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ABSTRACT

BACKGROUND: Though the development of targeted cancer drugs continues to accelerate, doctors still lack reliable methods for predict-
ing patient response to standard-of-care therapies for most cancers. DNA methylation has been implicated in tumor drug response and is
a promising source of predictive biomarkers of drug efficacy, yet the relationship between drug efficacy and DNA methylation remains
largely unexplored.

METHOD: In this analysis, we performed log-rank survival analyses on patients grouped by cancer and drug exposure to find CpG sites
where binary methylation status is associated with differential survival in patients treated with a specific drug but not in patients with the same
cancer who were not exposed to that drug. We also clustered these drug-specific CpG sites based on co-methylation among patients to
identify broader methylation patterns that may be related to drug efficacy, which we investigated for transcription factor binding site enrich-
ment using gene set enrichment analysis.

RESULTS: We identified CpG sites that were drug-specific predictors of survival in 38 cancer-drug patient groups across 15 cancers and
20 drugs. These included 11 CpG sites with similar drug-specific survival effects in multiple cancers. We also identified 76 clusters of CpG
sites with stronger associations with patient drug response, many of which contained CpG sites in gene promoters containing transcription
factor binding sites.

CONCLUSION: These findings are promising biomarkers of drug response for a variety of drugs and contribute to our understanding of
drug-methylation interactions in cancer. Investigation and validation of these results could lead to the development of targeted co-therapies
aimed at manipulating methylation in order to improve efficacy of commonly used therapies and could improve patient survival and quality
of life by furthering the effort toward drug response prediction.
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Introduction

Recent years have seen an expansion in availability of cancer
drugs targeting specific genes, but the standard of care for most
cancers remains a set of older, less targeted therapies for which
few reliable biomarkers exist. The ability to predict drug effi-
cacy in each patient requires identifying the molecular factors
involved. One promising but under-utilized source of drug
response biomarkers is DNA methylation.! DNA methylation
has been shown to be involved in cancer development, progres-
sion, and drug response. It is of particular interest in cancer
drug research because changes in methylation are heritable and
will persist in new cells as the cancer grows,? but unlike genetic
mutations, changes in methylation can be reversed under the
right conditions.>* An additional benefit of methylation-
based biomarkers is that, in many cases, tumor methylation
patterns can be detected with minimally invasive liquid
biopsies.” Identifying and understanding methylation patterns
involved in tumor drug response therefore has the potential of
expanding the number of drugs for which we can predict

patient-specific responses and of revealing potential thera-
peutic targets for manipulating methylation to prevent or
reverse tumor drug resistance, thus improving patient survival
and quality of life.

The use of methylation-based biomarkers of drug response
is not new; there exist several that are already in use clinically.®-
For example, several tests exist to detect hypomethylation in
the promoter region of MGMT (O-6-methylguanine-DNA
methyltransferase), which is a biomarker of poor response to
temozolomide.!®! Most known drug-methylation interac-
tions in the literature were identified the same way most of the
existing body of knowledge on DNA methylation has been
studied: one gene at a time, measuring overall methylation
levels in the promoter region of the target gene, with the
assumption that methylation affects cell function by sup-
pressing transcription of the downstream gene.'? However,
this understanding of methylation and its role in gene expres-
sion has been increasingly challenged with the wider adop-
tion of whole-genome, site-specific methylation sequencing
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technologies. It is now clear that methylation at individual CpG
sites can increase or decrease expression of nearby genes!3-15
and even distal genes.!® Analysis of genome-wide, site-
specific methylation data has helped elucidate much about
cancer, especially about carcinogenesis,'”'® molecular charac-
terization,’-?! and molecular indicators of prognosis,?-23 but
so far, methylation studies on cancer drug efficacy have been
limited in scope, for example, focusing on a single cancer.?4%
As of yet, there have been no systematic efforts to identify
drug-methylation interactions in most cancers despite mount-
ing evidence that methylation often plays a key role in the
development of cancer drug resistance.?6-28

