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Abstract

Background: Metagenomics, sequence analyses of genomic DNA isolated directly from the
environments, can be used to identify organisms and model community dynamics of a particular
ecosystem. Metagenomics also has the potential to identify significantly different metabolic
potential in different environments.

Results: Here we use a statistical method to compare curated subsystems, to predict the
physiology, metabolism, and ecology from metagenomes. This approach can be used to identify
those subsystems that are significantly different between metagenome sequences. Subsystems that
were overrepresented in the Sargasso Sea and Acid Mine Drainage metagenome when compared
to non-redundant databases were identified.

Conclusion: The methodology described herein applies statistics to the comparisons of metabolic
potential in metagenomes. This analysis reveals those subsystems that are more, or less,
represented in the different environments that are compared. These differences in metabolic
potential lead to several testable hypotheses about physiology and metabolism of microbes from

these ecosystems.

Background

Metagenomics describes the functional and sequence-
based analysis of DNA isolated from environmental sam-
ple without first culturing the associated microbes [1].
Four viral and four prokaryotic shotgun metagenome
datasets have been published [2-8]. The acid mine drain-
age (AMD) metagenome data set was taken from a low
complexity environment and includes slightly more than
10 Mb of sequence in 2,455 contiguous sequences (con-
tigs) and ~8,000 predicted protein sequences [8]. The Sar-
gasso Sea metagenome data set is from a more complex
environment and includes 788 Mb of sequences in

809,112 contigs, and approximately a million predicted
protein sequences [7].

Another conceptual "metagenomic" library can be con-
structed from the combined sequence data collective gen-
erated over the last 30-plus years of DNA and protein
sequencing and deposited in the international databases.
In contrast to the environmental metagenome libraries,
the collective metagenome was built by the incremental
addition of sequences from many different sources. The
SEED database, developed by the Fellowship for Interpre-
tation of Genomes (FIG), is an annotated non-redundant
database, compiled from several sources including Gen-
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Bank (including GenBank's non-redundant and refseq
databases), Swiss-Prot, KEGG, and from genome sequenc-
ing centers. At the time of analysis, the SEED database
contained 1,731,649 proteins (not including the environ-
mental samples; Table 1). Although the sampling of
sequences that constitute this library is not random, the
SEED essentially represents essentially all known genomic
complexity.

FIG pioneered the use of subsystems to annotate both
complete and partial genome sequences [9]. Subsystems
are biochemical pathway, fragments of pathways, clusters
of genes that function together, or any group of genes that
any annotator considers to be related. The subsystems are
annotated across genomes by the annotators, providing
the most reliable and consistent annotations within and
between genomes. The subsystems-based annotations are
ongoing and at a given point in time the subsystems rep-
resent the snapshot of the best available annotation of the
SEED database.

Comparing metagenome samples could lead to the iden-
tification of signature functions associated with each
metagenome sample, however this analysis requires relia-
ble statistical techniques that are not only robust but are
rapid to perform with hundreds of thousands or millions
of data points per sample.

Here the Sargasso Sea and AMD metagenomes were com-
pared with the SEED database to identify statistically sig-
nificant differences in subsystems composition. We
hypothesized that there were few barriers to the transfer of
subsystems between environments and therefore certain
subsystems were enriched by selection in those environ-
ments where they were important. We used a difference of
medians analysis to identify those subsystems that have a
statistically significantly presence in each of the metagen-
omes. These analyses provide a framework for the statisti-
cal comparison of metagenomes.

Table I: Number of genomes and protein encoding genes in the
SEED database at the time of analysis. The two environmental
samples are the Sargasso Sea and Acid Mine Drainage
metagenomes.

Domain Number of Proteins Percent of
Genomes all proteins
Archaea 37 61,709 2
Bacteria 550 1,187,180 44
Eukarya 556 482,760 18
Environmental Samples 2) 968,149 36
Total 1,145 2,699,798 100

http://www.biomedcentral.com/1471-2105/7/162

Results

Determination of statistically significantly different
subsystems

A difference between medians calculation was applied to
rapidly identify statistically significant differences
between metagenomes. This technique has several advan-
tages over other possible statistical methods that could
have been applied. For example, the difference between
medians is extremely rapid for the calculation of differ-
ences between subsystems from different samples, and the
method does not depend on the distribution of samples.
The source code and step-by-step description of the
method are provided as part of the supplemental material
[see Additional Files 1 and 2].

