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Abstract

Transposable elements (TEs) are self-replicating “genetic parasites” ubiquitous to eukaryotic genomes. In addition to
conflict between TEs and their host genomes, TEs of the same family are in competition with each other. They compete
for the same genomic niches while experiencing the same regime of copy-number selection. This suggests that compe-
tition among TEs may favor the emergence of new variants that can outcompete their ancestral forms. To investigate the
sequence evolution of TEs, we developed a method to infer clades: collections of TEs that share SNP variants and represent
distinct TE family lineages. We applied this method to a panel of 85 Drosophila melanogaster genomes and found that the
genetic variation of several TE families shows significant population structure that arises from the population-specific
expansions of single clades. We used population genetic theory to classify these clades into younger versus older clades
and found that younger clades are associated with a greater abundance of sense and antisense piRNAs per copy than
older ones. Further, we find that the abundance of younger, but not older clades, is positively correlated with antisense
piRNA production, suggesting a general pattern where hosts preferentially produce antisense piRNAs from recently active
TE variants. Together these findings suggest a pattern whereby new TE variants arise by mutation and then increase in
copy number, followed by the host producing antisense piRNAs that may be used to silence these emerging variants.
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Introduction
Transposable elements (TEs) are mobile, selfish genetic ele-
ments commonly thought of as “genetic parasites.” At the
start of an invasion TEs begin as a single copy within a host
genome, but can transpose and expand rapidly in copy num-
ber throughout the population in each successive generation
by using the host’s replication machinery (Doolittle and
Sapienza 1980; Orgel and Crick 1980). In Drosophila, explosive
growth in copy number during a TE invasion is thought to be
quickly followed by the host acquiring resistance to TE trans-
positions, commonly through host production of piwi-inter-
acting small RNAs, piRNAs which interfere with TE transcripts
(Le Rouzic and Capy 2005; Aravin et al. 2007; Brennecke et al.
2007; Kofler et al. 2018). In the germline, piRNA-mediated
silencing is established through the activation of two syner-
gistic pathways. In the “primary” piRNA pathway, transcrip-
tion of long precursor sense and antisense RNAs from TE-rich
loci called piRNA clusters are processed into 21–30 bp long
antisense piRNAs that complex with Piwi clade proteins, bind
to nascent sense TE transcripts by recognizing sequence com-
plementarity, and then recruit additional proteins to tran-
scriptionally silence homologous TEs. In the “secondary”
piRNA pathway, Piwi-bound piRNAs degrade TE transcripts
and form sense piRNAs that bind to antisense piRNA pre-
cursors and create a positive feedback loop, known as the

Ping-Pong cycle, that establishes constitutive silencing
(Aravin et al. 2007; Brennecke et al. 2007; Le Thomas et al.
2014; Czech et al. 2018).

Ultimately the TE copy number may reach a steady state,
with the rate of transposition dampened by piRNA silencing
as well as selection against the deleterious consequences to
reproductive fitness of the host organism (Charlesworth and
Charlesworth 1983; Lee and Langley 2010; Kelleher et al. 2020).
However, as TEs expand in copy number, they also acquire
polymorphisms in their sequences, which may lead to the
formation of new lineages or subfamilies (Moody 1988;
Kimmel and Mathaes 2010; Kijima and Innan 2013; Iwasaki
et al. 2020). Multiple lineages of a TE will compete with each
other, as long as their polymorphisms are not deactivating
(Abrus�an and Krambeck 2006; Le Rouzic and Capy 2006;
Iwasaki et al. 2020). Much in the same way individuals within
an ecological system are constrained by a carrying capacity,
variants of the same TE may be constrained by the copy-
number carrying capacity of the host (Brookfield 2005; Le
Rouzic and Capy 2006). This dynamic produces an arena of
genomic competition of TE variants where selection may
drive the propagation of more fit TE lineages, while less fit
lineages are purged (Le Rouzic and Capy 2006).

The study of selection on TE population variation has of-
ten focused on the fitness of the host organism rather than on
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the TEs themselves. Much of it centered on the variation of
TE insertions within and between populations as well as fit-
ness and phenotypic effects associated with particular inser-
tion loci (Cridland et al. 2013; Blumenstiel et al. 2014; Kofler
et al. 2015). The study of selection on sequence variation of
TEs, on the other hand, is much more limited. TEs are typically
categorized into classes and subclasses based first on their
mechanism of transposition, and then on presence of shared
motifs, relative sequence identity, and phylogenetic charac-
teristics (Wicker et al. 2007; Arkhipova 2017; Makałowski et al.
2019). There is extensive systemization of TE families, describ-
ing their consensus sequences, open reading frames, and in-
sertion site preferences (Bao et al. 2015).

Due to the challenges of quantifying variation within re-
petitive sequences, however, the empirical study of TE se-
quence polymorphism is largely limited to analyses of
reference genome assemblies. For example, the sequence var-
iation of TE families in the Drosophila melanogaster reference
genome has been comprehensively described (Kaminker et al.
2002; Lerat et al. 2003; Bergman and Bensasson 2007). In an-
other example, phylogenetic and evolutionary analyses on
retrotransposons within the Oryza sativa genome revealed
strong purifying selection on protein-coding regions, with oc-
casional bursts of positive selection (Baucom et al. 2009). To
our knowledge, studies examining TE sequence variation from
population samples are rare, likely because reference genomes
are the primary source of full-length TE sequence data.

Ideally, to apply population genetic and molecular evolu-
tionary principles to the genetic variation of TEs, we would
study the complete sequences of individual TE insertions
across many genomes. This is especially necessary if the aim
is to assess competition between TE subfamily lineages, where
reconstructing the underlying phylogenies would yield insight
into the dynamics of how lineages diversify and potentially
compete with each other. However, most current population
genomic data come from short-read sequencing, which does
not permit an unambiguous assembly containing all the TEs
and their internal SNPs. The problem is related to haplotype
phasing, which can be done with short reads (Clark 1990;
Excoffier and Slatkin 1995; Browning and Browning 2007;
Delaneau et al. 2008), except here the TE insertions are at
nonhomologous positions. Furthermore, the high multiplicity
of TEs greatly complicates the task of determining which
internal polymorphisms co-occur in the same insertion,
such that with short reads, unambiguous TE haplotypes can-
not be recovered as complete sequences of linked SNPs.
Although new long-read technologies, like PacBio and
Oxford Nanopore, have emerged that greatly reduce phasing
problems and allow for more complete analysis of TEs (Long
et al. 2018; Miller et al. 2018; Chakraborty et al. 2019; Ellison
and Cao 2020; Wierzbicki et al. 2021; Gebert et al. 2021), their
higher cost and relatively high error rates have limited their
application to large-scale population genomics studies.

To gain insight into the sequence evolution of actively
invading TEs, we sought to resolve some of these challenges
by leveraging a straightforward intuition: if a set of SNPs co-
occur in the same TE lineage, their copy number should be
correlated across genomes, covarying as the copy number of

that lineage varies across genomes. To this end, we took ad-
vantage of the large sample sizes in a population-genomic
data set to quantify positive correlations in the copy number
of SNPs across multiple individuals, and from these, we iden-
tify groups of SNPs that we infer to co-occur within TE line-
ages. We refer to these groups of SNPs as clades, which are
inferred to distinguish lineages of TE subfamilies while side-
stepping the task of reconstructing the full phylogenies from
short-read data. We use the term “TE lineages” to describe the
true but unknown genealogical relationship of TE sequences
in a family, whereas “clades” are statistical inferences of this
genealogy informed by the positive correlation of SNP copy
number. Applying our method to a set of 85 D. melanogaster
genomes from the global diversity lines (GDL) (Grenier et al.
2015), we inferred clades in 41 recently active TE families. We
then used public PacBio data sets and simulations to validate
our inferred clades (Long et al. 2018; Chakraborty et al. 2019).
We analyzed the population variation of TE variants and
found significant population structure driven by
population-specific TE clades, several which are likely active.
We additionally analyzed several piRNA libraries from ovaries
focused on SNPs that distinguish clades, and found piRNAs
are especially enriched for younger TE clades.

New Approaches

Hierarchical Clustering of SNPs Uncovers TE Clades in
NGS Data
We leverage large population-genomic data sets to detect TE
clades by inferring the co-occurrences of SNPs within a TE
lineage. We expect that if two alleles exist within the same
lineage they will correlate in copy number, varying together as
the TEs of that lineage vary in copy number (fig. 1a). We apply
this principle to all pairwise combinations of SNPs within an
element to compute a correlation matrix and then use hier-
archical clustering to cluster groups of SNPs that are strongly
correlated. The result is clusters of SNPs that covary in their
copy number across samples; because these are inferred to
occur within the same TE lineage we refer to these clusters as
“clades.” Hierarchical clustering is a particularly appropriate
choice for this problem as SNPs within TE lineages are truly
related to each other in an underlying tree-like structure that is
analogous to a hierarchical clustering dendrogram. The corre-
lations between alleles are unlikely to be a result of co-trans-
position of multiple TEs because the linkage between TEs is
very low and the sampling variation in these data is quite high.

We employed this clade inference method using short-
read libraries from the GDL, 85 D. melanogaster lines from
populations in Beijing, Ithaca, the Netherlands, Tasmania, and
Zimbabwe (Grenier et al. 2015). We aligned the short-read
data to the TE consensus sequences of 41 recently active TEs
and the D. melanogaster reference genome using ConTExt
(McGurk and Barbash 2018). Then we calculated allele fre-
quencies of SNPs from the read pileups of the alignments and
calculated copy number from the read depth. In brief, copy
number was estimated by dividing the observed read depth
at each position on the TE consensus sequence by the
expected read depth of single copy sequences inferred from
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FIG. 1. Outline and examples of the TE clade inference method. (a) Cartoon depicting the method. The genomes of three individuals (orange
rectangles) contain copies of an ancestral TE (blue rectangles) and a derived TE with SNPs A and B (blue rectangles with a red and purple stripe,
respectively). As the copy number of the derived TE varies in copy number across individuals 1–3, so does the copy number of SNPs A and B. This
relationship in copy number is depicted as a cartoon scatterplot, where each red dot represents the copy number of SNPs A and B in one of nine
individuals sampled in the population. The copy number of the SNPs is positively correlated because the SNPs are physically linked. (b) Scatterplot
depicting the correlation in copy number across GDL individuals for two SNPs in the Jockey element. Each dot represents the copy number of the
SNPs C at position 2238 (C_2238) and C at position 4204 (C_4204) for each individual, colored by their population of origin. The degree of
correlation of these two SNPs is high (Pearson’s r¼ 0.82), suggesting that they are physically linked and represent a clade. Black dashed line is a
linear fit of the data drawn for emphasis. (c) Heatmap showing correlation of the copy number of all SNPs from the Jockey element. Cells in the
heatmap are seriated via hierarchical clustering to create clusters of tightly correlated SNPs, which are inferred to be Jockey clades segregating in the
population. The cells are shaded by the pairwise Pearson’s correlation between SNP copy number. The SNPs from (b) are outlined in a block box.
SNPs are annotated by the cluster they belong to, that is, clade. Only clusters of two or more SNPs are annotated and included in downstream
analysis. Clades are additionally annotated by predicted age as described in the section “The Majority of Clades Are Predicted to Be Young and
Recently Active.” (d) The percent of clades inferred from GDL data that were then detected in a set of PacBio genomes (includes only clades where
at least two SNPs were detected at any frequency in the PacBio data). The results are separated by TE family, with total clades shown on the far
right. Fraction of clades validated over the total number of clades found are placed above each bar.
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the read depth of the reference genome, with corrections
for GC bias (McGurk et al. 2021). For each individual, we
took the allele frequencies at each position and multiplied
them by the estimated copy number at each position to
generate the copy number of alleles at each position for
that individual. We compute pairwise correlations between
the copy number of alleles across individuals (fig. 1b), and
then employ hierarchical clustering to cluster positively cor-
related SNPs, thus inferring clades (fig. 1c and supplementary
file 6, Supplementary Material online, https://github.com/is-
the-biologist/TE_CladeInference). For each of the 41 TEs an-
alyzed, we report the SNP clusters, as well as the copy number
of each inferred clade, calculated by averaging the copy num-
ber of the individual alleles (e.g., C_2238, C_4204 in fig. 1)
(supplementary file 1, Supplementary Material online, https://
github.com/is-the-biologist/TE_CladeInference).