The Cancer Genome Atlas (TCGA) has collected tumor
samples from a wide range of cancers for molecular characteri-
zation. TCGA is an excellent data resource for studying meth-
ylation because of the large number of patient samples with
DNA methylation data as well as thorough clinical annotations
with drug treatment data and survival data available for most
patients. It is especially suited for identifying biomarkers pre-
dictive of drug response because the molecular assays are per-
formed on pre-treatment samples, representing the state of a
tumor at the point when treatment decisions are made. Our
group has previously identified molecular features associated
with drug-specific survival using the TCGA gene expression,?’
copy number variation,3%3! protein,3 and miRNA3 datasets.
While the high dimensionality of the methylation dataset
makes it the most challenging to analyze, the promise that
DNA methylation holds as a source of biomarkers as well as
our success with these other molecular data types make it a
critical dataset to explore for molecular features related to drug
efficacy.

In this analysis, we performed a systematic analysis across
many cancer types and drugs using the methylation data and
clinical data from TCGA to identify methylation-drug inter-
actions and potential biomarkers of drug response. Survival
analyses of patients grouped by cancer and drug exposure iden-
tified individual CpG sites whose pre-treatment methylation
status is significantly associated with drug-specific survival. We
then explored these drug-specific CpG sites for meaningful
biological patterns. We identified CpG sites with the same
drug-specific survival effects in different cancers, and we used
a clustering method to identify sets of these CpG sites that
tended to be methylated in the same patients, which revealed
even stronger associations with drug-specific patient outcomes.
Our results included known methylation-drug interactions and
many novel interactions that could be investigated further for
new insights into drug mechanisms or validated for clinical use
as biomarkers of patient drug response.

Results
CpG sites with drug-specific associations with
survival

To identify potential methylomic biomarkers of drug response,
we performed survival analyses using clinical data and binarized

Binarize raw beta values for each
CpG site to assign methylation status

Assign patients to groups based on
cancer and drug exposure

Identify CpG sites where methylation
status is associated with survival in
each cancer-drug patient group

Exclude survival effects also
observed in cancer patients who
were not exposed to the drug

Investigate drug-specific CpG sites to
find meaningful patterns and
biological interpretations

Figure 1. Flow chart outlining the steps taken in the primary analysis in
this study.

pre-treatment methylation data from TCGA. The basic work-
flow is summarized in the diagram in Figure 1 and detailed in
the Methods section. For each of 82 cancer-drug combinations,
we defined a target patient group that included all patients with
that cancer who received that drug, and we also defined a cor-
responding control group of all patients with that cancer but no
exposure to the drug. Within the target patient groups, we per-
formed survival analyses for 396065 CpG sites to identify
those where methylation status (methylated or unmethylated)
is associated with significant survival differences. We tested a
total of 9.2 million cancer-drug-CpG combinations, identify-
ing 155554 combinations with significant survival effects. To
remove survival signals general to the cancer but not specific
to the drug, we then excluded 104 454 of these cancer-drug-
CpG combinations that showed similar survival effects in the
corresponding control group, leaving 51100 cancer-drug-
CpG combinations with significant drug-specific effects on
survival. We found these drug-specific survival markers in 38 of
the 82 tested cancer-drug patient groups, including representa-
tion from 15 cancers and 20 drugs. Table 1 summarizes our
results for each cancer-drug combination and lists the number
of patients in both the target patient group and the correspond-
ing control group. For survival analysis results of all cancer-
drug-CpG combinations with drug-specific survival effects, see
Supplemental File 1.

Promising examples from a variety of cancers are high-
lighted in Table 2, which lists the relevant drug for each exam-
ple, the specific CpG site, and nearby genes along with survival
analysis statistics and Kaplan-Meier survival curves illustrating
the survival differences we observed between patients with and
without methylation at the indicated CpG site in both the tar-
get cancer-drug patient group and the corresponding control
group. In the top row, for example, we highlight a CpG site
near the HOXB3 (homeobox B3) gene where methylation
status is associated with survival in bladder urothelial carci-
noma (BLCA) patients who took cisplatin. Log-rank survival
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analysis showed that there is a significant difference in survival
between methylated and unmethylated patients in the target
patient group, as illustrated by the first Kaplan-Meier curve,
which shows much better survival for patients with methyla-
tion at that site (orange) than for patients without methylation
(blue). In the control group of BLCA patients who did not take
cisplatin, methylation at this site was slightly negatively associ-
ated with survival, meaning that the positive association
between methylation and survival in BLCA patients is specific
to cisplatin.