Number of samples needed to identifying significant
differences between metagenomes

Fig. 1 plots the sample size (S) of proteins that were sam-
pled against the number of significantly different subsys-
tems when the Sargasso data was compared to the SEED
data at different confidence levels. At the most stringent
level (99% confidence that the difference does not occur
by chance) there are about 75 unique phylosubsystems in
the Sargasso sample (solid red line) and about 150 unique
phylosubsystems in the SEED. In either case at least the
sample size needs to approach 300,000 proteins to
achieve statistical significance. In contrast, at lower confi-
dence levels, there are more significantly different phylo-
subsystems, and the samples need to be smaller to detect
them. Thus with a 90% confidence that the difference do
not occur by error there are approximately 100 unique
subsystems in the Sargasso data, and a sample size of
about 150,000 proteins is required to identify them all.

The AMD dataset has many fewer phylosubsystems than
the SEED dataset, and only those subsystems present in
the both samples are used in the comparison to identify
significantly different phylosubsystems. This limits the
analysis to 284 of the 523 different phylosubsystems. Of
those that are present in the AMD and the SEED, only 19
are significantly more abundant in the AMD sample
(Table 2) and 58 are more abundant in the SEED dataset.
Saturation was reached at ~145,000 samples.

Subsystem differences between the SEED and Sargasso Sea
metagenomes

Statistically different phylosubsystems between the SEED
and Sargasso Sea metagenomes are shown in Fig. 2A. The
effect of sample size is apparent. For example, statistically
differences between RNA metabolism, oxidative phos-
phorylation, and membrane transporters can be detected
at small sample sizes (e.g., 100,000 proteins). However,
the differences between carbohydrate and amino acid
metabolism, as well as most cofactors, vitamins, and pig-
ments are not statistically different until >150,000 pro-
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Effect of sample size on identifying differences between phylosubsystems. The red lines reflect the number of phylo-
subsystems overrepresented in the Sargasso Sea dataset. The blue lines represented the number of phylosubsystems overrep-
resented in the SEED dataset. Three different confidence levels (90, 95, and 99%) are plotted.

teins have been sampled. Out of the 77 phylosubsystems
that are significantly overrepresented in the Sargasso Sea,
69 are from the Bacteria, 5 from the Archaea, and 3 from
the Eukarya.

Fig. 2B highlights some of the differences for phylosubsys-
tems. A more detailed description of all of the subsystems
with statistically significant differences in occurrence
between environmental data sets is given in the supple-
mental material [see Additional file 3]. Some ecologically
important differences between the Sargasso Sea and the
SEED database are discussed below with data extracted
from the Supplementary Table.

Potential osmoregulation by amino acids in the Sargasso
Sea

The phylosubsystems involved in the synthesis of serine
(S), threonine (T), and glycine (G) are overrepresented in
the Sargasso Sea metagenome (Table 3). For example,
there are 503 proteins per million proteins in the Sargasso
Sea database that are similar to bacterial glycine synthesis
proteins, and only 390 proteins per million proteins in
the SEED database that are similar to bacterial glycine syn-
thesis proteins. Exactly these three amino acids are also
the most abundant amino acids found in the Sargasso Sea
[10,11]. However proteins in the Sargasso Sea metagen-
ome do not contain significantly more S, T, or G (Fig. 3),
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Table 2: Phylosubsystems that are overrepresented in AMD dataset versus SEED dataset with 99% confidence at a sample size of

145,000 proteins.

