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Objective. Elderly patients are prone to postherpetic neuralgia (PHN), which may cause anxiety, depression, and sleep disorders
and reduce quality of life. As a result, the life quality of patients was seriously reduced. However, the pathogenesis of PHN has not
been fully elucidated, and current treatments remain inadequate..erefore, it is important to explore the molecular mechanism of
PHN.Methods. We analyzed the GSE64345 dataset, which includes gene expression from the ipsilateral dorsal root ganglia (DRG)
of PHN model rats. Differentially expressed genes (DEGs) were identified and analyzed by Gene Ontology. Protein-protein
interaction (PPI) network was constructed. .e miRNA associated with neuropathic pain and inflammation was found in
miRNet. Hub genes were identified and analyzed in Comparative Toxicogenomics Database (CTD). miRNA-mRNA networks
associated with PHN were constructed. Results. A total of 116 genes were up-regulated in the DRG of PHN rats, and 135 genes
were down-regulated. Functional analysis revealed that variations were predominantly enriched for genes involved in neuroactive
ligand-receptor interactions, the Jak-STAT signaling pathway, and calcium channel activity. Eleven and thirty-one miRNAs
associated with neuropathic pain and inflammation, respectively, were found. Eight hub genes (S1PR1, OPRM1, PDYN, CXCL3,
S1PR5, TBX5, TNNI3, MYL7, PTGDR2, and FBXW2) associated with PHN were identified. Conclusions. Bioinformatics analysis
is a useful tool to explore the mechanism and pathogenesis of PHN. .e identified hub genes may participate in the onset and
development of PHN and serve as therapeutic targets.

1. Introduction

Postherpetic neuralgia (PHN) is an intractable condition,
characterized by persistent or intermittent burning, tingling,
or sharp pain, that lasts more than 4 months [1] and affects
patients’ quality of life [2]. It is estimated that the incidence of
PHN was 3.9–42.0/100,000 person-years [3]. A study in-
volving 1358 patients with acute herpes zoster found that the
incidence of herpes zoster-related pain at 6 months was 9%
[4]. Furthermore, PHN may cause complications such as
anxiety, depression, and sleep disorders, which may reduce
the life expectancy of elderly patients [5]. .erefore, early
diagnosis and timely treatment are very important for elderly
patients [1]. However, the pathogenesis of PHN has not been
fully elucidated. Inflammation, neuroinflammation, loss of

axons and myelin sheath of sensory nerve roots, fibrosis, and
central sensitization may be involved [6, 7], and the dorsal
root ganglion (DRG) may play an important role in the
occurrence, development, and treatment of PHN [8, 9].
Gabapentin, pregabalin, and opioids can improve the
symptoms of PHN, but their therapeutic effects are still far
from satisfactory [10]. Mirogabalin and the angiotensin II;
type 2 receptor antagonist EMA401 may be effective in re-
lieving the symptoms of PHN, but additional clinical in-
vestigation is warranted [11, 12]. .erefore, we aimed to
further explore the pathogenesis of PHN and identify specific
molecular targets.

Gene sequencing and bioinformatics analysis are widely
used in the study of the molecular mechanism of diseases.
Tang found several DEGs upon analysis of the
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transcriptional data of DRG in spared nerve injury (SNI)
model mice and determined that mir-16-5p may be involved
in the pathogenesis of neuropathic pain (NP) [13]. Following
an analysis of the transcriptional data of patients with
fibromyalgia, Qiu found evidence that CD38 and GATM are
involved in the occurrence and development of this disease
through regulation of ion channels and inflammatory
pathways, which provides new insights into the molecular
mechanisms [14]. Furthermore, Guedon successfully con-
structed a rat model of PHN using Varicella Zoster Virus
(VZV) and found several DEGs in DRG sequencing data,
including the abnormal expression of CGRP and TRPV1
[15]. Another lab found several abnormally expressed
miRNAs and circRNAs in the skin lesions of patients with
PHN [16]. However, these data still need additional clinical
interpretation.