One important consideration of this method is that we are
not identifying the full set of TE insertions within an inferred
clade nor the complete sequences of the insertions at any
particular locus that belong to an inferred clade. Rather, we
are identifying sets of SNPs that distinguish lineages from each
other (lineage-informative SNPs). Lineage-informative SNPs
are clustered together by our method and output as inferred
clades, which are statistical inferences of the set of true line-
ages that exist for a TE family. However, because all TE line-
ages of a family are related by an underlying phylogeny, there
likely does not exist a single correlation cut-off that optimally
groups TEs into distinct clades. Rather, any chosen threshold
induces some degree of coarse-graining in how it collapses
this phylogeny, splitting and merging lineages of TE variants
into clades. Generally, a higher stringency in the clustering
cut-off will produce many small clusters of tightly correlated
SNPs that split lineages, whereas low stringency cut-offs will
produce a few large clusters that merge lineages together. By
analyzing the phylogeny of full length TE insertions for a given
family, we found that insertions that belong to clades inferred
under stringent clustering parameters tend to be more closely
related phylogenetically than those inferred under lenient
clustering parameters (supplementary fig. 1, Supplementary
Material online). Therefore, the degree of correlation between
the copy number of alleles is related to the phylogenetic
distance between the TE insertions that bear those alleles.
However, this relationship is not always perfect. For example,
a pair of alleles that are present in all TE insertions in a pop-
ulation may be strongly correlated, but the phylogenetic dis-
tance between TE insertions bearing those alleles may be
relatively large, as for “Cluster_7” of the Jockey element (sup-
plementary fig. 1d and e, Supplementary Material online).

Due to the inherent coarse-graining of hierarchical cluster-
ing, whether or not SNPs are merged into one clade depends
on the clustering cut-off and how often the lineage-
informative SNPs co-occur. This can result in an insertion
belonging to more than one clade, depending on the corre-
lation cut-off chosen. For example, two closely related line-
ages may share an ancestral set of SNPs, but have recently
diverged such that one lineage acquired a small number of
polymorphisms in addition to the ancestral SNPs. Depending
on the stringency of the clustering cut-off these two lineages

may be called as a single clade containing all of the SNPs or as
two clades: one only with the ancestral subset of SNPs and
one only with the derived SNPs. In the latter case of two
clades, TE insertions from the derived lineage have both the
ancestral and derived SNPs and would be classified as belong-
ing to both clades. Therefore, clades should not necessarily be
interpreted as distinct waves of invasion nor as being collec-
tions of unique insertions, but rather as clusters of SNPs that
co-occur within insertions that are statistical representations
of evolving lineages.

We attempt to address these caveats and trade-offs in our
analysis by using simulations and PacBio data to validate our
inferences. When inferring clades in the GDL short-read data,
we chose stringent clustering parameters to make the clade
calls conservative (splitting distantly related lineages). These
sets of parameters were chosen to essentialize TE clades to a
minimum number of core SNPs that co-occur with a high
positive correlation, while increasing the number of distinct,
resolved clades. High stringency cut-offs also minimize the
number of false positives that can result from performing
many thousand pairwise correlations of allele copy number
(supplementary fig. 1a and b, Supplementary Material on-
line). Parameters could be tuned to be less stringent to define
clades harboring greater internal SNP variation, but the sets of
parameters we chose performed well in our validation as 70%
of detectable clades inferred from the GDL data were
detected in long-read PacBio assemblies (fig. 1d).
Undetected clades were a mix of closely related lineages
that had been merged into a single cluster and errors in
clustering (see Materials and Methods). Our method per-
formed well on simulated data sets under a wide range of
clustering parameters and under various degrees of simulated
sequencing error, but was most negatively affected by exces-
sive fragmentation of elements (supplementary fig. 2,
Supplementary Material online). We additionally assessed
the robustness of our method to smaller sample sizes by
down-sampling the GDL data and found that when sample
sizes were below 50 libraries the ability to recover accurate
cluster labels dropped, especially in LINE-like retrotranspo-
sons (supplementary fig. 3a, Supplementary Material online).

Results

Diversity and Variation of TE Clades in the GDL
To determine whether high sequence diversity of a TE family
is due to the evolution of many distinct lineages or a few
highly diverged lineages, we assessed the sequence diversity of
TE families and the number of clades segregating in the GDL.
We calculated the average nucleotide diversity across the
GDL of active TE families and found a positive relationship
between the number of clades and nucleotide diversity
(fig. 2a; Pearson’s r¼ 0.74; P<0.05). Both the telomeric TEs
and long-terminal repeat (LTR) retrotransposons have several
families with a high number of clades and high sequence
diversity. This observation conflicts with previous reports of
LTR retrotransposons being typically less diverse than other
classes of transposons because they are younger and had
recently invaded D. melanogaster (Bergman and Bensasson
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2007). Our higher estimates of sequence diversity may be a
result of our sampling population-level data as opposed to
previous studies that were limited to a single reference ge-
nome. It should also be noted that the LTR families Zam,
Gypsy, and Gypsy1 are the most diverse, have the highest
number of clades and are thought to be older than other
LTR families in our list (Kofler et al. 2012, 2015; Kelleher and
Barbash 2013). Due to their age, their high diversity likely
reflects inactive and degenerate lineages. However, nucleotide
diversity is also a product of the mutational processes of a TE,
and differences in sequence diversity between classes may
also be driven by differences in the rate of mutation.

Besides the LTR retrotransposons, there are also several
LINE-like retrotransposon and DNA transposon families
with high sequence diversity, but they tend to have fewer
clades than non-LINE retrotransposons with similar sequence
diversity. For example, the R1 family has a high sequence
diversity (p � 0:026) and only eight clades, whereas the
LTR retrotransposon Zam has comparable sequence diversity
and 94 clades. This pattern may be driven by merging SNPs
into large clades rather than splitting them into many small
ones, so we characterized each clade by the number of
lineage-informative SNPs it contains (fig. 2b). In general, the
distribution of lineage-informative SNPs is small and tightly
distributed, with a median number of two and an interquar-
tile range of one. The small cluster size is indicative of a pref-
erence for splitting multiple related clades rather than
merging them into larger clusters. Clusters of SNPs we dis-
cover may therefore not be mutually exclusive and may occur

together within a subset of insertions, but with a degree of
positive correlation insufficient to pass the clustering thresh-
old. This preference for splitting would upwardly bias the
number of clades that we estimate, as large clusters of SNPs
with distant genealogical relationships might be broken up
into many small clusters of SNPs that are closely related. The
exact number of clades segregating in each TE family is af-
fected by parameterization of the clustering as well as the
degree of fragmentation of the TE in the genomes themselves.
Therefore, some caution must be taken when considering the
absolute numbers of clades segregating in a TE family and not
relative proportions. However, the inference of clades using
simulated data shows that the number of clades and quality
of clustering is surprisingly robust to clustering parameters
(supplementary fig. 2, Supplementary Material online).

Although most TE families have clades with a small num-
ber of SNPs, R1 clades are notable outliers, with a median of
14 SNPs and interquartile range 19.75 and two clades with 60
and 100 SNPs each. This might be explained by the presence
of two independently evolving populations of R1 elements in
D. melanogaster, the hundreds of R1 insertions in the highly
repetitive ribosomal DNA array, and a separate lineage of
divergent elements that comprise a megabase-sized satellite
array (Wellauer and Dawid 1977; Roiha et al. 1981; Xiong and
Eickbush 1988; Luan et al. 1993; McGurk and Barbash 2018).
Divergence between these lineages likely explains the high
sequence diversity. The similarity of sequences within each
lineage and dissimilarity between lineages may favor their
merging into a handful of large clades during clustering.

FIG. 2. Summary statistics of TE clades inferred from GDL short reads. (a) Average nucleotide diversity for each TE family versus the number of clades
inferred for that family, colored by TE class. (b) The number of lineage-informative SNPs that compose each clade inferred for every TE family. Each
point represents a clade and is colored by TE class. (c) Histogram of the clade population frequency of all clades from 41 recently active TE families.
(d) Boxplots of the clade population frequency of all clades separated by TE family. Each point represents a clade and is colored by TE class.
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We next addressed whether a single clade dominates a TE
family in terms of copy number or if instead the clades occur
at roughly equal frequency. We determined the proportion
of all copies of a TE family in the GDL population belonging
to a clade by calculating the “clade population frequency,”
dividing the total clade copy number by the average copy
number across the lineage-informative positions (e.g., posi-
tion 2238, position 4204 in fig. 1) summed across the GDL
(supplementary file 1, Supplementary Material online,
https://github.com/is-the-biologist/TE_CladeInference). It
should be noted that clade population frequency in this
context is not the frequency of any insertion of a TE in
the population, but the number of copies belonging to a
clade out of all copies in a population. We find that most
clades occur in the population at a frequency between ap-
proximately 10–30% (mean 17%; fig. 2c). There is a notable
lack of low-frequency clades, likely due to the filtering of low
copy-number and low population-frequency alleles before
calling clades. We found 21 clades with high population
frequency (>40%) occurring in 13 different TE families, in-
cluding telomeric TEs and several LTR and LINE-like retro-
transposons. The Diver and Nomad LTR retrotransposons
had the greatest number of high-frequency clades (3–4 per
family), but with dramatically different clade population fre-
quency distributions. The Diver frequency distribution had
many clades spread across the entire range from low to high,
whereas the Nomad distribution was clearly split between a
handful of low- and high-frequency clades (fig. 2d). Jockey,
Doc, and DM412 are examples of TE families with Nomad-
like frequency distributions, whereas Gypsy1, Zam, and I-el-
ement are examples of TE families with more uniform clade
frequency distribution similar to Diver (fig. 2d). The Nomad-
like frequency distributions may reflect a relatively fast copy-
number expansion of a handful of clades that outcompeted
other lineages, whereas Diver-like distributions may reflect
gradual diversification and slow increase in copy number of
many clades, possibly driven by stochastic processes.

One important consideration is that due to the way pop-
ulation frequency was calculated, clades with SNPs in com-
monly deleted portions of a TE may be at a high frequency
despite being at a relatively low copy number. This is partic-
ularly important for LINE-like elements and DNA transposons
that are frequently truncated and internally deleted.
Therefore, the clade population frequency does not necessar-
ily reflect the proportion of TE insertions in the clade, but
instead the number of TE insertions that have those nucleo-
tide sites in the given clade. High population-frequency clades
in Gypsy, Zam, HeT-A2, and Tart-B1 had very low copy num-
bers (�1–2 copies on an average; supplementary file 1,
Supplementary Material online, https://github.com/is-the-bi-
ologist/TE_CladeInference), likely due to having SNPs in com-
monly deleted portions of their respective TE sequences.
However, we found that many high population-frequency
clades were at high copy number (10–40 copies on an aver-
age). The high-frequency clades of Jockey, DM412, and Doc
were particularly striking as they are at high copy number and
dominate other clades of their respective families. These

clades may be at high frequency due to age, having a com-
petitive edge over other variants, or by pure chance.