To investigate the biological implications of the identified
drug-specific survival markers, we first compared our results to
known drug-methylation interactions in the literature. Our
analysis strongly identified the relationship between the drug
temozolomide and methylation in the MGMT promoter, a
well established interaction that is one of the few methylation-
based biomarkers of patient drug response currently in clinical
use. Hypermethylation within the MGMT promoter region
has been reported to increase the efficacy of temozolomide by
decreasing the expression of MGMT, a DNA-repair enzyme
which works to repair the DNA damage that temozolomide
causes in cancer cells to kill them.? We found 5 CpG sites
within the MGMT promoter region with significant survival
differences in brain lower grade glioma (LGG) patients who
took temozolomide, and, consistent with previous reports, in all
5 cases, patients with these CpG sites methylated had signifi-
cantly better survival. Another example of a well characterized
drug-methylation interaction is between taxanes and methyla-
tion of the gene CHFR (checkpoint with forkhead and ring
finger domains). While this interaction has yet to be adopted
clinically as a biomarker of drug response, it has been widely
reported that methylation and subsequent transcriptional inac-
tivation of CHFR is associated with increased sensitivity to
taxanes.>*3¢ In our results, we found 2 CHFR-associated CpG
sites with drug-specific survival differences in breast invasive
carcinoma (BRCA) patients treated with paclitaxel (a taxane),
both of which showed better patient survival associated with a
methylated state, which is consistent with previous reports.
These widely reported examples of drug-methylation interac-
tions corroborate our results.

Although methylation patterns are often tissue-specific,'3%7
we found 11 CpG sites that had similar drug-specific effects
across multiple cancer types from different tissues. These CpG
sites were found to have drug-specific survival differences in 2
groups of patients with 2 different cancers but treated with the
same drug. For example, in both sarcoma (SARC) and BRCA,
patients with methylation at a specific CpG site (cg18009000,
chr10:70052171-70052172) in the H2AFY2 (H2A histone
family member Y2) promoter region had longer survival when
taking docetaxel than patients who were unmethylated at that
site, but there was no difference in survival in BRCA or SARC
patients who did not take docetaxel. All such CpG sites are
highlighted in Table 3, which shows the log-rank statistics

comparing methylated and unmethylated patients in each can-
cer-drug group and the corresponding control group, confirm-
ing these CpG sites were drug-specific survival markers.
Table 3 also shows Kaplan-Meier survival curves illustrating
the observed survival differences for each CpG site in the 2
cancer-drug contexts, which were in the same direction in all

cases.

Patterns of Methylation With Survival Effects
Another way to investigate these results is by finding larger
methylation patterns that are related to survival. Within each
cancer-drug patient group, we clustered CpG sites based on
their tendency to be methylated in the same set of patients.
Using this strategy, we identified 76 CpG clusters in 18 cancer-
drug patient groups. The CpG clusters had a minimum size of
5 CpG sites and ranged in size up to 5705 CpG sites (for lists
of CpG sites in each cluster, see Supplemental File 2). For each
CpG cluster, we stratified patients by the percent of CpG sites
that were methylated into “hypermethylated” or “hypomethyl-
ated” strata and applied the log-rank test to examine differen-
tial survival between them. Table 4 reports the results of
example clusters from each of the groups, and the statistics
from all clusters are available in Supplemental Table 1
(Table 4 clusters correspond to Supplemental Table 1 clusters
labeled A). Figure 2 shows Kaplan-Meier survival curves of 4
of the example clusters shown in Table 4 illustrating the sur-
vival differences between patients with cluster hypermethyla-
tion and those with cluster hypomethylation.