#  Subsystem Classification Domain
I Arginine degradation Amino Acids and Derivatives Archaea
2 Chorismate Synthesis Amino Acids and Derivatives Archaea
3 Histidine Degradation Amino Acids and Derivatives Archaea
4 Leucine Biosynthesis Amino Acids and Derivatives Archaea
5 Calvin-Benson cycle Carbohydrates Archaea
6  Embden-Meyerhof and Gluconeogenesis Carbohydrates Archaea
7  Methylcitrate cycle Carbohydrates Archaea
8 Riboflavin metabolism Cofactors, Vitamins, Prosthetic Groups, Pigments Archaea
9  Conserved tRNAs Experimental Subsystems Archaea
10 Fatty acid metabolism Fatty Acids and Lipids Archaea
Il Fatty acid oxidation pathway Fatty Acids and Lipids Archaea
12 de-novo Purine Biosynthesis Nucleosides and Nucleotides Archaea
13 de-novo Pyrimidine Biosynthesis Nucleosides and Nucleotides Archaea
14 Pyrimidine conversions Nucleosides and Nucleotides Archaea
I5 Ribosome LSU (eukaryotic and archaeal) Protein Metabolism Archaea
16 Ribosome SSU (eukaryotic and archaeal) Protein Metabolism Archaea
17  Translation initiation factors (eukaryotic and archaeal) Protein Metabolism Archaea
18 tRNA aminoacylation RNA metabolism Bacteria
19  TTSS transporters Virulence Bacteria

suggesting that the observed bias in amino acid synthesis
subsystems and in the water samples is not related to pro-
tein synthesis. The primary organic osmolytes used by
marine bacteria are small organic, uncharged, solutes that
have little effect on the intracellular biochemistry, such as
glycine betaine [12-15]. The subsystems for the produc-
tion of betaine are also overrepresented in the Sargasso
Sea compared to the SEED database (Fig. 2B). Similarly,
serine and threonine are small, polar, uncharged amino
acids that are perfect compatible solutes for balancing
osmotic pressure. Serine has also been previously shown
to be as effective as glycine betaine at protecting enzymes
from the effects of increased osmolality [15]. In contrast,
genes encoding the osmoprotectants proline, sucrose, and
trehalose [13,14,16,17] were underrepresented in these
samples. Therefore, we predict that marine microbes are
synthesizing glycine, serine, threonine, and betaine as
osmolytes, an hypothesis that can be tested experimen-
tally.

Photosynthesis in the Sargasso Sea

As previously observed [6,7], there was a strong bias
towards subsystems involved in photosynthesis in the Sar-
gasso Sea metagenome. This bias includes subsystems for
the Calvin-Benson cycle, chlorophyll biosynthesis genes,
the cytochrome B6-F complex, Photosystem I, Photosys-
tem II, isoprenoid biosynthesis, and carotenoid biosyn-
thesis.

Some phylosubsystems involved in one-carbon metabo-
lism, including the synthesis and degradation of carbohy-
drates, cell walls, and capsules are more abundant in the

Sargasso Sea. In contrast, the genes for the utilization of
complex carbon sources including lactose, arabinose,
fructose, mannose, galcitol and inositol are all underrep-
resented in the marine environment suggesting these are
not significant sources of carbon in this environment.

Nucleic acid and phosphate metabolism in the Sargasso
Sea

Phylosubsystems involved in purine and pyrimidine de
novo synthesis and scavenging pathways, as well as ribo-
nucleotide reduction (scavenging ribonucleotides for
DNA synthesis) are more abundant in the Sargasso Sea.
Similarly, the subsystems involved in the capture of phos-
phate via the conversion of ADP to ATP coupled to oxida-
tive phosphorylation are also overrepresented in the
Sargasso sample. In contrast, nitrogen metabolism phylo-
subsystems are less abundant in the Sargasso than the
SEED, with the sole exception of ammonia assimilation
that is marginally overrepresented in the Sargasso sample
at larger sample sizes. The Sargasso Sea has previously
been reported to be phosphate limited. The concentration
of dissolved inorganic phosphate is approximately 4 nM
in the Sargasso Sea. By comparison, the North Pacific and
typical bacterial minimal media have phosphate concen-
trations of approximately 100 nM [18,19]. Together, these
results suggest that phosphate acquisition is critical for
microbial growth the Sargasso Sea environment.

Mobility of Sargasso Sea microbes

Estimates of the percentage of bacteria in the ocean that
are motile vary from less than 5% to more than 80%
[20,21], and there were far fewer genes encoding flagella
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Table 3: Presence of Glycine, Serine, and Threonine subsystems in the AMD, SEED, and Sargasso databases. The table is a subset of
the data from the supplemental data [see Additional File 3].