.rough bioinformatics analysis, we found DEGs be-
tween the DRG of PHN rats and normal control rats. Hub
genes were identified and analyzed in the Comparative
Toxicogenomics Database (CTD), and their roles in PHN
were preliminarily analyzed.

2. Materials and Methods

2.1. PHNDataset Selection. One expression profiling dataset
[GSE64345 (GPL1355 platform)] was downloaded from the
GEO database (http://www.ncbi.nlm.nih.gov/geo), an open-
source platform for the retrieving gene expression data [17].
.e GSE64345 dataset includes gene expression in the ip-
silateral DRG of three PHN model rats (male, Sprague
Dawley rats) and three normal controls. Varicella zoster
virus- (VZV-) infected MEWO (human melanoma cell line
MeWo) human cells were used to transmit VZV to rodents.
Controls (uninfected MEWO cells) or VZV-infected
MEWO cells were inoculated into the glabrous region of the
right rear footpad of male Sprague Dawley rats. After the
development of ipsilateral nocifensive behaviour in the
VZV-infected animals, the ipsilateral DRG (L4, 5) from
infected and control animals were taken for microarray
analysis [15].

2.2. DEGs Identification. GEO2R (https://www.ncbi.nlm.
nih.gov/geo/geo2r/), an online tool based on GEOquery
and limma R packages, was used to identify DEGs between
DRGs of PHN rats and normal control [18]. GEO2R may
also be used to distinguish DEGs between DRGs of PHN rats
and normal control. Results for which P value <0.05 and
Fold change (FC)> 1 or FC＜−1 were considered statisti-
cally significant. Volcano diagrams were delineated by
SangerBox software based on R language (http://sangerbox.
com/).

2.3. GO and KEGG Analysis of DEGs. .e Database for
Annotation, Visualization, and Integrated Discovery
(DAVID) (https://david.ncifcrf.gov/home.jsp; version
6.8) is a useful annotation function tool [19]. Gene On-
tology (GO) covers biological process (BP), cellular
component (CC), and molecular function (MF). In

addition, Encyclopedia of Genes and Genomes (KEGG) is
widely used. GO and KEGG analysis of DEGs were per-
formed in DAVID. Background: Rattus norvegicus.
.resholds: count 2, EASE 0.1. Results for which P< 0.05
were considered statistically significant. Top 20 of BP, CC,
MF, and top 7 KEGG enrichments were selected and
visualized. .e process and pathway enrichment analysis
were performed by Metascape (http://metascape.org/gp/
index.html), a powerful annotation analysis tool for gene
function [20]. .resholds: P-value cutoff 0.01, min en-
richment 1.5.

2.4. PPI Network Construction. .e Search Tool for the
Retrieval of Interacting Genes (STRING) (http://string.
embl.de/) was used to construct a PPI network for the
DEGs, which was visualized in Cytoscape (version 3.6.1)
[21]. .e Molecular Complex Detection tool (MCODE) was
then used to screen and identify the most significant module
in the network. .e criteria were MCODE scores >2, node
score cutoff� 0.2, and degree of cutoff� 2.

2.5. Neuropathic Pain and Inflammation-Related miRNAs
and Target Genes. .e miRNAs associated with inflamma-
tion and neuropathic pain were identified in miRNet, a web-
based tool that can predict the miRNA of many diseases
based on high-quality data (http://www.mirnet.ca) [22].
.en, the miRNA related genes were performed. Common
genes between the predicted genes and DEGs of dataset
GSE64345 were identified.

2.6. PHN Associated Genes. Using the Comparative Tox-
icogenomics Database (CTD), which can effectively predict
the correlation between diseases, drugs, and genes (http://
ctdbase.org/) [23], genes associated with PHN were iden-
tified. Common genes were found between PHN associated
genes and DEGs of dataset GSE64345.

2.7. Hub Gene Identification. .e common genes between
MCODE genes and the NP-related miRNA predicted genes,
inflammation-related miRNA predicted genes, and PHN-
associated genes were identified. .ese common genes were
hub genes.