Our strategy of grouping CpG sites based on co-methyla-
tion in patients tended to produce clusters that successfully
separated patients who responded well to the drug from
patients who responded poorly: all clusters we identified
showed statistically significant differences in survival, most of
which were not observed in the corresponding control group.
In fact, for more than half of the clusters, the survival differ-
ences observed based on the clusters were more significant
than those of any individual CpG site belonging to those clus-
ters, and in the 2 examples shown in Figure 2C and D, cluster
methylation level was a better predictor of survival than any
other measure (individual CpG site or CpG cluster) for their
respective groups. Figure 3 shows the log-rank P-values of each
cluster vs. the median P-value of the individual CpG sites in
each cluster, with error bars to show the distribution of log-
rank P-values of the individual CpG sites in the cluster. Almost
all of the points are above the equivalence line (shown in gray),
indicating that clusters are more predictive of drug-specific
survival outcomes than their median CpG sites. Furthermore,
for the majority of the CpG clusters, the entirety of the error
bars was also above the equivalence line, illustrating that the
clusters tend to outperform most or all of the individual CpG
sites they contain.

In addition to their utility as biomarkers, these CpG clusters
can be mined for insights into potential underlying biological
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A Survival of LGG patients on temozolomide
stratified by cluster methylation levels
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Figure 2. Methylation levels of clusters of co-methylated CpG sites are associated with post-treatment survival. Here we show Kaplan-Meier survival
curves illustrating survival differences between patients with hypermethylation (orange) and hypomethylation (blue) of the example clusters from the
following groups: (A) LGG patients treated with temozolomide, (B) HNSC patients treated with paclitaxel, (C) BRCA patients treated with
cyclophosphamide, and (D) MESO patients treated with cisplatin. The clusters shown correspond to the example clusters in Table 4 for the indicated
groups and to the clusters labeled A for these groups in the full cluster list in Supplemental Table 1. Survival differences in (C) and (D) are more significant
than those observed in any single CpG site in their respective cancer-drug groups.

mechanisms. Each CpG site in the methylation data is identi-
fied by the array probe that measures it, and the raw data files
include reference information about the CpG site, including
genomic location and any associated genes. We found no obvi-
ous patterns in the genomic locations of the CpG sites within
each cluster. It is difficult to search for meaningful biological
information using the array probe identifier, so we used the
reference information to convert the set of CpG sites in each
cluster to a set of associated genes to investigate. We then per-
formed gene set enrichment analysis (GSEA) on our gene sets
to look for unifying regulatory features that could be related to
methylation. We queried MSigDB transcription factor (T'F)
target gene sets and found a total of 553 instances of TF target
enrichment in our methylation gene sets.

Because the MSigDB gene sets were of genes with TF
binding sites in their promoter regions, we then looked at how
often the cluster CpG sites associated with the overlapping
genes were located in the promoter region in each of these
instances. We did not see any relationship between the

significance of gene set enrichment matches and the percentage
of overlap genes whose associated cluster CpG sites were in
their promoter region nor any other relationship with the per-
centage of overlap genes with promoter CpG sites in the cluster.
However, we observed that the distribution of these percentages
was bimodal, with 93% being either below 40% or above 60%
(data not shown). Therefore, we considered only matches with
at least 50% of the overlapping genes having promoter CpG
sites in the respective cluster as potentially reflecting an interac-
tion between methylation of the cluster CpG sites and the TF
binding to these promoters. This narrowed our TF target
enrichment results to 284 instances of TF target enrichment in
our methylation-based gene sets.

We found that the gene sets derived from 21 of our CpG
site clusters from 10 cancer-drug patient groups had signifi-
cant enrichment for gene targets of one or more TFs, some of
which are known to interact with the respective drug. For
example, Figure 2A illustrates the survival of LGG patients
who took temozolomide, grouped by methylation levels in one
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Figure 3. CpG clusters more accurately stratify patients into responders
and non-responders than their constituent CpG sites. This scatter plot
shows the log-rank P-value distribution of CpG sites in each cluster
compared to the P-value of the cluster itself. Blue circles plot the cluster
P-value versus the median P-value of CpG sites in that cluster, with error
bars extending to the 5th and 95th percentile P-values of CpG sites in
each cluster. The gray dashed line indicates equivalence; the region
above the line is where clusters are more significant than their median
CpG site, and the region below the line is where clusters are less
significant.