No! Name? K3 Classification4 #AMD® # SEED¢ #SS’ AMD per SEED per SS per Prev.!!
million® million®  million!®
206  Glycine synthesis A Amino Alanine, serine, 7 24 34 923 19 35 Sargasso
Acids and glycine
207 Glycine synthesis B 2 492 483 264 390 503 Sargasso
426  Serine biosynthesis A 13 166 244 1713 132 254 Sargasso
427  Serine biosynthesis B 7 1545 1257 923 1224 1309 Sargasso
475 Threonine synthesis B K, T,M,and C 8 1070 952 1054 848 991 Sargasso

ISubsystem number

2Subsystem name as designated by the curator

3K: Kingdom (A: Archaea; B: Bacteria; E: Eukaryota)

4Classification of the subsystem. K, T, M, and C: Lysine, threonine, methionine and cysteine.

5Number of proteins present in the AMD sample

6Number of proteins present in the SEED sample

Number of proteins present in the Sargasso Sea sample (SS).

8-10Nlumber of proteins present in the AMD, SEED, and Sargasso samples normalized per million proteins in each sample.
IStatistically significant prevalence. Prev.: prevalence.

AMD
Sargasso
SEED

Percent of All Amino Acids

A C D E F G H [ K L M NP Q R s T VoW Y
Amino Acid

Figure 3
Fraction of amino acids in metagenomes. The fraction of each amino acid in all the predicted proteins in the three data
samples was counted and compared.

in the marine environment compared to the SEED data-
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base. However many marine microbes are thought to use
alternative, less well characterized, motility systems, such
as the motility mechanism characterized in cyanobacteria
[22,23] or twitching motility previously shown in marine
microbes [24]. This data leads to the hypothesis that
marine microbes are generally not using flagella based
motility for movement, and future studies on the genom-
ics of twitching and gliding motility may reveal hints
about these mechanisms of movement.

Subsystem differences between the SEED and AMD
metagenomes

When the AMD and SEED databases were compared, only
phylosubsystems that were in both the AMD and the
SEED samples were included. This limited the total
number of subsystems that were compared for statistically
significant differences. There are far fewer phylosubsys-
tems with significantly different distributions between the
AMD and SEED datasets, and phylosubsystems that are
significantly more common in the AMD dataset are
shown in Table 2. The different occurrences of subsystems
reflect the limited complexity of the AMD environment
that contains Bacteria and Archaea [8]. The majority of
subsystems that are significantly more common in the
AMD data set are from archaeal proteins. In the AMD
environment, the production of amino acids does not
appear to be critical, and only archaeal arginine and histi-
dine degradation and leucine and chorismate synthesis
are overrepresented in these samples. Our limited selec-
tion of overrepresented subsystems in the AMD sample
presumably reflects the current bias in annotated subsys-
tems in the SEED. As the subsystems continue to evolve
and expand, and the NIH Project to Annotate 1,000
Genomes [9] matures the impact of these annotations on
the AMD sample and other metagenomes will highlight
those areas of metabolism and physiology that are critical
to survival in different environments.

Subsystem differences between the Sargasso, SEED, farm
and whale metagenomes

The SEED and Sargasso subsystems were compared to
both the whale fall and farm metagenome samples [6].
For this comparison the individual whale fall samples,
and individual farm samples were each combined to cre-
ate two separate metagenomes. Those metagenomes were
compared to the subsystems exactly as described in Meth-
ods, using the BLAST algorithm to determine similar
sequences. The data shown in the supplemental material
[see Additional file 4] was created using 95% confidence,
a sample size of 20,000 proteins, and 20,000 replicates.
This table shows each of the comparisons with the statis-
tically significant subsystems. The normalized data was
used to determine the relative abundance of each KEGG
pathway in each sample [25], and these comparisons are

http://www.biomedcentral.com/1471-2105/7/162

shown in the supplemental material [see Additional File
5].