The Majority of Clades Are Predicted to Be Young and
Recently Active
The frequency of individual TE insertions in a population, or
“insertion-site frequency,” is an informative parameter in esti-
mating the age and potential activity of TEs. Although the
limitations of short-read data prevent us from mapping
SNPs to specific insertions and estimating insertion-site fre-
quency, the insertion-site frequency spectrum of a TE influen-
ces the variance of its copy-number distribution across
individuals. Our approach infers TE clades, which are collec-
tions of TE insertions that share a subset of SNPs, but the same
idea applies—the insertion-site frequency spectrum, and there-
fore copy-number distribution, of clades is also expected to be
related to their age. We therefore applied population genetic
theory to predict the age of clades from their copy-number
distributions. The copy-number distribution of a TE lineage in a
population is related to the insertion-site frequency spectrum:

Vn ¼ n 1� n

T

� �
� Tr2

x þ 4
X

i< j
Di;j;

where, Vn and n are the variance and the mean of the copy-
number distribution, respectively. T is the number of occupi-
able sites of a TE, rx

2 is the variance of the insertion-site
frequency, and 4

P
Di, j represents the sum of the coefficients

of linkage disequilibrium between insertions (Charlesworth
and Charlesworth 1983; Langley et al. 1983).

In a simple scenario, a recently active, young lineage will
have insertions that are mostly at a low population frequency
with little variance (rx

2ffi 0). When the number of occupiable
sites is large (T� n) and the effect of linkage disequilibrium
between insertions is small (4

P
Di, jffi0), then the mean and

variance of the copy-number distribution will be Poisson
distributed:

Vn � n

Vn

n
� 1:

An older lineage, on the other hand, will have insertions at
variable frequencies (rx

2>0)—due to drift increasing the fre-
quency of older insertions. This results in the variance of the
copy-number distribution being less than the mean, that is,
“underdispersed” relative to the Poisson expectation:

Vn � n� Tr2
x

Vn < n

Vn

n
< 1:

Therefore, an underdispersed copy-number distribution is
indicative of a lineage with a broad insertion-site frequency
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spectrum, which would indicate older age and inactivity
(Charlesworth and Charlesworth 1983; Langley et al. 1983;
McGurk et al. 2021).

This is further complicated by linkage disequilibrium be-
tween insertions (e.g., population structure). For a recently
active lineage (rx

2ffi 0) with population structure, the copy-
number distribution will no longer be Poisson. Instead, the
variance of the copy number will be greater than the mean,
that is, “overdispersed”:

Vn � nþ 4
X

i< j
Di;j

Vn > n

Vn

n
> 1:

It is possible that an older TE lineage (rx
2>0) could be

experiencing population structure as well, in which case
whether or not the copy number distribution remains under-
dispersed depends on how strong the linkage is between
insertions. More generally, when Trx

2>4
P

Di, j the TE will
be underdispersed, when Trx

2<4
P

Di, j the TE will be over-
dispersed and when Trx

2 ffi 4
P

Di, j, the TE will fit a Poisson
(Charlesworth and Charlesworth 1983; Langley et al. 1983;
McGurk et al. 2021). Although the theoretical expectation
is that young lineages will fit a Poisson and old lineages will
be underdispersed, whether these expectations are borne out
in the data are dependent on the population structure and
demographic history of the organism. Further complicating
our expectations are the complex life histories of TEs, such as
recurrent invasions or extended continuous activity, wherein
ancient TE insertions would be at high frequency but recent
insertions would be at low frequency, thus creating an
“underdispersed” copy number distribution despite having
recent transpositions.

Although these caveats should not be discounted, the
copy-number distributions of known active and inactive
TE families do recapitulate these expectations (McGurk
et al. 2021). Therefore, we analyzed the copy-number distri-
bution of clades (as a proxy for the true lineages) by using a
two-tailed dispersion test with multiple testing correction to
ask whether the distributions are overdispersed, underdis-
persed, or fit a Poisson (fig. 3a) (Yang et al. 2009). We predict
that clades with copy-number distributions that fit a Poisson
or are overdispersed are younger, recently active lineages and
clades that are underdispersed are older, likely inactive line-
ages. By using this test, we are not directly assaying transpo-
sitional activity of these clades, but are inferring their age
based on the theoretical expectations of their copy-number
distribution. These inferences of age are imperfect due to the
caveats mentioned above, so we sought additional support
for our inferences of young and old clades by finding inser-
tions belonging to these clades in the PacBio data and de-
termining their sequence diversity, length, and genomic
position. We found that insertions belonging to young clades
tend to have much lower sequence diversity (p¼�0.05), are
more often full length and are found less often in

heterochromatin than insertions belonging to old clades
(p¼�0.16) (Mann–Whitney U: P<0.05; supplementary fig.
4, Supplementary Material online). These results confirm
that clades with underdispersed copy-number distributions
are composed of older, more degenerate insertions that have
accumulated in the heterochromatin and match our theo-
retical expectation. Although in general the Poisson fit of the
copy-number distribution of clades is highly concordant
with other predictors of age, not all clades that were pre-
dicted to be young or old fully conformed with expectations.
Ultimately, these inferences of age are an imperfect proxy for
activity and are not directly assaying the ability to transpose.

Of the clades that were at a high clade population fre-
quency (>40%), the clades of telomeric TEs and other families
such as Jockey, Copia, Nomad, and DM412 had copy-number
distributions consistent with recent activity (dispersed or
overdispersed), whereas the high-frequency clades of Zam
and Stalker-4 were classified as older lineages (underdis-
persed). High-frequency clades in Doc and Diver, on the other
hand, were a mixture of young and old clades. We found that
on an average old clades were at a slightly higher frequency in
the population than young clades (Mann–Whitney U:
P < 0.05; fig. 3b). Overall, 56% of the clades were classified
as young and therefore active. The excess of old clades seg-
regating in the GDL is driven by eight families (Gypsy, Gypsy1,
I-element, BS, Zam, Bel, Diver, and Burdock), which accounts
for 86% of all the old clades (fig. 3c). The abundance of old
clades in these TE families matches their known insertion-site
frequency spectra, which is skewed toward older insertions at
high frequencies (Kofler et al. 2012, 2015). Curiously, only a
single old clade was inferred for the P-element family (fig. 3c).
P-element is not an old TE family, but nonetheless this clade is
underdispersed and at very low copy number (�0.4 copies on
an average). This suggests that this clade of P-element is dead
and possibly internally deleted. This does not mean that all P-
element lineages are inactive, but it is the only set of P-element
SNPs segregating in the GDL that were at a high enough copy
number and/or frequency to pass our SNP filtering cut-offs.
Most active P-elements will be highly similar to the consensus
TE sequence, because the P-element family has a very low
genetic diversity (p¼�0.00076). This is also likely the case
for Pogo where a similar pattern is seen.

I-element, by contrast, is a particularly striking example
where all but one clade is old (fig. 3c). This is consistent
with the known evolutionary history of the I-element, as it
appears to have invaded D. melanogaster populations multi-
ple times, leaving both inactive relics of ancient invasions and
younger active copies (Picard et al. 1978; Kidwell 1983;
Busseau et al. 1994). Many D. melanogaster strains are sus-
ceptible to I-element invasion, despite having euchromatic
insertions, and crosses with strains carrying active I-elements
result in hybrid dysgenesis (Olovnikov et al. 2013; Ryazansky
et al. 2017). Therefore, many of the older clades segregating in
I-element may be remnants of this ancient invasion.

Curiously, the only I-element clade that was predicted to
be young shows strong population structure, being at a
higher copy number in Beijing than in the other populations
(fig. 3d). Strong population structure is expected to inflate the
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variance in copy number calculated across all populations, so
we reanalyzed the I-element in the Beijing population. We
found the copy-number distribution of the Beijing strains fit a
Poisson well, implying that this I-element clade is likely young
and active (P¼0.7). This clade is at less than 1% frequency in
the other four populations, whereas at approximately 11%
frequency in the Beijing population. It is quite likely then that
this young I-element clade invaded the Beijing population
after the D. melanogaster population migrated to East Asia.
Generally, 54% of the likely active clades were overdispersed,
which suggests there may be population structure to their
geographic distributions as well and potentially indicates on-
going population-specific invasions. Alternatively, overdisper-
sion may be driven by ongoing copy-number evolution of the
TE families in the strains maintained in the laboratory, thus
creating an extreme form of population structure.

Population Structure of TE Variation
The genetic variation of TEs within and between populations
is an underexplored facet of TE evolution. Early in the P-ele-
ment and hobo invasions, variant lineages emerged and rose

to high copy number, entirely replacing the wild-type TE in
some populations within a decade (Black et al. 1987; Periquet
et al. 1989). These dynamics may reflect selection acting at the
level of TEs, with variants outcompeting the ancestral lineage
(Le Rouzic and Capy 2006; Robillard et al. 2016; Iwasaki et al.
2020). The clades we identified provide an opportunity to
catch such events in progress. We sought therefore to identify
TE lineages (using clades as a proxy) that have expanded or
contracted in copy number within specific geographic pop-
ulations, because these might be signatures of selection acting
on the TE sequence.

To find clades with population structure, we used a
Bonferroni-corrected Kruskal–Wallis test to determine which
clades rejected the null-hypothesis that their copy number
was homogeneously distributed across populations. We
found that approximately 15% of clades were heteroge-
neously distributed among the five GDL populations, thus
indicating population structure (fig. 4a). Some TE families,
such as Burdock and Tart-A, have few or no clades that are
enriched for particular populations, whereas Jockey, Copia,
and Tirant have many clades with population structure.

FIG. 3. Age of clades are inferred by their copy-number distribution. (a) Mean–variance relationship of the clade copy-number distributions for
clades from all families. The copy-number distributions for each clade were tested for goodness of fit to a Poisson distribution, and then colored
based on acceptance or rejection of this test: “overdispersed” (rejected, red), “dispersed” (fail to reject, yellow), or “underdispersed” (rejected,
purple). (b) Clade population frequency of young (red: “dispersed” and “overdispersed”) or old (purple: “underdispersed”) clades across all TE
families. (c) Number of inferred clades per TE family that are young (red: “dispersed” and “overdispersed”) or old (purple: “underdispersed”). (d)
Boxplot of the copy-number distribution of the sole putatively active I-element clade from (c) for each GDL population. There is a significant
elevation in the copy number of this clade in Beijing.
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To quantify the extent of the population structure, we
compared the average clade copy number across the GDL
to the average clade copy number of the subpopulation
(Beijing, Ithaca, Netherlands, Tasmania, or Zimbabwe) that
was the most differentiated from the entire GDL (fig. 4b). Of
the clades that were statistically significant by the Kruskal–
Wallis test, the most differentiated populations had a clade
copy number that was, on an average, approximately 3.8
copies greater or lesser than the GDL mean. In general, these
population structure differences were of modest effect, but
Roo, R1, and F-element clades have differences from the GDL
mean of approximately 10–35 copies. These much larger ef-
fect sizes might be driven in part by the very high copy num-
ber of these three families throughout the genome.

Our analysis of these summary statistics, although infor-
mative, does not reveal in which population(s) a clade is
enriched. We therefore employed principal component anal-
ysis (PCA) on the matrix of SNP frequencies of each TE family
in each individual. This allows us to find which SNPs are
driving the population variation within a TE family, as well
as to visualize which individuals in the GDL carry similar TE
variants. We find strong population structure for Roo variants
with distinct clusters of Beijing and Zimbabwe individuals
(fig. 4c). This population structure is driven by population-
specific expansions of clades (fig. 4d and e). The Beijing- and
Zimbabwe-specific clades are at approximately 45 copies
(�33% frequency), and approximately 50 copies (�40% fre-
quency) in Beijing and Zimbabwe, respectively. The Beijing
clade is very rare outside of its respective population, approx-
imately 1% frequency, which implies that it emerged in East
Asia and then expanded in copy number. The Zimbabwe
clade, on the other hand, segregates at approximately 10%
frequency in the other populations, implying a more ancestral
origin.