of this group’s CpG clusters wherein the associated genes are
enriched for targets of SALL4 (spalt-like transcription factor
4). SALL4 has been shown to decrease efficacy of temozolo-
mide in killing cancer cells,®® and hypermethylation of CpG
sites in the promoter regions of its targets could prevent SALL4
binding, thus inhibiting this effect and maintaining sensitivity
to temozolomide. Consistent with this proposed mechanism,
hypermethylation within this cluster was associated with
better survival in LGG patients treated with temozolomide.
According to the canonical understanding of how methylation
can mediate TF function, we expect this kind of CpG cluster-
TF relationship to be common among our results: hypermeth-
ylation in a cluster enriched with CpG sites near TF binding
sites may block TF binding and inhibit the effect a TF might
otherwise have on cellular drug response. However, other
mechanisms exist whereby methylation could enhance the
effect of an associated TF. For example, Figure 2B shows sig-
nificantly shorter survival in head and neck squamous cell
carcinoma (HNSC) patients on paclitaxel who have hyper-
methylation in a cluster with significant enrichment of ID1
(inhibitor of DNA-binding 1) targets among the genes associ-
ated with the cluster’s CpG sites. Paclitaxel has been reported
to downregulate® and degrade*® ID1, which is involved in cell
growth,* while overexpression of ID1 has been shown to block
crucial pathways in the anti-cancer effects of paclitaxel.#>-4
ID1 acts by blocking certain regulatory proteins from binding
DNA,; likewise, DNA-binding proteins can also be blocked by
methylation near protein-binding regions, like many of this
cluster’s CpG sites that are associated with ID1 target genes.

Our observations of this cluster are consistent with what we
would expect to see if hypermethylation of its CpG sites could
block some of the same proteins as ID1 and thus have similar
effects: paclitaxel treatment decreases growth-inducing I1D1,
but patients with hypermethylation that imitates the effect of
ID1 would still have poor outcomes. These examples illustrate
mechanisms by which methylation levels in CpG clusters could
interact with the TFs identified using GSEA.

While these examples use previously reported literature to
illustrate potential relationships and mechanisms that could be
found in our analysis, many of the drug-TF relationships iden-
tified in our analysis have not been reported previously and
may provide novel insights into pathways involved in drug effi-
cacy. More example TFs with targets enriched in cluster gene
sets are listed in Table 4, and complete lists are included in
Supplemental Table 1. The CpG clusters we identified in many
of these groups were strongly associated with survival outcomes
in patients taking the respective drugs, and the biological
implications of these clusters, including putative TF-cluster
interactions, may point to mechanisms of cellular drug response
in tumors.

Discussion

Our analysis has identified many individual CpG sites with
drug-specific effects on survival in certain cancers. The identi-
fied drug-specific CpG sites include ones that are consistent
with previously reported drug-methylation interactions, includ-
ing the only methylation-based biomarker for drug response in
current clinical use. The corroboration of our results by the best-
known drug-methylation interactions in the literature suggests
our results, the majority of which are novel, likely contain useful
drug-methylation interactions. Our top results, such as those
highlighted in Table 2, are excellent candidates for validation as
biomarkers of drug efficacy. Additionally, among the CpG sites
identified as drug-specific survival markers, we found 11 CpG
sites that had a similar impact on survival on a particular drug in
2 different cancers. These results are especially promising as
biomarkers because the CpG sites were linked to the same drug
in 2 different cancer contexts, so they are more likely to be
important in the processes involved in drug response and could
be more widely applicable as biomarkers than the results that
are only found in one cancer. Interestingly, 8 of the 11 drug-
CpG site relationships found in multiple cancers involved the
drug gemcitabine, and the remaining 3 were taxanes. This lim-
ited variety suggests that some drugs may have mechanisms
that can be impacted by similar methylation patterns in a variety
of cancer contexts, suggesting they may be prime candidates for
developing possible co-therapies that alter methylation states to
improve efficacy or to reverse or prevent the development of
drug resistance.