2.8. Hub Gene Analysis in CTD. Firstly, the interaction of
hub gene and signs and symptoms, mental disorder, and
nervous system diseases were analyzed. .en, the inter-
secting genes among DEGs of GSE64345, PHN-related
genes, and genes that inferred with common drugs (Pre-
gabalin, gabapentin, amitriptyline, duloxetine, venlafaxine,
and tramadol) used to treat PHN were identified. Since the
pathogenesis of PHN has not been elucidated, mechanisms
such as central sensitization may be involved [7]. .e lo-
calization of hub gene in brain cells was explored in Brain
RNA-seq, an RNA-sequencing transcriptome, and splicing
database of glia and neurons [24].
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2.9. miRNA-mRNA Network Construction and lncRNA
Prediction. .e miRNA-mRNA networks of inflammation-
related miRNA, NP-related miRNA, and PHN-associated
genes were constructed. NP-related miRNA hsa-mir-150-5p
and hsa-mir-134-5p predicted lncRNAs were identified and
the lncRNA-miRNA network were constructed. Addition-
ally, the miRNA-mRNA networks of inflammation-related
miRNA, NP-related miRNA, and PHN-associated genes
were constructed.

3. Results

3.1. DEGs between PHN and Normal Control DRGs.
DEGs were shown in Volcano diagrams (Figure 1). A total of
116 genes were up-regulated in DRGs of PHN rats and 135
genes were down-regulated.

3.2. KEGG and GO Analysis of DEGs. .e results of GO and
KEGG analysis revealed that variations were predominantly
enriched in muscle tissue development, cardiac muscle
tissue development, regulation of gene-specific transcrip-
tion, neuroactive ligand-receptor interaction, Jak-STAT
signaling pathway, cell surface receptor signaling pathway
involved in cell-cell signaling, calcium channel activity, and
so on. Results from DAVID analysis were shown in
Figures 2(a)–2(d). Pathway and process enrichment analysis
by Metascape were shown in Figures 3(a)–3(c).

3.3. PPI Network. Construction of a PPI network revealed
120 nodes and 191 edges (Figure 4(a)). Significant modules
were identified (Figure 4(b)–4(d)).

3.4. Neuropathic Pain and Inflammation-Related miRNAs
and Genes Prediction. 11 miRNAs were found related with
neuropathic pain (Figure 4(e)). 31 miRNAs were found
related with inflammation (Figure 4(f)). In addition, 2843
genes were predicted by the neuropathic pain-related
miRNAs (Supplementary Figure S1 A). 5199 genes were
predicted by the inflammation-related miRNAs (Supple-
mentary Figure S1 B). .ere were some intersection genes
between DEGs of GSE64345 and the predicted genes by the
miRNA including MCODE gene S1PR1, OPRM1, PTGDR2,
and FBXW2 (Supplementary Figure S1 C, D). Furthermore,
a total of 10545 genes were found associated with PHN in
CTD. .ere were some intersection genes between DEGs of
GSE64345 and the PHN-related genes, including MCODE-
identified genes S1PR1, OPRM1, PDYN, CXCL3, S1PR5,
TBX5, TNNI3, and MYL7 (Supplementary Figure S1 E, F).

3.5. Hub Gene Selection. .e intersecting MCODE-identi-
fied genes were selected as hub genes: S1PR1, OPRM1,
PDYN, CXCL3, S1PR5, TBX5, TNNI3, MYL7, PTGDR2,
and FBXW2. .e list of fold change of the expression of hub
genes in PHN models compared with control was shown in
Table 1.

3.6. CTD Analysis. .e hub genes were analyzed in CTD,
and the genes were significantly related with some signs and
symptoms, mental disorder, and nervous system diseases
including hyperalgesia and depression. .e results sug-
gesting that these genes may be involved in the occurrence
and development of PHN. .e interaction of S1PR1,
OPRM1, PTGDR2, FBXW2, PDYN, and CXCL3 and in-
ference score were shown in Figures 5(a)–5(f). In addition,
we analyzed the intersecting gene between DEGs of
GSE64345, PHN-related genes, and genes inferred with
common drugs for treating PHN including pregabalin,
gabapentin, amitriptyline, duloxetine, venlafaxine, and
tramadol (Supplementary Figure S2 A-F).