We find an analogous pattern in Tirant and Jockey varia-
tion where there is also strong population structure that is
driven by population-specific expansions of clades. Much like
Roo, Ithaca- and Tasmania-specific clade expansions drive the
population structure of Tirant variation (supplementary fig.
5a–c, Supplementary Material online). However, in Jockey, it is
the absence of a clade in Zimbabwe that is found in all other
populations, coupled with a Zimbabwe-specific expansion of
a different clade, that drives that structure (supplementary fig.
5d–f, Supplementary Material online). In these three families
with notable population structure, it is the presence or ab-
sence of a single clade that drives the variation rather than
multiple variants expanding within the populations. This pat-
tern could be a reflection of selection favoring the expansion
of a single lineage in a population, or simply due to genetic
drift. In either case, it shows that TE lineages are able to
expand in copy number and become endemic in a popula-
tion, dramatically altering the composition of TE variants
within those individuals.

Not every population-specific expansion of a clade will be
as stark as Roo, Jockey, or Tirant. And as we noted above,
approximately 15% of the several hundred clades inferred
show significant heterogeneity in copy number between pop-
ulations. These clades may not be sufficient to drive variation

on a PCA due to their modest effect sizes, but are still signif-
icantly different between populations. These small differences
may represent stochastic fluctuations in clade copy number
between populations, or they may reflect the initial stages of a
newly emerging clade in a population rising to high frequency.

Sense and Antisense piRNA Pools Are Diverse and
Reflect the Age of Variants
One of the primary mechanisms by which hosts control the
proliferation of TEs is through the piRNA pathway. piRNAs
are produced in both the sense and antisense direction from
two distinct pathways. Antisense piRNAs are generally pro-
duced from clusters containing fragments of inactive TEs and
target TE transcripts for silencing. Sense piRNAs, in contrast,
are derived either from the cleavage of a TE primary tran-
script, guided by an antisense piRNA, or from dual-stranded
piRNA clusters undergoing bidirectional transcription.
Generally speaking, antisense piRNAs reflect the potential
to silence TE expression, whereas sense piRNAs reflect the
cleavage and silencing of TE transcripts. Sense piRNAs addi-
tionally feed back into the production of antisense piRNAs,
amplifying the pool of piRNAs targeting that TE sequence
(Aravin et al. 2007; Brennecke et al. 2007; Czech et al. 2018).
Therefore, the pool of piRNAs a host produces might reflect
the genetic variation of active TE families, not just polymor-
phisms in piRNA clusters.

We asked whether the sequence diversity in the sense and
antisense piRNAs (ppiRNA) tended to be correlated with the
sequence diversity of the TEs themselves (pTE). Sequence di-
versity of the piRNAs was quantified by aligning ovarian
piRNA libraries from ten strains from the GDL (two from
each population) to TE consensus sequences (Luo et al.
2020). For each TE family, we pooled together the piRNA
reads from the ten strains to calculate the average piRNA
sequence diversity across its consensus sequence and did a
similar procedure with the copy-number data. To reduce
technical artifacts, we only considered SNPs in the piRNA
data whose presence was supported by the corresponding
genomic data. We found a strong positive relationship be-
tween the sequence diversity of a TE family and the sequence
diversity in both sense and antisense piRNAs (þ: Spearman’s
rho¼0.90, P<0.05;�: Spearman’s rho¼0.88, P<0.05) (fig. 5a).

The ratio (ppiRNA/pTE, dubbed the “piRNA diversity ratio”)
in each TE family estimates how well the piRNA diversity
reflects genomic diversity. If the ratio is 1, then the piRNAs
are as diverse as the genomic loci that they are derived from.
A piRNA diversity ratio less than 1 implies that there is greater
unevenness in the proportion of variants found in the piRNA
pool than in the genomic sequence, such that some variants
may be absent from the piRNAs, whereas others dominate. In
contrast, a piRNA diversity ratio greater than 1 implies that
variants are present in piRNAs at more equal proportions
than in the genomic sequence. Across all families of TEs,
the piRNA diversity ratio is approximately 0.6 (fig. 5a).

We found that LTR retrotransposons have the lowest
piRNA diversity ratio, approximately 0.58 for either strand,
whereas DNA transposons and LINE-like elements have ratios
of approximately 0.7 (supplementary fig. 6a, Supplementary
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Material online). A low-sense piRNA diversity ratio may re-
flect TE families with an abundance of old and inactive TE
variants, which would produce few sense transcripts and thus
few sense piRNAs. Alternatively, these TE variants may be
actively transcribing, but not be effectively silenced by
piRNAs and therefore few of their transcripts are processed
into sense piRNAs. The low sense piRNA diversity ratio in LTR

retrotransposons is surprising given that LTR elements are
relatively recent invaders in D. melanogaster and therefore
many variants of these TE families should be active
(Bergman and Bensasson 2007). However, this low ratio is
largely driven by older TE families with a high number of
old, likely inactive clades (fig. 2c). When we removed LTR
retrotransposon families that had old clades, for example,

FIG. 4. Population structure and variation of TE clades are common. (a) Boxplot showing the result of Kruskal–Wallis tests on the clade copy
number between GDL populations for each TE family. Each dot represents the negative log base-2 transformed P value for a single clade. Red
dashed line is the Bonferroni-corrected critical value. 15% of the clades had a P value less than the critical value, and showed heterogeneity in copy
number between populations (Bonferroni correction: a ¼ 0:05

919 ). (b) Each dot represents the average copy number of a clade across GDL and the
average copy number of the population that is most differentiated from the GDL average. Most differentiated is defined as the greatest absolute
difference between the population mean and the GDL mean. Clades are colored by whether they are statistically significant by Kruskal–Wallis test
(sig., red), or not (n.s., gray). (c) PCA on the minor allele frequency of Roo element SNPs in the GDL. Each dot represents the principal components
derived from the minor allele frequencies of an individual. Beijing (red), and Zimbabwe (purple) clusters can be seen. (d) Boxplot of copy number of
a Roo clade enriched for Beijing (B, Beijing; I, Ithaca; N, Netherlands; T, Tasmania; Z, Zimbabwe). (e) Boxplot of copy number of a different Roo clade
enriched for Zimbabwe (B, Beijing; I, Ithaca; N, Netherlands; T, Tasmania; Z, Zimbabwe).
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FIG. 5. piRNA diversity and the average sense and antisense piRNAs/copy of TE clades for ten GDL strains. (a) Scatterplot where each point
represents the sense (þ, red) or antisense (�, blue) piRNA sequence diversity (ppiRNA) for a TE family plotted against the genomic TE sequence
diversity (pTE) of the TE family. The gray dashed line represents the 1:1 expectation of piRNA diversity: genomic diversity and the black dashed line
represents a linear fit between the piRNA diversity and genomic diversity. (b) Average clade piRNAs/copy for sense (þ, red), and antisense (�,
blue) separated by TE class. Significant differences between sense and antisense piRNAs/copy were found in clades for LTR and LINE-like elements
(sig.), but not telomeric or DNA transposons (n.s.; Wilcoxon signed-rank test). (c) piRNAs/copy of putatively young clades (likely active) and old
clades (likely inactive). Young clades had greater piRNAs/copy than older clades (þ, Mann–Whitney U: P<0.05;�, Mann–Whitney U: P<0.05). (d)
Spearman’s correlation calculated for copy number and piRNA read depth for putatively young and old clades. Young clades had a greater
Spearman’s correlation than inactive clades for sense and antisense piRNA read depth (þ, Mann–Whitney U: P<0.05; �, Mann–Whitney U:
P<0.05). (e) Copy number versus sense (þ, red) and antisense (�, blue) piRNA read depth for a young, recently active Jockey clade, and (f) for an
old, putatively inactive I-element clade.
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Gypsy, Gypsy1, and Zam, from the analysis the sense piRNA
diversity ratio becomes approximately 0.7 (similar to LINE-like
elements).

A lower antisense piRNA diversity is likely due to the fact
that antisense piRNAs tend to be generated predominantly
from piRNA clusters, which contain only a subset of TE var-
iants that are not necessarily representative of all TE variation.
P-element has the lowest piRNA diversity ratio of all families,
approximately 0.01, likely reflecting the low genetic diversity
of P-element (p¼�0.00076) and their recent invasion in
D. melanogaster (Kidwell 1983). Few P-element variants are
segregating in the population and even fewer presumably
have been captured by piRNA clusters. Differences in the
piRNA diversity ratio between classes may also be reflective
of differences in the rate of mutation. High mutation rates
during transposition could increase pTE, but not increase
ppiRNA if the piRNAs are derived from a small subset of inser-
tions, such as piRNA clusters.

Although most TE families had a low piRNA diversity ratio,
R2, Blood, and Hobo had a piRNA diversity ratio>1 for one or
both strands, and Roo was about 1.5� for both strands. These
results were not due to an abnormally low average genomic
diversity (�0.005–0.01). A high sense piRNA diversity ratio
implies that many TE variants are transcribed and targeted by
piRNAs, whereas the high diversity of the antisense piRNAs
indicates that most variants are present in piRNA clusters or
are producing de novo antisense piRNAs.

Given that piRNA content was generally less diverse than
the TEs themselves, we wanted to determine which variants
were contributing to the diversity of the piRNA pools.
Therefore, we calculated the number of mapping sense and
antisense piRNAs that contained the lineage-informative
SNPs of a clade per copy of that clade and averaged this ratio
across the ten GDL strains. A clade that is both being regu-
lated by piRNAs and being used to produce piRNAs should
have high quantities of both sense and antisense piRNAs.

With the exception of the telomeric TEs, antisense piRNA
read depth of lineage-informative SNPs was more abundant
than sense. This difference was most stark in LTR retrotrans-
posons where over 4� more antisense than sense piRNA
reads/copy contained lineage-informative SNPs (fig. 5b,
Wilcoxon signed-rank test: P<0.05). This suggests that
many of these clades have been incorporated into piRNA
clusters and are producing antisense piRNAs. The telomeric
TEs not only showed similar proportions of sense and anti-
sense piRNAs per copy, but also generally had more piRNAs
per clade copy than other TEs, likely reflecting the fact that
piRNAs targeting telomeric TEs are generated from the telo-
meric TEs themselves rather than distinct piRNA cluster loci
(Radion et al. 2018). Newly evolved telomeric TE variants do
not have to insert by chance into an existing piRNA cluster or
become converted into a de novo piRNA cluster, but instead
can be immediately incorporated into the pools of antisense
piRNAs.

We find that many clades produced few or no piRNAs, but
there were some, such as in HeT-A5, that produced over a 100
piRNAs/copy (supplementary fig. 6b, Supplementary Material

online). The low piRNA diversity ratio we observed for TEs
such as HeT-A5 may therefore reflect the inclusion of only a
subset of clades in the primary or secondary piRNA pathway,
and this inclusion may not be representative of the copy
number of those clades. It is clear that some clades are
more likely to be present in the piRNA pool than others.
We therefore hypothesized that recently active variants might
be more readily targeted by host piRNAs and therefore pro-
duce more piRNAs/copy. We used the above described pre-
dictions of young and old clades based on the Poisson fit of
their copy-number distributions and analyzed the piRNA
abundance of the two groups. We found that young clades
have significantly higher sense piRNAs/copy, fitting our pre-
diction that these clades are indeed actively transcribed and
therefore likely transpositionally active (Mann–Whitney U:
P<0.05) (fig. 5c). This also held for antisense piRNA read
depth, although the difference was less pronounced
(Mann–Whitney U: P<0.05). It is clear that although young,
recently active clades are more readily used as a substrate by
the primary piRNA pathway, there are still many older clades
that generate antisense piRNAs, perhaps representing old
heterochromatic piRNA clusters containing inactive variants.
This finding is consistent with previous analyses that showed
older TE families produced less piRNAs than canonical youn-
ger families (Kelleher and Barbash 2013). We note that our
prediction of age using the theoretical expectations of the
copy-number distribution are dependent on assumptions
implicit in the population genetic theory of TEs, and some
clades predicted to be old may still retain transpositional
activity and the opposite may be true for some clades pre-
dicted to be young.