In addition, the clusters of CpG sites identified in this study
could also be valuable tools for predicting drug response given
their high accuracy in separating patients into drug respond-
ers and non-responders. In fact, the cluster-based survival
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differences we observed often surpassed that of individual
CpG sites within the clusters, which suggests that the clusters
may be more useful as biomarkers than the individual CpG
sites. Moreover, the CpG clusters may have an advantage as
potential biomarkers in that using multiple CpG sites to pre-
dict drug response may be less vulnerable to the individual
CpG sites’ biological and technical variability. The CpG clus-
ters also may reveal informative biological relationships, as sug-
gested by our gene set enrichment analysis. We queried our
cluster-associated gene sets against sets of genes with shared
TF binding sites in their promoter region because methylation
within protein binding sites in promoter regions is still consid-
ered the primary mechanism by which methylation impacts
gene expression and cell function. We found numerous
instances of TF target enrichment within clusters and high-
lighted 2 that are consistent with known TF-drug interactions.
While we cannot draw firm conclusions from this type of anal-
ysis without experimental evidence, these findings indicate
potential mechanistic relationships between our CpG clusters
and the GSEA-implicated TFs. The clusters identified in this
analysis provided additional informative avenues for biological
interpretation of our results and are themselves strong candi-
dates for use as predictive biomarkers.

We devised our analysis strategy to be sensitive enough to
identify modest survival effects and to strictly exclude survival
effects not specific to the drug. We defined significance in sur-
vival differences using a 10% false discovery rate (FDR) thresh-
old in target cancer-drug patient groups, which is a relatively
lenient standard that increases the sensitivity of our analysis,
although it increases false positives. In contrast, when consider-
ing log-rank test results from corresponding control groups for
exclusion from our significant results to delineate drug-specific
effects, we used a raw P-value <.1 for our significance thresh-
old. This threshold is very lenient for significance, but because
it is used to determine exclusion from our proposed drug-spe-
cific survival effects, a lenient threshold increases stringency for
considering observed survival differences to be drug-specific
effects. As Table 1 shows, in most cancer-drug combinations,
the majority of our significant CpG sites in each cancer-drug
group were also drug-specific after considering the corre-
sponding control group. The major exception is in LGG,
which frequently involves major molecular changes impact-
ing disease-specific survival* and even our stringent exclusion
step may not be able to remove all of them. However, overall,
although many of our identified drug-CpG site relationships
are only found in one cancer, the strict exclusion of survival
effects in corresponding control groups ensures that our results
reflect drug-specific relationships.

While the potential drug-specific survival biomarkers we
have highlighted in this study warrant further investigation, our
analysis has several limitations. Due to the inconsistent report-
ing of drug response in the TCGA clinical data, we could not
study drug efficacy directly and we had to use overall survival as
a proxy measure. Also, the granularity of our analysis required

stratifying patients by both cancer type and treatments received.
Stratification by drug allowed us to narrow our results to those
specific to the drug; stratification by cancer was also necessary
to avoid confounding the analysis with tissue-specific methyla-
tion differences or survival differences between cancers.
However, despite the large number of total patients in the
TCGA dataset, this stratification yielded many patient groups
that were too small to analyze, so we were not able to identify
drug-related CpG sites for all drugs in the dataset. In addition,
our results are based on exploration of one dataset, and have not
been validated experimentally. We were unable to perform com-
putational validation on an independent dataset because we did
not find other datasets that provide information on methyla-
tion, survival, and drug treatment for a common cohort of
patients. Another challenge we faced was in the biological
interpretation of our results because little is known about most
of these loci and their effects on gene expression and cell func-
tion. The reference information provided by TCGA lists associ-
ated genes for each CpG site based on the genomic distance
between the CpG site and the gene, but the actual relationship
between CpG sites and the listed genes is often unknown, and
CpG sites may also affect distal genes that were not listed. Thus,
while we have used the location-based gene annotations of the
CpG sites to explore our findings for recognizable biological
processes, any conclusions based on these assumed relationships
are inherently weak. To mitigate this, when doing the gene set
enrichment analysis, we verified potential gene set matches
based on the co-location of cluster CpG sites and the identified
TF’s binding sites, where methylation could reasonably affect
the ability of the TF to bind. This minimized our reliance on
assumptions of a direct relationship between a CpG site and the
expression of nearby genes, but it still assumes an indirect rela-
tionship. Because of these limitations, as with any computa-
tional study, our most promising results should be validated
before clinical adoption as biomarkers of drug response.