The KEGG pathways have historically focused on core
metabolism, annotating enzymes that have been classi-
fied with EC numbers. In contrast, the SEED subsystems
include core metabolism and the data is extended to sub-
systems that cover cellular processes and functions, regu-
lation, and so forth. Although the two classification
techniques are not directly comparable, and statistical
confidence was not provided with the differences between
KEGG pathways in the supplemental data from the previ-
ous analysis, some clear parallels can be seen between
these analyses [see Additional File 5]. For example, both
techniques identified that riboflavin metabolism is more
prevalent in the Whale Fall metagenomes than the other
samples, however according to the normalized data from
Tringe et al folate biosynthesis is less abundant in the Sar-
gasso metagenome than either the Whale Fall or Soil
Metagenomes whereas this analysis demonstrated that
there is significantly more folate biosynthesis in the Sar-
gasso than the other samples. There were 9,311 proteins
with similarity to folate biosynthesis subsystem from the
SEED database in the Sargasso metagenome, 602 proteins
with similarity in the farm soil metagenome and 491 pro-
teins with similarity in the Whale Fall metagenome. In
contrast, Tringe et al. identified 7,283 proteins, 1,253 pro-
teins, and 889 proteins respectively. These differences are
probably due to the difference in annotation of the SEED
subsystems and KEGG pathways. These differences also
highlight the need for continued careful annotation of
genomes, and comparative analysis of different annota-
tion systems and methods.

Discussion

Community genome sequencing - metagenomics — can
provide fine detailed analysis of the metabolism occurring
in different ecosystems. However, metagenomics analysis
is limited to a purely descriptive science without a rigor-
ous statistical comparison of the prevalence of different
genes in different environments. Our analysis demon-
strates an application of statistics to identify those areas of
metabolism that are significantly over represented in dif-
ferent environments.

The method described here is predicated on the expecta-
tion that genes that are more useful in an environment are
more commonly found in that environment. Or put
another way, there is an enrichment or selection for sets of
genes in different environments. A statistical analysis,
using a resampling with replacement technique, was
developed to generate both the difference in occurrence of
each subsystem in each sample, and to generate confi-
dence intervals for the likelihood that these differences are
observed by chance. By using these statistical techniques
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to compare the genetic composition of different environ-
ments, the areas of metabolism and biochemistry that are
important in a particular environment, in comparison to
other environments, can be identified. Like other studies,
this analysis demonstrated that microbes in the surface
waters of the ocean are much more likely to contain genes
involved in photosynthesis than the control data set. The
non-redundant database used as a control is not expected
to contain large numbers of photosynthetic organisms
because it is skewed towards microbial pathogens.

Our analysis also demonstrated more than 150 other sub-
systems that are over represented in the Sargasso Sea sam-
ple when compared to the control set. The skew in the
database alone cannot explain this difference, and these
subsystems must be important for survival in the ocean.
Some examples, such as the synthesis of serine, threonine,
and glycine, directly testable hypotheses can be generated
from these analyses. For other examples, the explanation
of the differences between samples may be more elusive.
Several pieces of evidence will assist in determining the
roles of different subsystems in different environments.
For example, the inclusion of more environmental data
with each sample will allude to some of the differences in
metabolic potential between samples; the careful dissec-
tion of the presence of different subsystems in different
organisms will identify which organism in which environ-
ment is performing the different biochemical reactions;
and the extension of other techniques such as metabolic
modelling into the environmental arena may provide
insights into the critical biochemical mechanisms in each
environment.

Conclusion

Comparative metagenomics is a powerful mechanism for
highlighting the ecological differences between environ-
mental samples. Our analysis has generated several
hypotheses that can be readily tested on microbes from
the Sargasso Sea:

1. Serine, threonine, and glycine betaine are primarily
being used as osmoprotectants. Increased intracellular
concentrations of serine may protect and against the
osmolarity of the ocean. In contrast, sucrose and trehalose
are not being used as readily for osmoprotection.

2. Microbes in the Sargasso Sea are more limited for phos-
phate than nitrogen.

3. Microbes in the ocean are not generally using flagella
based motility but are probably using one of the less-char-
acterized mechanisms of locomotion.

4. Archaea in the AMD sample are degrading arginine and
histidine.

http://www.biomedcentral.com/1471-2105/7/162

The subsystems approach to investigating environmental
genomes demonstrates the intricate interplay between the
abundance of genes in the environment and the biology
of that environment. In addition to answering that age-
old knock-knock joke [26] by cataloging the organisms
that are present in an environment and looking for novel
proteins and structures, metagenomics also provides criti-
cal insights into our understanding of the physiology,
biology, and ecology of an environment. Using subsys-
tems to compare the ecology of sites that have been sam-
pled by metagenomics can be applied to any other
metagenome samples to provide similar insights into the
ecology of those environments.