Previous models of evolutionary arms races between TEs
and piRNAs predict a positive correlation between the copy
number of invading elements and the production of anti-
sense piRNAs, because there is selection on the host genome
to silence these elements (Luo et al. 2020). Therefore, for each
clade, we calculated the Spearman’s rank correlation coeffi-
cient between its copy number and piRNA read depth for the
ten GDL strains, and compared these values between active
and inactive clades. We found that young clades were signif-
icantly enriched for positive correlations in both sense and
antisense piRNAs (fig. 5d–f;þ: Mann–Whitney U: P<0.05;�:
Mann–Whitney U: P<0.05). We also found that there were
61 and 58 young clades that had a statistically significant
correlation between copy number and antisense and sense
piRNA read depth, respectively, whereas only two and four
old clades were statistically significant (Benjamini–Hochberg:
FDR¼10%). Of the young clades many belonged to telomeric
TEs, or recently active LTR and LINE-like retrotransposons,
like Jockey, and Tirant.

Overall, our analysis of piRNA sequence variation shows
that host piRNA content changes to respond to the emer-
gence of variant TEs, and that not all variants are represented
in the piRNA pool. Young, putatively active TE variants are
disproportionately represented in the sense and antisense
piRNAs, suggesting that host genomes may be responding
to the evolution of new TE lineages.
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Discussion

Clade Inference Provides a New Tool for
Understanding the Evolution of TEs
We have developed a technique for inferring clades within TE
families by leveraging population genomics data sets and
heuristic statistical methods. This approach bridges a signifi-
cant gap in the field of population genomics by obtaining
information about TE family substructure from existing short-
read data sets. Simulations show that this method reliably
identifies clade structures that are consistent with the TE
genealogy under a wide parameter space, and we also vali-
dated TE clade inferences in D. melanogaster by checking
them against PacBio genomes. We then used the clade des-
ignations from data on natural D. melanogaster populations
to infer aspects of TE dynamics and host responses.

The clade calls should be interpreted with some caveats in
mind, however. The clusters of lineage-informative SNPs are
markers that distinguish clades in the TE genealogy, not the
complete set of SNPs within a full-length insertion. Given that
two clades may descend from the same ancestral lineage,
clusters of SNPs may covary within insertions but still be
called as distinct TE clades. This behavior reflects a trade-off
between merging and splitting clades and depends on the
chosen false-positive rate. This choice will affect the number
of clades called for a given TE, but does not likely change the
relative proportions of clades among different TEs, which our
simulations show are robust to perturbations in clustering
parameters. The technique we have developed can be readily
applied to any organisms where population-level short-read
genomic sequence data and libraries of TE consensus sequen-
ces exist.

Extensive Population Variation of TE Clades
The study of the genetic variation of TEs has previously been
largely relegated to reference genome assemblies. By applying
population genetic theory to the copy-number distribution of
clades, we found that a majority of clades (56%) were young
and recently active. This is not wholly unexpected as most of
the TE families we assayed have sequence diversity and pop-
ulation insertion-site frequency spectra that reflect invasion,
activity and/or selection against TE insertions that are recent
(Kofler et al. 2012, 2015; Kelleher and Barbash 2013). However,
the classifications of young and old clades do not necessarily
reflect the true transpositional activity of those elements, and
although we orthogonally validated our inferences of age
(supplementary fig. 4, Supplementary Material online), the
effects of demography, population structure, and TE life his-
tory complicate our inferences and may give rise to errors.
Ultimately, our inference of age is based on the expected
association of reduced transpositional activity and a broad
insertion-site frequency spectrum, which will not always hold.

Despite this, our analysis found that some predicted young
clades, such as in Jockey and DM412, have expanded in copy
number dramatically across all populations, accounting for
approximately 40% of all insertions. Other young clades have
expanded only within a subset of the populations, sometimes
to three to four times higher copy number than other

populations. Interestingly, Tasmanian-specific SNPs for
Tirant have been previously observed, but our study is the
first to put this observation in the context of the emergence
and expansion of a TE lineage (Schwarz et al. 2021).

This begs the question: what drives these differences in
copy number? One possible cause of local copy-number
expansions is the acquisition of adaptive polymorphisms
that increase transposition rate. For example, hobo elements
in D. melanogaster with five copies of an internal repeat are
less active than variants with three copies (Souames et al.
2003). There are also segregating polymorphisms in the hu-
man LINE-1 element that account for approximately 16-fold
differences in transposition rate (Lutz et al. 2003; Seleme et al.
2006). Polymorphisms could affect the transposition rate by
increasing efficiency during replication or by evading host
genome-silencing mechanisms (Han and Boeke 2004; Cosby
et al. 2019). A more transpositionally efficient variant would
eventually displace other variants as it increased in copy num-
ber within that population (Le Rouzic and Capy 2006).

It is also possible that differences in clade copy number
between populations are caused by neutral processes.
Founder effects and geographic isolation could affect the
copy number and composition of variants within a popula-
tion, thus creating population structure (Jurka et al. 2011;
Lerat et al. 2019). Population genetic simulations of TEs com-
peting within a population provide a future way to explore
these hypotheses.

Antisense piRNA Production of Variants May Be
Adaptive
Although the piRNA system can quickly respond to the in-
vasion of TE families into naive populations by producing
antisense piRNAs specific to those new invaders (Kofler
et al. 2018), its ability to change in response to the emergence
of new variants of a TE family has been underexplored. We
have shown that the piRNA defense system is surprisingly
malleable and seems to often respond to the emergence of
new variants by incorporating those variants into antisense
piRNAs. The presence of a variant in the antisense piRNAs
indicates inclusion of that variant in a piRNA cluster, and may
reflect the propensity for the host to silence those variants.
We found that, in general, antisense piRNAs had less se-
quence diversity than genomic TE insertions and that young,
recently active clades were overrepresented in the antisense
piRNAs. This is consistent with previous findings that showed
a bias for piRNA silencing of active human LINE-1 elements
(Lukic and Chen 2011). In D. melanogaster, a positive rela-
tionship was found previously between indicators of transpo-
sition activity for TE families and their antisense piRNA
abundance. However, this relationship seemed to be driven
by the removal of inactive TE families from the piRNA pool
rather than an increase in the silencing of active elements
(Kelleher and Barbash 2013). Our analyses largely concur, as
older clades of TEs are significantly less represented in the
piRNA pool than younger clades.

Furthermore, the malleability of piRNA content might be
beneficial to the host as positive correlations were found
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between the copy number of young clades and their anti-
sense piRNA read depth. Such positive correlations are pre-
dicted under an evolutionary arms race model with strong
piRNA silencing (Luo et al. 2020). Under this arms race model,
the copy-number expansion of TEs is counteracted by a cor-
responding expansion of piRNA clusters that are capable of
silencing those elements. Under this model the selective effect
of TE insertions must be deleterious and the efficiency in
silencing must be high (Luo et al. 2020). Recent analyses of
TE family copy number in D. melanogaster laboratory and
natural populations found positive correlations between
piRNA read depth and copy number in six out 105 families
analyzed. These were mostly young and recently expanding
TE families, including P-element and a handful of telomeric
TEs (Luo et al. 2020; Saint-Leandre et al. 2020). By considering
the copy-number variation of clades within TE families, our
analyses provide much wider evidence of the expected cor-
relation, with antisense piRNA production correlated with
copy number for 61 TE clades in 22 out of the 41 likely active
TE families considered. These include many telomeric TE
clades, for which the positive correlation may have a distinct
mechanistic explanation: as nearly all telomeric TEs are found
at the telomere ends and do not insert at pericentromeric
piRNA clusters, the piRNAs must be generated from the
telomeres (Radion et al. 2018). However, we discovered that
other active TE families, including Roo, Jockey, R1, and Tirant,
also show this correlation and were not detected previously.
The increased power in our analysis would be expected if
active lineages preferentially display this correlation between
piRNA read depth and TE copy number, with family-level
analyses losing statistical power due to the aggregation of
young and old clades. This highlights the importance of inte-
grating sequence polymorphisms into the analysis of TEs and
the utility of our clade inference method.

Because the arms-race model predicts significant positive
correlations between antisense piRNA abundance and copy
number when the strength and efficiency of piRNA silencing
is high, it is possible that the host produces antisense piRNAs
that are specific to recently active clades to increase silencing
efficiency (Luo et al. 2020). Those piRNAs that have perfect
sequence complementarity to their targets might have higher
specificity in binding and therefore increased silencing effi-
ciency. In C. elegans and D. melanogaster, deletions or poly-
morphisms in piRNA-binding sites on a transcript can reduce
or eliminate silencing if sufficiently diverged from the piRNA
sequence (Post et al. 2014; Zhang et al. 2018; Kotov et al.
2019).

Given that piRNA silencing efficiency is affected by se-
quence complementarity, significant enrichment for recently
active TE clades in antisense piRNAs may be driven by natural
selection acting to increase the frequency of piRNA clusters
segregating in the population that contain active TE variants.
piRNA clusters can be highly polymorphic in TE content,
rapidly turnover in sequence and be enriched for young, re-
cently active TE families (Assis and Kondrashov 2009; Zanni
et al. 2013; Wierzbicki et al. 2021; Zhang et al. 2020; Gebert
et al. 2021). Many distinct piRNA clusters are therefore likely

to be segregating in D. melanogaster populations, each with
distinct compositions of TE families and variants. The piRNA
clusters that contain newly emerging variants may be selected
for if they more efficiently silence novel variants, thus increas-
ing in frequency. Although there is strong selection to main-
tain piRNA-mediated silencing of TEs in a population
(Bergthorsson et al. 2020), the effective strength of selection
on piRNA clusters containing new variants is unclear. Full
derepression of TEs is only seen when they are >�10% di-
verged from their respective piRNA sequences (Kotov et al.
2019), and the clades that we inferred are only diverged from
the consensus sequence at a handful of sites. But it is con-
ceivable that modest divergences in sequence could create an
unequal regime of silencing between variant TEs.

Alternatively, enrichment of active TE variants in the
piRNA pool may be independent of selection. Instead, tran-
scriptional activity of euchromatic TE insertions may drive
variation in piRNA pools. This epigenetic model is plausible
because the transgenerational inheritance of piRNA cluster
expression is dependent on maternally deposited piRNAs
that trigger the production of “secondary” piRNAs from eu-
chromatic TE insertions that are thought to then feed back
into germline piRNA clusters (Brennecke et al. 2008; Le
Thomas et al. 2014; Senti et al. 2015). Furthermore, TE inser-
tions targeted by piRNAs may be converted into de novo
piRNA clusters capable of producing sense and antisense
piRNAs through recruitment of the Rhino–Deadlock–Cutoff
(RDC) complex, a process called licensing (Olovnikov et al.
2013; Mohn et al. 2014; Shpiz et al. 2014). Euchromatic inser-
tions of young TE variants will more likely be transcriptionally
active than insertions of older variants, making them a more
prominent target of silencing by maternal or germline anti-
sense piRNAs and therefore increasing the likelihood of RDC
recruitment. This licensing mechanism could “switch on” the
activity of piRNA clusters that contain active TE variants, thus
establishing a transgenerational change in piRNA content
without altering the frequencies of piRNA clusters in the
population. In fact, a repetitive locus can be experimentally
converted into a heritable piRNA cluster in certain environ-
mental conditions (de Vanssay et al. 2012; Casier et al. 2019).
These de novo germline piRNA clusters will then produce
piRNAs that could be maternally deposited to the next gen-
eration and reinforce piRNA cluster identity. The formation
of de novo piRNA clusters as a primary mechanism by
which piRNA pools change in populations over time is a
favorable hypothesis, as canonical germline piRNA clusters
can be dispensable in the silencing of certain TE families
(Gebert et al. 2021) and young clades tend to be found less
often in heterochromatin than old clades, making their cap-
ture in canonical heterochromatic piRNA clusters less likely
(supplementary fig. 4, Supplementary Material online).