3.7. Brain Localization and Expression. S1PR1 and PDYN
were mainly located in the astrocyte. OPRM1 was mainly
located in the neuron. CXCL3 was mainly located in the
microglia (Figures 6(a)–6(d)).

3.8. miRNA-mRNA Network and lncRNA Prediction. .e
neuropathic pain-related miRNA hsa-mir-150-5p, hsa-mir-
134-5p, and inflammation-related miRNA hsa-mir-148a-3p,
hsa-mir-155-5p, hsa-mir-1236-3p, and hsa-mir-222-3p were
included in the network (Figure 7(a)). In addition, the
neuropathic pain-related miRNAs hsa-mir-150-5p and hsa-
mir-134-5p-predicted lncRNAs were identified, and the
lncRNA-miRNA networks were constructed (Figure 7(b)).

4. Discussion

Elderly patients are prone to postherpetic neuralgia (PHN)
following VZV-induced herpes zoster [25]. .oracic, cer-
vical, and trigeminal nerves are commonly involved in PHN
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Figure 1: Identification of DEGs between PHN and normal control
DRG samples.
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[26, 27], which may cause anxiety, depression, sleep dis-
orders, and other complications. As a result, the life quality
of elderly patients was seriously reduced [28]. In addition,
patients may be haunted by PHN for a long time. A survey of
385 patients with PHN found that the average duration was

3.3 years [29]. .erefore, PHN not only causes pain in
patients but also greatly increases the burden of medical care
[30]. However, the pathogenesis of PHN has not been fully
elucidated, resulting in which the current treatments are far
from satisfactory [10]. .erefore, it is of important clinical
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Figure 2: .e enrichment analysis of DEGs by DAVID. .e bubble charts showed (a) BP, (b) CC, (c) MF, and (d) KEGG, respectively.
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and market value to explore the molecular mechanism of
PHN and identify better therapeutic targets.

.e DRG may play an important role in the onset,
development, and treatment of PHN [9, 31]. In this study,
the whole genome sequencing data of DRG of PHN rats was
used to identify several hub genes (S1PR1, OPRM1,
PTGDR2, FBXW2, PDYN, CXCL3, S1PR5, TBX5, TNNI3,
and MYL7). In addition, miRNA-mRNA networks were
constructed. .e roles of S1PR1, OPRM1, PTGDR2,
FBXW2, PDYN, and CXCL3 in the pathogenesis of PHN are
discussed.

S1PR1 (sphingosine-1-phosphate receptor 1) is mainly
involved in the regulation of G protein-coupled receptor
binding, sphingosine-1-phosphate receptor signaling
pathway, cytokine-mediated signaling pathway, transmis-
sion of nerve impulse, neuron differentiation, actin cyto-
skeleton reorganization, and positive regulation of cytosolic
calcium ion concentration involved in phospholipase
C-activating G protein-coupled signaling pathway [32].
Song found that there was a significant correlation between
S1PR1 and chemotherapeutic drug resistance in gastric
cancer, which provided evidence for the study of the
mechanism and treatment of chemotherapeutic drug