Methods

Sequence databases

The complete SEED database v4 was used as the source of
all data [27]. Construction and annotation of the subsys-
tem database is described elsewhere [9,28]. The environ-
mental sequences were removed from the SEED database
for the analyses presented here. Furthermore, any
sequences with principal homology to either Shewanella
sp. or Burkholderia sp. were removed from the Sargasso Sea
metagenome because of contamination concerns [29].
This dataset contained 960,561 predicted proteins. The
AMD data set contained 7,588 predicted proteins. For
these analyses the term "protein" is used when referring to
predicted proteins.

Assignment of proteins to subsystems and phylosubsystems
Each protein from the AMD, Sargasso, or the SEED data-
base was compared to proteins in the SEED database pre-
viously assigned to particular subsystems by the SEED
annotators [9]. A protein was considered a member of a
subsystem if the protein had significant similarity (desig-
nated as an E value less than 1 x 10-20) to another protein
previously assigned to a subsystem. Each protein was also
classified as Bacteria, Eukarya, and Archaea, based on the
Domain assignment of the most similar protein. There
were a total of 276 annotated subsystems in the SEED.
Bacteria had proteins in 257 of the subsystems. Archaea
and Eukarya had proteins in 132 and 134 of the subsys-
tems, respectively. This means that each there were a total
of 523 potential data points. The term phylosubsystem is
used to reflect that fact that the assignments are based
both on the subsystem and Domain.

Comparisons of metagenomic databases

A flowchart of the methods used to identify subsystems
with statistically significant differences between databases
is shown in Fig. 4 and described in the supplemental
material [see Additional File 2]. In addition, source code
to software to calculate these differences is provided as
supplemental material [see Additional File 1]. In order to
decide whether a subsystem was over-represented
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Figure 4
Flow chart of methods used to identify statistical differences between phylosubsystems.
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between metagenomes, a comparison between the
median number of proteins assigned to specific subsys-
tems was performed for a given confidence level. The fol-
lowing steps were carried out: 1) A number N of proteins
were drawn at random, with replacement, from each of
two metagenomes. Each protein was classified into a sub-
system. Then, the difference between the two sets of sam-
ples was calculated for each subsystem, resulting on a list
of differences between metagenomes by subsystems.
These differences were expected to be more pronounced
where the differences between metagenomes were more
remarkable, but with just one set of differences this was
not guaranteed. Thus, this procedure was repeated M
times. Then, for each subsystem the median of all the M
differences was calculated. 2) To build a confidence inter-
val, a number N of "mixed" samples were drawn at ran-
dom, with replacement, from a mixture of both
metagenomes. For each sample, two random numbers
were drawn, the first one to decide which metagenome
would be selected, and the second one to choose a partic-
ular element of the metagenome, which was the
accounted into its corresponding subsystem. This process
was repeated for another set of N samples and with these
two mixed sets a difference was calculated. This whole
process was repeated M times again, and for each subsys-
tem the resulting differences were ordered and used to
build a confidence interval. The limits of the confidence
interval for each subsystem were estimated by using the
corresponding quantile elements on the ordered set of dif-
ferences of each subsystem as limits to the confidence
interval. For example, if M = 1,000 and the confidence
level was 90%, the limits for the confidence interval were
at the 5% and 96% percentiles on the ordered values of
the differences for that subsystem, that is, the 50t and
951stelements would be the upper and lower limits on the
confidence interval. 3) For any given subsystem, if the
median from step 1 was inside the confidence interval
determined in step 2 it was considered that the subsys-
tems were not significantly different at the given confi-
dence level. If the median was outside the confidence
interval, it was assumed that the difference was significant
at the given confidence level.

Software to calculate the statistics

A software package that calculates the statistics from
appropriately formatted files is provided as supplemental
material [see Additional File 1]. The software is released
under the GPL license and is available from the BMC web-
site.
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between subsystems

Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-7-162-S1.1gz]

Additional File 2
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released under the terms of the Gnu General Public License (GPL).
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Presence of subsystems in the AMD, Sargasso, and SEED samples in tab-
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Abundance of selected Kegg Pathways and Subsystems that are approxi-
mately similar as detected either based on the Normalized differences of
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the relative gene content of the subsystems and Kegg pathways is never
identical.
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