In the first model, selection plays a major role in determin-
ing the piRNA content in a population and the enrichment of
variant-containing antisense piRNAs is strictly adaptive. But
in the epigenetic model, the enrichment is not necessarily
adaptive. The piRNA content may shift to bias more active
variants due to variation in piRNA cluster activity through the
formation of de novo clusters, but these variant-containing
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piRNAs need not be more efficient at silencing TE variants. It
is possible that this epigenetic variation is beneficial for the
host, or it may be a byproduct of the mechanisms by which
piRNA clusters are inherited. These two models are not mu-
tually exclusive, and the underlying observations reveal a fun-
damental aspect of the TE–host relationship, whereby a new
TE variant emerges in a population, increases in copy number,
and then is used as a substrate by the host genome to pro-
duce novel antisense piRNAs.

Materials and Methods

Aligning Short-Read Data to TE Consensus Sequence
Using ConTExt and Estimating Copy Number
About 85 short-read libraries from the GDL were aligned to a
curated index of RepBase TE consensus sequences and the
D. melanogaster release 6 reference genome (Bao et al. 2015;
Grenier et al. 2015; Hoskins et al. 2015; McGurk et al. 2021),
using ConTExt following the parameters in (McGurk and
Barbash 2018). From this output, we estimated the copy
number of each position for every TE consensus sequence
from the read depth, as described in (McGurk et al. 2021), and
used the read pile-ups to calculate allele frequencies. Copy-
number estimates and allele frequencies were generated for
each of the 85 short-read libraries for each TE consensus
sequence. For LTR, or perfect near-terminal repeat (PNTR)
sequences, the consensus sequence for the repeat unit is too
short for copy-number estimation from read depth, so in
these cases, we used the median copy number from the in-
ternal sequence as the estimate of copy number. Additionally,
we appended the LTR/PNTR copy number, and allele fre-
quency data to the end of the internal sequence in order
to be able to infer SNPs on the LTR/PNTR that co-occur
with internal SNPs.

Filtering Reads by Mapping Quality
When creating the copy number and allele frequency matri-
ces, reads aligned to the TE consensus sequences were filtered
for mapping quality as described in (McGurk et al. 2021). In
brief, rather than using the Bowtie2 mapping quality scores,
we derived our own metric of filtering ambiguous reads based
on the percent identity of the read to the primary (AS) and
secondary (XS) alignments. We chose to filter reads in this
way because we expect that many reads will be diverged from
the consensus sequence if they are derived from polymorphic
elements, and we would like to retain that information. We
first convert the alignment score of the read alignments to
the percent identity to the consensus sequence by assuming
all penalties are due to mismatches, and then use these per-
cent identities for AS and XS to compute a score:

M ¼ AS� XSð Þ2

1� XS

Which reflects the distance between the primary (AS) and
secondary (XS) alignment penalized by the divergence of AS
to the consensus sequence. If secondary alignments are
reported by Bowtie2, we require this score to be greater
than 0.05 for the alignment to be included in the analysis. If

only a primary alignment is found the alignment must be less
than 20% diverged from the consensus sequence to be
included.

Calculating Sequence Diversity of TE Families Using
NGS Data
From the copy number and allele frequency data derived
from the read alignments to the TE consensus sequence,
we calculated the sequence diversity at each position in the
alignment. We multiplied the copy-number matrices by the
allele frequency data to generate the estimated number of
copies for all alleles across the sequence of the TE consensus
sequence, and removed alleles with a copy number <0.5 as
we assumed these low values reflected sequencing errors. We
calculated the allele copy number of a TE family for each
strain’s alignments, as well as pooling allele copy number
for all strains belonging to the same population (e.g., all
Beijing strains), and pooling all strains to obtain global allele
copy-number data. We next estimated sequence diversity at
each position for each strain, population, and the entire data
set using the allele copy-number data as:

p ¼ 1�
X

nt� A;T;G;C½ �
Xnt

N

� �2

;

where N is the total copy number at that position and Xnt is
the copy number of an allele. When calculating the sequence
diversity of the piRNA reads we performed the same proce-
dure, but used a matrix of read counts rather than copy
number and did not include any alleles with a copy number
<0.5.

Inferring TE Clades
We developed a method to infer the co-occurrence of SNPs
within a TE sequence by finding positive correlations in copy
numbers between SNPs across multiple individuals. We per-
formed this inference on a set of 41 recently active TEs (sup-
plementary file 1, Supplementary Material online, https://
github.com/is-the-biologist/TE_CladeInference). For this ap-
proach, we only included positions within a TE that had a
within-population sequence diversity >0.1; or had an overall
sequence diversity>0.1. This would be equivalent to filtering
out positions where the major allele is present in greater than
95% of copies. After initial diversity filtering, we obtained the
copy-number estimates of each allele by taking the propor-
tion of reads that mapped to each allele and multiplying it by
the estimated copy number at that position. For each posi-
tion, we determined the major allele as being the allele with
highest copy number across the entire data set and then
extracted the copy number of the three minor alleles for every
strain at every position. The result of this is an S�N matrix,
where N is the number of minor alleles that passed our di-
versity criteria and S is the number of strains in the data set.
Each element of this matrix contains the copy-number esti-
mates for that allele for each strain. To reduce the rate of
false-positive correlations caused by low-copy-number alleles,
we required that an allele must be present in at least ten
strains to be considered. Additionally, because we are only
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interested in high-frequency alleles, we required alleles to be
present in at least 10% frequency either across the GDL, or
within a population.

Additionally, we removed strains from the S�N matrix
that were determined to be outliers in copy number as de-
termined from (McGurk et al. 2021). These outliers do not
represent the natural variation in copy number and instead
represent TE copy-number expansions that likely occurred
during the inbreeding process of the strain. These massive
expansions break assumptions of our method by allowing
situations where distinct TE subfamilies may co-expand in
copy number and correlate while not existing on the same
TE sequence. We perform this data processing for each active
TE of interest.

To identify lineage-informative SNPs, we perform hierar-
chical clustering with average linkage using a correlation dis-
tance on the S�N matrix (Using the R package pheatmap).
This clusters together alleles that correlate in copy number.
We use this to both seriate a correlation matrix of the alleles,
and to directly call clusters by cutting the dendrogram at a
correlation distance optimized for each TE, as described in
“Choosing a Distance Cut-Off for Hierarchical Clustering” sec-
tion. Clusters of minor alleles with more than one allele are
lineage-informative SNPs that can be used to distinguish TE
clades.

Choosing a Distance Cut-Off for Hierarchical
Clustering
We validated a critical assumption of our inference model:
that SNPs that are physically linked within the same TE se-
quence will covary in copy number, whereas SNPs that are not
physically linked on unrelated TE sequences will not. To do
this, we asked whether the SNPs in different TE families are
positively correlated, expecting that because the SNPs on dif-
ferent TEs are physically unlinked there will be little to no
positive correlation between them. We computed the corre-
lation for every pairwise combination of active TEs in our data
set and found, as expected, the correlation of SNPs taken from
the same TE family (average Pearson’s r¼ 0.23) are generally
much greater than from unrelated families (average Pearson’s
r¼ 0.02) (supplementary fig. 7a, Supplementary Material on-
line). There is an elevated number of positive correlations be-
tween SNPs on different telomeric TEs (average Pearson’s
r¼ 0.11), likely due to them being linked together in large
multimeric arrays exclusively at the ends of chromosomes.
There are also very strong positive correlations of SNPs in
the Bari element (Pearson’s r¼ 0.69) and P-element
(Pearson’s r¼ 0.68) that are driven by the small number of
SNPs segregating in those two families. There are only three
SNPs that passed filtering for Bari and four for P-element,
which represent one clade in each TE family.

To justify the correlation cut-off criteria in our hierarchical
clustering, we generated a null distribution of correlations by
permuting the order of the rows of each column of the fil-
tered sets of minor alleles and calculating the pairwise corre-
lation of these permuted SNPs. We performed this operation
1,000 times for each TE. We calculated the pairwise correla-
tions of the unpermuted filtered sets of minor alleles and

denoted this as the Test distribution. Due to the large
number of pairwise comparisons performed in the clustering
(869,042 pairwise correlations), we sought to correct the false-
positive rate by performing Bonferroni correction on our crit-
ical value ða ¼ 0:05Þ by dividing a by the number of pairwise
comparisons. This critical value is subtracted from 100
to obtain a percentile that we use to determine cut-offs in
the hierarchical clustering, a so-called “Critical Percentile.” We
pooled the Test and Null distributions across all TEs of inter-
est and computed the correlation value at the “Critical
Percentile” in the Null distribution, r¼ 0.59 (supplementary
fig. 7b, Supplementary Material online). Although stringent,
we found that 6.38% of the SNPs in the Test distribution had
an r> 0.59.

We further sought to justify our cut-off by examining the
individual Null and Test distributions for each TE and com-
paring the Null distributions between elements (supplemen-
tary fig. 7c, Supplementary Material online). We observed that
there was some degree of variability of the Test and Null
distributions for each of the TEs. The “Critical Percentile” of
the Null distributions fell between a correlation value of ap-
proximately 0.43–0.93 across the samples. Therefore, we op-
timized the hierarchical clustering distance cutoff for each TE
by setting it to the correlation at the “Critical Percentile” for
each Null distribution.

Downsampling GDL NGS Data
In order to benchmark our method’s ability to infer clades
under different sample sizes, we downsampled the number of
GDL strain libraries and compared the resulting clades to the
clades inferred using the full 85 GDL strain libraries. We down-
sampled strains to 75, 50, 25, 15, 10, and 5 by randomly
removing strains from the postfiltering allele copy-number
matrices and inferred clades in all 41 TEs using the same
set of correlation cut-offs used for the original inferences
with all 85 strains. We then calculated the Rand index (RI)
of the downsampled inferences considering the original infer-
ence using 85 strains to be the “true” set and the down-
sampled inferences as the “test” set (supplementary fig. 3a,
Supplementary Material online). The RI may be viewed as the
proportion of clusterings in the “test” set that were found in
the “true” set, or:

RI ¼ TPþ TN

TPþ TNþ FPþ FN
:

Where, TP is true positives, TN is true negatives, FP is false
positives, and FN is false negatives.

Overall, RI was robust to sampling size for many TE families
(RI between �0.8 and 0.9), but decreased once sample sizes
dipped below 50 strains. In LINE-like retrotransposons and
telomeric TEs the effect of sample sizes was much stronger,
likely due to the fragmented nature of the TEs breaking down
positive correlations in the data (See Simulations of TE Copy-
Number Data to Benchmark Clade Inference for Details).
We also found that the total number of clades inferred using
the downsampled data varies considerably (supplementary
fig. 3b, Supplementary Material online). The accuracy of
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clustering is limited when the number of strains drops below
50 and caution should be taken in interpreting the output
from this method under those circumstances, especially
when inferring clades in LINE-like retrotransposons.

PacBio Data and Alignment of TE Consensus
Sequences
For analysis of PacBio data, we used 13 DSPR founders, the
Oregon-R PacBio genome, and five PacBio genomes from the
GDL (Long et al. 2018; Chakraborty et al. 2019). RepBase
consensus sequences of 41 TEs of interest were processed
by substituting ambiguous base calls with a nonambiguous
nucleotide, and then aligned to the PacBio genomes using
BlastN (Altschul et al. 1990, 1997; Camacho et al. 2009; Bao
et al. 2015). For retrotransposons with LTRs or PNTRs, we
aligned only the internal sequence to simplify the amount of
downstream processing of the alignments, and because the
majority of SNPs reside in the internal sequence. Alignments
were output as XMLs to be analyzed downstream. We also
extracted the sequences of each of the alignments as fasta files
to be used to construct phylogenies (supplementary file 2,
Supplementary Material online, https://github.com/is-the-bi-
ologist/TE_CladeInference).