Our results show promise for both potential clinical use and
informing biological understanding of drug response, but fur-
ther studies are needed. Computational validation of our find-
ings in other methylation datasets from similar cohorts to
those in TCGA could help remove false positives and clarify
the most important methylation features to study. Exploring
these results experimentally could elucidate underlying bio-
logical mechanisms involved in tumor drug response.
Additionally, since clustering of binarized methylation data
was able to define clusters of CpG sites that accurately sepa-
rated responders and non-responders in the cancer-drug
patient groups, another future research direction would be to
apply this analysis strategy across multiple TCGA data types to
identify multi-omics relationships associated with patient drug
response, which could contribute valuable insights in develop-
ing more complete system-level understanding of cellular drug
response across multiple levels of molecular interactions.

This study represents the first systematic search for drug-
methylation interactions across multiple cancers and drugs and
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the first large scale effort to link drug efficacy with individual
methylation sites. We identified many sites of DNA methyla-
tion and larger methylation patterns with strong associations
with drug-specific survival. While any of our putative drug-
methylation relationships would require further research, by
linking our results to known molecular mechanisms that impact
drug efficacy, we have demonstrated the power of our analysis
to capture drug-specific effects and to implicate potential
molecular mechanisms in drug response pathways, providing
compelling support for future studies examining these results.
Validation of these putative drug-methylation relationships as
biomarkers of patient drug response could help doctors avoid
prescribing ineffective treatments. In addition, experimental
inquiries into these results will undoubtedly lead to expansion
of our understanding of drug-methylation interactions and by
extension, wider drug response mechanisms in tumors, and
could help explain variation in drug efficacy among patients.
This could, in turn, inform future drug development by identi-
tying DNA methylation targets for potential co-therapies to
increase efficacy and decrease resistance to common therapies.

Methods

Data acquisition and cleaning

TCGA methylation beta values were downloaded from the
NCI Genomic Data Commons (GDC) database using their
Data Transfer Tool to download files based on a file manifest
acquired using the GDC API, querying using the parameter
return type: manifest. To acquire methylation data,
we used the filters files.data type: Methylation
Beta Value and files.platform: Illumina
Human Methylation 450;for drug exposures, we used the
filters files.data format: BCR Biotaband files.
data type: Clinical Supplement. Survival data
were obtained via direct query to the GDC API.

A total of 485577 methylation probes (CpG sites) were
listed in the raw methylation data. We removed 89 512 of these
where no beta values were available for any samples (where the
raw data contained only N/A values). All available samples
were used in calculating CpG site binarization threshold; for
survival analyses, only primary tumor samples (sample IDs
ending in -01A) were used. In cases where there were 2 raw
methylation data files from the same sample, we used the aver-
age of the beta values. We used a manually curated drug name
mapping (available at https://gdisc.bme.gatech.edu/Data/
DrugCorrection.csv) to standardize drug names in the clinical
data. We used TCGA study acronyms as cancer type; full can-
cer names are available at https://gdc.cancer.gov/resources-
tcga-users/tcga-code-tables/tcga-study-abbreviations.

Binarizing Methylation Beta Values

We binarized the beta values of the remaining 396065 CpG
sites using a threshold calculated for each locus as previously
described.*” Briefly, we ordered (lowest to highest) the beta

values of all samples in the TCGA methylation dataset, and
then we fit a step function to these data that minimizes the
sum of the mean square error within the “methylated” and
“unmethylated” subsets. To accomplish this, we tested 200
thresholds evenly distributed along the ordered beta values
plus 200 thresholds distributed along the range of the beta
values (0 -1), testing a total of 400 thresholds and choosing
the threshold with the lowest variance in the 2 stratified
groups. Since these binarization thresholds were computed
based on all patient samples across various cancer types and
tissue types, these thresholds were able to robustly define the
on/off status of methylation. All beta values were binarized,;
missing data were kept as N/A to be handled later in the
analysis as described.