resistance [33]. Liu demonstrated that S1PR1 can regulate
the proliferation and apoptosis of esophageal cancer cells
[34]. In addition, Xie found that pain sensitivity was im-
proved in S1PR1 knockout rats. Further analysis showed
that S1PR1 receptors in DRG were involved in pain sen-
sitivity by regulating inflammation [35]. Furthermore,
Grenald found that inhibition of S1PR1 could reduce
cancer-induced bone pain (CIBP) and promote the ex-
pression of IL-10 in lumbar spinal cord, suggesting that
S1PR1 is involved in the regulation of CIBP and neuro-
inflammation [36]. Similarly, Huang believed that S1PR1
might play an important role in the pathophysiology of pain
and neuroinflammation [37]. Consistent with the above
study, we found that S1pr1 was differentially expressed in
the DRG of PHN rats. At the same time, we found that
S1PR1 was the target gene predicted by both neuropathic
pain-related miRNA hsa-mir-150-5p and inflammation-
related miRNA hsa-mir-1236-3p, hsa-mir-155-5p, and hsa-
mir-148a-3p. CTD analysis determined that S1PR1, located
in astrocytes, was associated with PHN. We speculate that
S1PR1 is involved in the occurrence and development of
PHN by regulating inflammation and pain transmission
pathway in DRG..is suggests that S1PR1 may be a specific
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R-HSA-383280: nuclear Receptor transcription pathway
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Figure 3:.e enrichment analysis of DEGs byMetascape. (a) Bar graph of enriched terms across DEGs, colored by P values. (b) Network of
enriched terms, colored by cluster. (c) Network of enriched terms, colored by significant P value.
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Figure 4: Protein-protein interaction (PPI) network andMCODE genes. (a) Protein-protein interaction network of DEGs. (b–d) Significant
modules. (e) Neuropathic pain-related miRNAs. (f ) Inflammation-related miRNAs.
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Table 1: .e information of 10 hub gene.

Gene symbol Title Log FC P value
Oprm1 Opioid receptor, mu 1 1.09 0.03269922
Cxcl3 Chemokine (C-X-C motif ) ligand 3 1.79 0.00471944
Tnni3 Troponin I3, cardiac type 1.83 0.00244407
Tbx5 T-box 5 3.24 0.00484397
Ptgdr2 Prostaglandin D2 receptor 2 −1.32 0.00724425
Myl7 Myosin light chain 7 −1.33 0.02720756
Fbxw2 F-box and WD repeat domain containing 2 −1.8 0.0046277
Pdyn Prodynorphin −1.48 0.00687388
S1pr1 Sphingosine-1-phosphate receptor 1 −2.07 0.04005879
S1pr5 Sphingosine-1-phosphate receptor 5 −2.13 0.00474774
FC: fold change.
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Figure 5: .e hub gene analysis in CTD. (a) S1PR1, (b) OPRM1, (c) PTGDR2, (d) FBXW2, (e) PDYN, and (f) CXCL3.
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therapeutic target for PHN, and the related molecular
mechanism is worthy of further exploration.

OPRM1 (opioid receptor mu 1) is mainly involved in
regulating voltage-gated calcium channel activity, morphine
receptor activity, neuropeptide binding, cytokine-mediated
signaling pathway, sensory perception of pain, and excit-
atory postsynaptic potential [32]. OPRM1 plays an impor-
tant role in pain modulation and analgesia. .rough the
analysis of patients with primary dysmenorrhea, Wei proved
that there was an association between OPRM1 gene poly-
morphism and descending pain modulation system
(DPMS), suggesting that OPRM1 may be involved in central
sensitization [38]. Chidambaran found through a retro-
spective analysis that DNA methylation on the OPRM1
promoter can predict pain after spinal fusion and guide
medication, suggesting that OPRM1 plays an important role
in pain transmission [39]. Similarly, Mo found that OPRM1
participates in the abnormal expression of pain pathway
regulated by methyl CpG binding domain protein, which
promotes the occurrence and maintenance of neuropathic
pain [40]. In addition, there is a correlation between OPRM1
gene polymorphism and the efficacy of analgesics [41].
However, there are few reports on the relationship between
OPRM1 and PHN. We found that Oprm1 was abnormally
expressed in the DRG of PHN rats. Furthermore, OPRM1 is

the target gene predicted by neuropathic pain-related
miRNA hsa-mir-134-5p. OPRM1 was associated with PHN
analyzed in CTD. We speculate that OPRM1 induces PHN
by regulating pain signal transduction in DRG and central
sensitization, but the molecular mechanism needs further
exploration.