Constructing TE Phylogenies from PacBio Data
We constructed phylogenies of TEs by using TE fasta sequen-
ces extracted from PacBio genomes, and then annotated the
tips of the phylogeny with inferred clades from the GDL
short-read data. We constructed phylogenies for all 41 TEs
analyzed (supplementary file 3, Supplementary Material on-
line, https://github.com/is-the-biologist/TE_CladeInference).
We first extracted fasta sequences of each insertion in the
PacBio genomes by taking the sequences from the align-
ments described above. We excluded TE sequences that
were less than 75% full length and then generated a multiple
sequence alignment of the remaining sequences using
clustalOmega (Sievers et al. 2011). A phylogeny of the
sequences was constructed using maximum likelihood and
model fitting with the tool iqTree2. A consensus tree was
built using 1,000 bootstrap replicates (iqtree2 -s finputg -bb
1,000) (Kalyaanamoorthy et al. 2017; Hoang et al. 2018; Minh
et al. 2020). We used this consensus tree to generate clado-
grams, and colored tips of the phylogeny by which clades
they belonged to. We considered sequences to belong to a
clade if they contained two or more lineage-informative SNPs
(supplementary file 3, Supplementary Material online,
https://github.com/is-the-biologist/TE_CladeInference).

Effect of Clustering Parameters on Phylogenetic
Distance of Clades
We sought to understand how inferred clades relate to the
phylogeny of TE sequences. In particular, we were interested
in determining the effect of the correlation cut-off used for
clustering on the phylogenetic distance between insertions
belonging to inferred clades. We expected that more strin-
gent correlation cut-offs would produce clades with closely
related sets of insertions, whereas lenient cut-offs would

produce clades with more distantly related insertions. To
determine if this was true, we inferred clades in real and
simulated data, varying the correlation cut-off from lenient
(Pearson’s r¼ 0.1) to stringent (Pearson’s r¼ 0.9), and for
each clade inferred, we summed all pairwise cophenetic dis-
tances of each tip (TE insertion). Tips belonged to a clade if
their sequence contained two or more lineage-informative
SNPs of that clade. The calculated distance was normalized
by dividing by the sum of all pairwise cophenetic distances
between tips in the tree, producing a value between 0 and 1.
A value near 0 means that tips belonging to that clade were
closely related and composed a relatively small proportion of
the phylogenetic tree, whereas a value near 1 means that the
tips were distantly related and composed a large proportion
of the tree. We normalized the phylogenetic distance to make
comparisons between TE families easier and to be able to
interpret phylogenetic distances as a proportion of the total
branch lengths in a given tree.

We report the clade-wise average of the normalized dis-
tances for each TE family under correlation cut-offs between
0.1 and 0.9 (supplementary fig. 1a, Supplementary Material
online). Overall we found that our expectation holds true,
with insertions belonging to clades inferred under relaxed
clustering cut-offs being more distantly related than those
inferred under stringent cut-offs. Relaxed cut-offs will generate
clades composed of many SNPs, collapsing much of the phy-
logeny into one clade, whereas stringent cut-offs produce
clades with SNPs that are more strongly correlated and closely
related. This can be seen clearly in the inferred clades of sim-
ulated data (error rate¼ 0.1%; Full length elements), where we
show the normalized distance of each clade under the regime
of correlation cut-offs (supplementary fig. 1b, Supplementary
Material online). We additionally show the simulated phylog-
eny annotated with clades inferred at Pearson’s r¼ 0.6 (sup-
plementary fig. 1c, Supplementary Material online).

From this analysis, we observe that there is a relationship
between how closely related insertions bearing two SNPs are
and the degree of correlation between the copy-number of
those SNPs. A few TE families are exceptions, with insertions
in a clade being distantly related but having SNPs that are very
strongly correlated (supplementary fig. 1a, Supplementary
Material online). This is illustrated most clearly in the Jockey
element, where lineage-informative SNPs composing the
clade “Cluster_7” are strongly correlated (Pearson’s r> 0.9),
but insertions belonging to this clade are widely distributed
along the phylogeny (supplementary fig. 1d, Supplementary
Material online). Almost every Jockey sequence used to build
the phylogeny belongs to “Cluster_7” hence its wide distribu-
tion. We show the cladogram of Jockey annotated with clade
calls from the correlation cut-off used for the downstream
analysis of GDL data in this manuscript (Pearson’s r¼�0.55)
to concretely visualize the phylogenetic distribution of clades
(supplementary fig. 1e, Supplementary Material online).

Validation of GDL Clades Using PacBio Genomes
We used the alignments of TE consensus sequences to the
PacBio genomes to recover our clades inferred from the GDL
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short-read data. To do this, we first needed to extract phased
haplotypes from our alignments. We took the alignments and
recorded the position on the consensus sequence and the
nucleotide at each position found in each TE insertion of the
PacBio genomes. We accounted for gaps created by insertions
and deletions by correcting the position, or adding missing
values, respectively. The result is a sequence for each align-
ment that records the nucleotide at each position of each TE
insertion found in the PacBio genomes relative to the position
in the RepBase consensus sequence.

We then checked for the presence of lineage-informative
SNPs discovered from the GDL short-read data in all TE
insertions in the PacBio genomes by querying those SNPs
against the aforementioned alignments for a given TE family.
For each clade, we removed aligned PacBio sequences if they
had a deletion at one of the positions of a lineage-informative
SNP. On occasions when a SNP was not found in any aligned
sequence, that SNP was removed from the analysis.
Additionally, we removed clades from the validation if less
than two of the SNPs were detected in the PacBio data. A
total of 876 out of 3,536 SNPs (�25%) were not found in the
PacBio data and were removed from the analysis. On an av-
erage, approximately 65% of a TE family’s SNPs were found in
the PacBio data with some elements like Tart-A, Tart-B1 (75–
95% missing), or P-element (100% missing) having a higher
proportion of SNPs missing, whereas other elements like Doc
had no SNPs missing. Telomeric TEs are likely poorly assem-
bled in genome assemblies and P-element is simply absent in
the DSPR strains.

Out of the 876 missing SNPs, 340 were within the LTR/
PNTR portion of retrotransposon sequences and would not
be found in our analysis of the PacBio genomes, because we
only aligned the internal sequence of retrotransposons. The
remaining 536 SNPs (�15% of total SNPs) absent in the
PacBio genomes may not be detected because they are pre-
sent in TE insertions in unassembled heterochromatic or
telomeric sequence or the SNPs are rare or not present in
the limited sample of 19 PacBio genomes publicly available.

We recorded the frequency at which each of the filtered
clades were found in the PacBio genomes and found that
approximately 70% of the clades inferred from the GDL
short-reads were found within the PacBio alignments
(fig. 2a). We also performed the same analysis including clades
where no SNPs were detected in the PacBio genomes and
found that while the total percentage of clades detected
decreases to 38%, the trends on the percent clades validated
for each TE are similar (supplementary fig. 8a, Supplementary
Material online). Missing clades not found in the PacBio
genomes may reflect several distinct technical and biological
issues. Firstly, some sets of clades do not have perfect linkage
between all of their SNPs. This can occur when related line-
ages that share SNPs are segregating within the population.
The clustering algorithm is unable to distinguish these mul-
tiple lineages and clusters them together, because they share a
significant portion of their SNPs. The other possibility is that
the lineage, or a subset of SNPs in the lineage, are rare or
specific to a population in the GDL, and were not sampled in
the PacBio genomes.

To more finely describe the co-occurrence of SNPs in
clades, we computed the pairwise Jaccard score of SNPs
within and between inferred clades. The Jaccard score is com-
puted as the number of times two SNPs occur together in a
TE insertion in the PacBio genomes divided by the total num-
ber of times that either one or both SNPS are present. We
converted these scores into a Jaccard distance by simply cal-
culating 1�Jaccard score, such that two SNPs that always co-
occur will have a distance of 0, whereas two that never co-
occur have a distance of 1.

We used these Jaccard distance matrices to quantify the
cohesiveness and separation of lineage-informative SNPs by
computing Silhouette scores. Silhouette scores are a common
metric for evaluation clustering performance and are calcu-
lated as being the mean distance between an individual in a
cluster and its other cluster members subtracted by the mean
distance between this individual and the members of the
closest neighboring cluster. These values are then normalized
such that they are bounded between �1 and 1, where pos-
itive scores imply that SNPs within a cluster, or clade, co-
occur with each other more often than they co-occur with
SNPs from a neighboring clade, and negative scores imply the
opposite.

To explore how well the identified clusters reflect true
clades of insertions, we classified clades into four categories
by comparing the Silhouette score of clades to their frequency
in the PacBio data (supplementary fig. 8b, Supplementary
Material online). “Full clade” is analogous to a true positive.
These clades have positive Silhouette scores at a frequency
greater than 0, that is, clustering quality is good, and this
arrangement of SNPs is found in the validation data.
“Multiple derived lineages” also have a positive Silhouette
score, but their frequency is 0. Their interpretation is complex
with no easy analogy, however, we reason that the sets of
SNPs co-occur in multiple lineages and the algorithm may be
merging these multiple lineages into one cluster. “Incomplete
clade” is similar to a false-negative, or underclustering. In this
instance, the Silhouette score is negative, but the frequency is
greater than 0. These arrangements of SNPs are found to exist
in the validation data, but may be a result of splitting lineages,
or can reflect a high degree of relatedness with other clusters.
“Errors” are likely false-positives. They have a Silhouette score
that is negative and a frequency of 0. In these cases the SNPs
are found in the validation set independently, but do not co-
occur in the same TE insertions together, although some
subset of the SNPs may co-occur.

Using these classifications, we found that 41.4% of inferred
clades are “Full clades,” 5.5% are “Multiple derived lineages,”
28.4% are “Incomplete clades,” and 24.7% are “Errors.” “Error”
clades are larger (composed of more SNPs) than “Full clades”
and “Incomplete clades,” but not “Multiple derived lineages”
(Mann–Whitney U). We further found that the average of the
Jaccard scores of SNPs that compose “Error” clades (�0.11)
tends to be lower than the other classifications, with approx-
imately half (58/122) of the “Error” clades having a Jaccard
score of zero (supplementary fig. 8c, Supplementary Material
online). This implies that a subset of lineage-informative SNPs
in “Error” clades co-occur in insertions at a low frequency, but
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at a rate insufficient to drive a positive Silhouette score.
Therefore these clades may represent mergings of related
lineages that share subsets of SNPs but are more diverged
than “Multiple derived lineages,” and/or are closely related to
other clades in the data set. However, the clades with an
average Jaccard score of zero are likely true false-positive
associations in clustering and represent approximately 12%
of all inferred clades (59 clades, 58 of which are “Error” clades).

Calculating Sequence Diversity and Sequence Length
of Clades Using PacBio Genomes
We calculated the average sequence diversity of inferred
clades using PacBio data by finding all insertions of a TE family
that belonged to each clade from the PacBio alignments (only
considering an insertion to belong to a clade if its sequence
contained all detectable lineage-informative SNPs). From
those insertions, we calculated sequence diversity as Nei
and Li (1979), but when performing pairwise comparisons
of nucleotide differences, we only considered positions where
the two sequences did not have gaps in either sequence.

We additionally calculated the average lengths of inser-
tions belonging to each clade as a proportion of the full length
consensus sequence. We called insertions belonging to a par-
ticular clade as above, counted the number of nongap posi-
tions in each alignment, divided them by the total length of
the TE consensus sequence and then averaged these propor-
tions across all insertions within a clade.

