (e1, e2,., em,., ek), G(n) = (g1, g2,., gn,., gk),
and P = (p1, p2,., pm,., pk), and the partial correlation coefficient
(Corr) between ERm and protein-coding gene n correcting for purity
was defined as follows:

CorrðmnÞ =
REG � REP � RGPffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 � R2
EP

p � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � R2

GP

p
REG represents the coefficient for ER m and protein-coding gene n,
REP represents the coefficient for ER m and tumor purity, and RGP

represents the coefficient for protein-coding gene n and tumor purity.
By combing Corr and p value of the Corr (P(mn)) for each ER-coding
gene pair, the protein-coding genes were ranked by the RS regarding
each ER.
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RSðmnÞ = � log10ðPðmnÞÞ � signðCorrðmnÞÞ
Then, for each gene set in 17 immune-related pathways, we conduct-
ed gene set enrichment analysis (GSEA)21 for quantifying expression
shift of immune genes (fgsea package, version 1.24.0). In brief, by
moving from the top to bottom of the ranked gene list one by one,
we computed two types of weighted gene fractions through deter-
mining if they were immune genes at each step. One type was the frac-
tion of genes in one immune pathway ("hits") weighted by their rank
scores and the other was the fraction of genes not in this pathway
("misses"). For each ER-pathway pair, the enrichment score (ES)
and p value were obtained. We selected the significant ER-immune
pairs with false discovery rate (FDR) < 0.05. A correlation score
ImmERCor between ER m and immune pathway j was defined as
follows:

ImmERCorðm; jÞ =
�
1 � 2p; if ESðmjÞ> 0
2p � 1; if ESðmjÞ< 0

Construction of a prognostic immune ER signature

To investigate the clinical correlation of immune-related ERs, we es-
tablished an ER-based signature. By univariate Cox regression anal-
ysis, the immune ERs significantly correlated with patients’ OS
were retained (p < 0.05). Then for each patient, we computed a risk
signature score by weighted sum expression: riskscore =Pn

i = 1coef ðERiÞ � expðERiÞ, where coef(ERi) and exp(ERi) indicate
the Cox coefficients and expression levels for the ith ER, respectively.
Using the median value of risk scores as the cutoff, the patients of a
cancer type were grouped into high- and low-risk subgroups.

Estimation of drug sensitivity

We acquired the drug response data against cancer cell lines from
GDSC (https://www.cancerrxgene.org),46 where the drug sensitivity
information with IC50 value was available (lower level points to a
stronger response). Transcriptome data for cancer cell lines were
also used.72 For drug response prediction, the gene expression and
response data of cancer cell lines from GDSC2 provided by the onco-
Predict OSF (https://osf.io/c6tfx) were used as the training data, and
the TCGA gene expression data of a specific cancer type as the testing
data. For each patient of a cancer type, we estimated the IC50 value of
each compound via oncoPredict package (version 0.2).73 TIDE web
application was used for evaluating the potential response of patients
to ICB based on the gene expression profile of a specific cancer type
(http://tide.dfci.harvard.edu).38

Statistical analysis

Two-sided Wilcoxon rank-sum test was conducted for comparing
feature values between two patient groups. Spearman correlation co-
efficient was calculated to measure the associations between two vari-
ables. Associations between variables and survivals were tested using
univariate/multivariate Cox proportional hazard regression (survival
package, version 3.5.0), and the survival comparison by log rank test
was then conducted. ROC curves were generated by the pROC

https://osf.io/gqrz9/wiki/home
https://gdc.cancer.gov/about-data/publications/pancanatlas
https://gdc.cancer.gov/about-data/publications/pancanatlas
https://cistrome.shinyapps.io/timer
https://cistrome.shinyapps.io/timer
https://www.cancerrxgene.org
https://osf.io/c6tfx
http://tide.dfci.harvard.edu
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package (version 1.18.0). The time-dependent areas under the curve
were drawn via the timeROC package (version 0.4). All statistical an-
alyses and the main algorithm were run in R computing system
version 4.2.0.
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can be found at https://github.com/syy2017/EPRIM.
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