PTGDR2 (prostaglandin D2 receptor 2) is mainly in-
volved in regulating neuropeptide binding, immune re-
sponse, and calcium-mediated signaling. Zhang found that
PTGDR2 was abnormally expressed in gastric cancer, which
was related to the poor prognosis of patients [42]. In ad-
dition, Kiely found that PTGDR2 was abnormally expressed
in the microglia of degenerative brain atrophy and may be
involved in the inflammatory changes of degenerative brain
atrophy [43]. FBXW2 (F-box and WD repeat domain
containing 2) plays a role in the regulation of protein
polyubiquitination, cellular protein modification process,
proteolysis. Yang found that FBXW2 can participate in the
occurrence and development of lung cancer by regulating
epidermal growth factor-AKT1, β-catenin [44]. .ere are
few reports related to FBXW2 involving in pain regulation.
We found that PTGDR2 and FBXW2 were differentially
expressed in DRG of PHN rats. Furthermore, PTGDR2 is the
target gene predicted by inflammation-related miRNA hsa-
mir-1236-3p. FBXW2 is the target gene predicted by
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Figure 6: .e hub gene expression and localization in brain cells. (a) S1PR1, (b) OPRM1, (c) PDYN, and (d) CXCL3.
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inflammation-related miRNA hsa-mir-222-3p. We hy-
pothesize that PTGDR2 and FBXW2 are involved in the
occurrence and development of PHN by regulating in-
flammation and pain signal transduction in DRG.

PDYN (prodynorphin) is mainly involved in regulating
opioid peptide activity, neuropeptide signaling pathway,
chemical synaptic transmission, and sensory perception.
Rojewska found abnormal expression of PDYN in the spinal

Inflammation related miRNA

Neuropathic pain related miRNA

Postherpetic neuralgia associated genes

Hub gene

(a)

Necuropathic pain related miRNA

Predicted IncRNA

(b)

Figure 7:.emiRNA-mRNA network and lncRNA-miRNA network. (a) miRNA-mRNA network. (b) lncRNA-miRNA network predicted
by neuropathic pain-related miRNA hsa-mir-150-5p and hsa-mir-134-5p.
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cord using the mouse model of chronic sciatic nerve
compression injury (CCI), suggesting that PDYN may play
an important role in the occurrence and development of
neuropathic pain [45]. Similarly, Korczeniewska examined
the DRG and trigeminal ganglion (TG) of trigeminal neu-
ropathy and spinal mononeuropathy induced by chronic
compression injury. Pdyn was up-regulated in TG and
down-regulated in DRG 4 days after injury [46]. CXCL3 (C-
X-C motif chemokine ligand 3) is involved in regulating
chemokine activity, chemokine-mediated signaling path-
way, inflammatory response, neutrophil chemotaxis, and
immune response. Liu found that CxCl3 was highly
expressed in the cervical spinal cord of pruritus animal
model, suggesting that CxCl3 may mediate pruritus [47]. In
addition, Piotrowska proved that CXCL3 may mediate the
process of neuropathic pain and hyperalgesia [48]. Con-
sistent with these results, we found that PDYN and CXCL3
were differentially expressed in the DRG of PHN rats. We
speculate that PDYN and CXCL3 induce and maintain PHN
by regulating DRG pain conduction pathway and central
sensitization. .e related molecular mechanisms need ad-
ditional investigation.

Despite our rigorous analysis, there are several short-
comings in this study. Firstly, the sample size in the dataset is
small, and a larger sample size is needed to yield more
accurate results. Secondly, the expression of the hub genes in
the DRG has not been verified. .irdly, we speculated the
functional pathway of hub genes involved in the patho-
genesis of PHN and explored the molecular targets of
gabapentin and other drugs used in the treatment of PHN.
However, the specific molecular mechanisms of these hy-
potheses must be verified by further experiments.

5. Conclusions

Bioinformatics analysis is a useful tool to explore the
mechanism and pathogenesis of PHN..ere were numerous
genes that were differentially expressed in the DRG of PHN
rats and normal control groups. .ese hub genes may play
important roles in the onset and development of PHN and
serve as therapeutic targets.
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