Distinguishing Heterochromatic and Euchromatic
Insertions in PacBio Genomes
In order to determine whether a TE insertion in a PacBio
genome is euchromatic or heterochromatic, we first masked
repeats in the PacBio genome assemblies and the Release 6
D. melanogaster reference genome using RepeatMasker (Smit
et al. 2013). We next aligned the PacBio assemblies to the
reference genome using mummer 3.1 requiring a minimum
100 bp of alignment for each aligned portion (nucmer -l 100 -p
$fpacbio genomeg $freference genomeg) (Kurtz et al. 2004).
We then took the coordinates of the pericentromeric hetero-
chromatin boundary in the reference genome (Riddle et al.
2011) and found the corresponding position in the PacBio
genome using the aligned segments of the genome. Exact
matches to the reference genome heterochromatin boundary
positions were difficult to obtain due to differences in assem-
bly quality of the PacBio genomes, but we were typically able
to find positions within 100 bp to 2 kb of the reference ge-
nome heterochromatin boundary coordinates that aligned
uniquely to the PacBio genomes. The only exceptions were
the X chromosome in N25 and the 2L arm of ZH26, where the
closest uniquely aligned reference genome segments were
100–200 kb away from the coordinates of the heterochroma-
tin boundary. Finally, we determined whether the position of
TE insertions (taken from the TE alignments to the PacBio
assemblies) were within heterochromatin or euchromatin,
and recorded which clade each insertion belonged to as de-
scribed in the above sections. We show the results of these
data for all TE families except for telomeric TEs (supplemen-
tary fig. 4c–f, Supplementary Material online).

Simulating Artificial Clades from Phylogenies
To generate the sequences of artificial clades, we first used a
birth–death process to generate a topology of the evolution-
ary history of a TE (R package treeSim) (Stadler 2011; Love et al.
2014). We reason that transposition events in a TEs evolution-
ary history can be considered births, whereas a deactivating
mutation or excision would be equivalent to the extinction of
a lineage. We used a birth rate of 1� 10�4 and a death rate of
1� 10�5 (Le Rouzic et al. 2013). We simulated 20,560 gener-
ations of this process which generated a tree with 2,500 extant
tips and 248 extinct tips—a large but manageable number of
sequences. We retained the extinct tips in the topology as they
would represent TEs that are no longer active but still segre-
gate in the population. We used this topology to generate
sequences evolving neutrally by generating a random ancestral
sequence of length 3,000 bp and dropping mutations via a
Poisson process along the branch lengths with a mutation
rate of 1� 10�7 and no recombination, thus generating
sequences for each tip (R package simSeq) (Schliep 2011).
For a population of 85 individuals (the same number of indi-
viduals as in the GDL sample), we generated a copy-number
distribution by drawing each individual’s copy number from a
Poisson distribution with a mean copy number of 25. We then
used this distribution to randomly sample from all extant and
extinct lineages with replacement (supplementary file 5,
Supplementary Material online, https://github.com/is-the-biol-
ogist/TE_CladeInference).

Simulating Truncated Elements
In order to simulate the distribution within an individual of
50-truncated elements, such as in LINE-like retrotransposons,
we first sampled the total number of copies, CN, of an artificial
element and its sequences as described above. We next gen-
erated the distribution of lengths of these elements by pa-
rameterizing a truncated geometric distribution with a mean
of L and a maximum length of 3,000 bp and drew CN times
from this distribution. We assigned length values, li, to each
artificial TE sequence in an individual and removed positions
from the 50-end of each sequence such that we were left with
CN TE sequences each li long. We generated simulations
where the average length of the elements (L) were 300, 600,
1,000, 1,500, 2,250, and 2,700 bp (10%, 20%, 33%, 50%, 75%,
and 90% of the full length element, respectively).

Simulations of Short-Reads from Artificial Clades
We aimed to simulate data that would be obtained from
short-read libraries generated genomes harboring TE inser-
tions that were aligned to a consensus sequence using
ConTExt. We used arrays of known sequences that “reside”
in each simulated individual in our population to generate TE
copy number, and an allele proportion matrix.

TE copy number is simply the number of copies of an
artificial TE that an individual has within their “genome.”
The allele proportion matrix contains the proportion of arti-
ficial TE sequences that contain an A, T, C, or G at a given
position for each strain plus pseudocounts added to repre-
sent sequencing errors and mapping errors. We simulated
error rates of 0%, 0.1%, 0.5%, 0.75%, 1%, 2.5%, and 5%.
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We then used these two reference files to simulate allele
copy number pileups that replicate the inputs we used for
our analysis of the GDL short-read data. For each strain, we
generated the coverage of our simulated library by drawing
from a Poisson distribution with a target coverage as our
lambda parameter:

E Rð Þ � Pois k ¼ Coverageð Þ:

We call the values drawn from this distribution our
expected reads, E(R). We then use E(R) to generate the ob-
served number of reads, O(R), that map to a given position of
our TE. We reason that the number of reads observed at a
position would be the E(R) multiplied by the TE copy num-
ber, CN. Therefore, we draw O(R) from another Poisson dis-
tribution where lambda is E(R) times the CN:

O Rð Þ � Pois k ¼ E Rð Þ � CNð Þ:

In the cases of truncated elements, where the copy num-
ber varies across the length of the element, we multiply E(R)
by the copy number at each position to generate O(R). With
the O(R) obtained for all positions of a TE for a given simu-
lated library, we now will use this to estimate the observed
copy number, O(CN). We do this by adapting methods of
copy-number estimation, but instead of estimating E(R) with
library-specific parameters, we use our known E(R) from our
simulated library (McGurk et al. 2021). In short, we divide
O(R) by E(R) to obtain our O(CN):

O CNð Þ ¼ O Rð Þ
E Rð Þ :

We now randomly sample O(R) number of reads from a
multinomial distribution parameterized by the allele propor-
tion matrix, thereby generating read counts that map to A, T,
C, or G. We use the proportion of reads that map to each
nucleotide to generate a mapped allele proportion matrix that
we multiply to O(CN) to obtain the number of copies observed
for each allele. This was output as our final simulated allele
copy-number matrix where we have recorded the copy num-
ber of each allele of a TE for 85 simulated libraries (supplemen-
tary file 5, Supplementary Material online, https://github.com/
is-the-biologist/TE_CladeInference). These simulated data are
identical in structure to the data structure that was used to
infer clades from the GDL short-read data. We used our clade
inference pipeline described in the above sections to infer
clades using the same population-specific parameters as the
GDL (p > 0:1, population frequency>10%).

Simulations of TE Copy-Number Data to Benchmark
Clade Inference
We benchmarked the performance of our clade inference
method using the aforementioned simulations of sequence
evolution and truncations to create artificial TE sequences
segregating in a simulated population. We used the artificial
sequences as a validation set for the clade inferences by cal-
culating the frequency of inferred clades in the validation set
and Silhouette scores for each clade. When a set of parame-
ters produced no interpretable data, that is, no clusters were

called, or a singular cluster encompassing all SNPs was called,
we assigned a Silhouette score of �1. We explored the pa-
rameter space of sequence errors, truncations of elements,
and clustering cut-offs as well as their interactions to find
which combinations of parameters led to lower Silhouette
scores when inferring clades.

First, we examined the interaction of sequencing error and
clustering correlation cut-offs by generating simulated data
where the sequencing error varied between 0% and 5% and
clustering cut-off varied between 0 and 1, but all elements
were full length (supplementary fig. 2a, Supplementary
Material online). We find that even sequencing error rates
as high as 5% (50� higher than Illumina sequencer error)
have very little effect on clustering quality under most corre-
lation cut-offs. This is likely because erroneous base calls are
not incorporated downstream in the pipeline due to our SNP
filtering steps, demonstrating the necessity of preprocessing
the data for these types of analyses. Only when the correlation
cut-offs were at extremes do we see a noticeable drop in the
Silhouette score.

We next examined the interaction between the average
length of elements and correlation cut-offs when sequencing
error was 0.1% (Illumina sequencing error rate). We randomly
generated truncated elements with average lengths between
300 and 2,750 bp (10–90% of the full length element) and
found that truncations significantly decrease the ability to call
clusters (supplementary fig. 2b, Supplementary Material on-
line). Truncations and correlation cut-offs seem to interact
negatively, wherein no clusters are called (Silhouette
score¼�1) when the stringency is high and truncations are
abundant. In the most extreme case (300-bp elements) no
positive correlations between alleles are found. This is an im-
portant consideration for highly fragmented TEs such as I-
element, where many clades were validated but had negative
Silhouette scores, meaning that the fragmented nature of the
TE broke down the positive correlations between SNPs and
split clades apart.

Finally, we examined whether increased sequencing error
and truncations interacted with each other at a set correla-
tion cut-off, performing simulations using all pairwise combi-
nations of truncation lengths and error rates described above
(supplementary fig. 2c, Supplementary Material online). As
might be expected, truncations and errors have compound-
ing effects, where high error rates and high rates of deletion
produce clusters of poorer quality than each parameter in-
dependently. Simulations with highly truncated elements and
high error rates also tended to produce large numbers of
clusters, occasionally in the thousands, which drove down
clustering quality (supplementary fig. 2d, Supplementary
Material online). This is an important interaction to consider
as highly fragmented TEs may also have an increased rate of
errors due to mappability of reads.

These simulations allowed us to generate a realistic data
set to benchmark our method and explore the parameter
space of sequencing errors, deletions, and correlation cut-
offs that would negatively affect our inferences. A biological
data set will have some combination of deletions and se-
quencing errors depending on the TE, sequencing platform,
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and alignment algorithm used, and choosing the optimal
correlation cut-off should take the above information into
account. However, given that many combinations of
parameters produced positive Silhouette scores and a rel-
atively uniform number of clusters, except at extreme
parameters, we are confident that our method can produce
interpretable biological results even at nonoptimal correla-
tion cut-offs.

Processing and Aligning Small RNA Data
Public piRNA libraries were all created from female
D. melanogaster ovaries, and are available through the SRA
(see SRA Accessions). We obtained libraries from ten GDL
strains (two from each population) (Luo et al. 2020). piRNA
reads were trimmed using Trimmomatic and aligned to an
index of curated RepBase repeat consensus sequences using
Bowtie2 with the parameters: -N 1 -L 10 -i S , 1,0.5 -p 8 –score-
min L , 0,-1.2 -D 100 -R 5 (Langmead and Salzberg 2012; Bolger
et al. 2014; Bao et al. 2015; Langmead et al. 2019; McGurk et al.
2021). After alignment, reads were filtered by base quality
(Q> 30), by size (21–30 bp) and by mapping quality as de-
scribed for the genomic data in the above sections. From the
remaining reads, we generate SNP read pileups with the py-
thon module pysam using the pileup function (https://github.
com/pysam-developers/pysam, last accessed February 10,
2021), akin to samtools mpileup (Li et al. 2009). We separated
reads by sense and antisense to get SNP pileups derived from
the secondary piRNA pathway, and the primary piRNA path-
way, respectively. The result is a matrix containing the num-
ber of sense and antisense reads that map to each position
and each read’s nucleotide at that position. After generating
the matrices, we used a Size Factor Normalization approach
to normalize the total read depth of all repeats that reads
were aligned to. We generated a table of read counts for each
TE from the SNP pileups, and then followed the protocols
described by DESeq2, but used a custom script to handle our
unique data structure (Love et al. 2014). The normalized read
depth SNP pileups were used as the primary data for all
piRNA analyses in this study. To calculate piRNA read depth
of each clade, we averaged the sense and antisense piRNA
read depth across all alleles of each clade across the strains.
We then added pseudocounts of one to the clade piRNA read
depth and to the clade copy number of the strains before
computing piRNAs/copy. This was done to regularize data for
log-transformation. We used these values to calculate the
average sense and antisense piRNA read depth per clade
copy across the ten GDL strains.

Supplementary Material
Supplementary data are available at Molecular Biology and
Evolution online.
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