Survival Analysis

Survival analyses were performed on patient groups defined by
cancer type and drug exposure. For each cancer-drug combina-
tion, we defined the target patient group as all patients in the
dataset with the respective cancer who had exposure to the
respective drug and the corresponding control group as all
patients in the dataset with the respective cancer who were
never exposed to the respective drug. For each cancer-drug
patient group, we analyzed all CpG sites where the target
patient group and corresponding control group each had at
least 10 patients with methylation and 10 patients without
methylation. Because of these parameters, the minimum num-
ber of patients in the target and control groups was effectively
20 patients; a total of 82 cancer-drug combinations in the data-
set met these criteria and were included in our analysis.

For each survival analysis, we used a log-rank test to com-
pare survival between patients with and without methylation
at a given CpG site (patients with missing values at that site
were excluded) within a group. We then used the Benjamini-
Hochberg procedure, as implemented in the statsmodels
Python package, to adjust the P-values from these tests for a
given group to obtain g-values. We used a significance thresh-
old of ¢g=<.1 to identify CpG sites whose methylation was
associated with survival differences in that group. We then
tested all significant CpG sites for differential survival in
patients in the corresponding control group using the same
statistical tests, which identified CpG sites with significant
survival effects not specific to the drug of interest. We consid-
ered CpG sites to be drug-specific if the corresponding con-
trol group showed no significant survival differences (log-rank
P=.1) or showed the opposite effect on survival (eg, if the
methylation status associated with better survival in the target
cancer-drug patient group is associated with worse survival in
the corresponding control group). By removing from consid-
eration CpG sites that are prognostic for the cancer overall
unrelated to treatment, we narrowed down our findings to
identify CpG sites with drug-specific survival effects. The
lifelines Python package was used for log-rank tests and gen-
erating Kaplan-Meier curves.


https://gdisc.bme.gatech.edu/Data/DrugCorrection.csv
https://gdisc.bme.gatech.edu/Data/DrugCorrection.csv
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Clusters were tested in a similar way, comparing patients
in the appropriate cancer-drug patient group with hypometh-
ylation and hypermethylation in each cluster. For each cluster,
we scored patients in the relevant group based on the percent
of the cluster’s CpG sites that were methylated and binarized
these scores to categorize patients as having either hypometh-
ylation or hypermethylation in that CpG cluster. We then
used a log-rank test to determine survival differences between
the patients with hypomethylation and hypermethylation in
that CpG cluster. Clusters were considered significant with a
log-rank P< 1.

Co-occurrence Clustering

We obtained CpG clusters for each group by clustering all
CpG sites with drug-specific survival effects that had no miss-
ing values in the group. The CpG sites were clustered based on
the similarity of their methylation patterns across patients in
the respective cancer-drug patient group. We used a previ-
ously described clustering algorithm called co-occurrence
clustering,® which constructs a graph of CpG sites based on a
chi-squared pairwise association measure and uses the Louvain
algorithm to identify CpG clusters. Patients are then clustered
in the same way based on their methylation levels within these
CpG clusters, and then the algorithm runs iteratively over its
resulting clusters. This algorithm yielded sets of CpG sites that
tend to be co-methylated in patients in the group. No survival
information was used in the clustering process.

GSEA

We performed gene set enrichment analysis (GSEA) to look
for promoter-region transcription factor (TF) binding sites
that might be related to our CpG clusters. This first required
creating a list of genes, which were the set of genes listed as
associated with the CpG sites in the original data documents.
We then wused the Molecular Signatures Database
(MSigDB)#»0v7.5.1 to perform GSEA on our cluster-related
gene sets, querying against the GTRD?! subset of the tran-
scription factor targets (TFT) collection (C3) in MSigDB.
The output indicated TFs with binding sites in the promoter
regions of a significant (hypergeometric test, FDR 5%) number
of genes in our gene set. To narrow our results to TF binding
sites co-located with the CpG sites in our clusters, we only
considered matches where at least 50% of the overlapping
genes were associated with cluster CpG sites that were in their
promoter region.
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