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Purpose: To develop a three-dimensional (3D) deep learning algorithm to detect
glaucoma using spectral-domain optical coherence tomography (SD-OCT) optic nerve
head (ONH) cube scans and validate its performance on ethnically diverse real-world
datasets and on cropped ONH scans.

Methods: In total, 2461 Cirrus SD-OCT ONH scans of 1012 eyes were obtained from the
Glaucoma Clinic Imaging Database at the Byers Eye Institute, Stanford University, from
March 2010 toDecember 2017. A 3Ddeepneural networkwas trained and tested on this
unique rawOCT cube dataset to identify amultimodal definition of glaucoma excluding
other concomitant retinal disease and optic neuropathies. A total of 1022 scans of 363
glaucomatous eyes (207 patients) and 542 scans of 291 normal eyes (167 patients) from
Stanford were included in training, and 142 scans of 48 glaucomatous eyes (27 patients)
and 61 scans of 39 normal eyes (23 patients) were included in the validation set. A total
of 3371 scans (Cirrus SD-OCT) from four different countries were used for evaluation
of the model: the non overlapping test dataset from Stanford (USA) consisted of 694
scans: 241 scans from113normal eyes of 66patients and453 scans of 157glaucomatous
eyes of 89 patients. The datasets from Hong Kong (total of 1625 scans; 666 OCT scans
from 196 normal eyes of 99 patients and 959 scans of 277 glaucomatous eyes of 155
patients), India (total of 672 scans; 211 scans from147normal eyesof 98patients and461
scans from 171 glaucomatous eyes of 101 patients), and Nepal (total of 380 scans; 158
scans from 143 normal eyes of 89 patients and 222 scans from 174 glaucomatous eyes
of 109 patients) were used for external evaluation. The performance of the model was
then evaluated on manually cropped scans from Stanford using a new algorithm called
DiagFind. TheONH regionwas croppedby identifying the appropriate zoneof the image
in the expected location relative to Bruch’s Membrane Opening (BMO) using a commer-
cially available imaging software. Subgroup analyses were performed in groups strati-
fied by eyes, myopia severity of glaucoma, and on a set of glaucoma cases without field
defects. Saliency maps were generated to highlight the areas the model used to make
a prediction. The model’s performance was compared to that of a glaucoma specialist
using all available information on a subset of cases.

Results: The 3D deep learning system achieved area under the curve (AUC) values of
0.91 (95% CI, 0.90–0.92), 0.80 (95% CI, 0.78–0.82), 0.94 (95% CI, 0.93–0.96), and 0.87
(95% CI, 0.85–0.90) on Stanford, Hong Kong, India, and Nepal datasets, respectively, to
detect perimetric glaucoma and AUC values of 0.99 (95% CI, 0.97–1.00), 0.96 (95% CI,
0.93–1.00), and 0.92 (95% CI, 0.89–0.95) on severe, moderate, and mild myopia cases,
respectively, and an AUC of 0.77 on cropped scans. Themodel achieved an AUC value of
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0.92 (95% CI, 0.90–0.93) versus that of the human grader with an AUC value of 0.91 on
the same subset of scans (P = 0.99). The performance of themodel in terms of recall on
glaucoma cases without field defects was found to be 0.76 (0.68–0.85). Saliency maps
highlighted the lamina cribrosa in glaucomatous eyes versus superficial retina in normal
eyes as the regions associated with classification.

Conclusions: A 3D convolutional neural network (CNN) trained on SD-OCT ONH cubes
can distinguish glaucoma from normal cases in diverse datasets obtained from four
different countries. The model trained on additional random cropping data augmen-
tation performed reasonably on manually cropped scans, indicating the importance of
lamina cribrosa in glaucoma detection.

Translational Relevance: A 3D CNN trained on SD-OCT ONH cubes was developed
to detect glaucoma in diverse datasets obtained from four different countries and on
cropped scans. The model identified lamina cribrosa as the region associated with
glaucoma detection.

Introduction

Glaucoma, one of the leading causes of irreversible
blindness, is a chronic progressive optic neuropathy
with characteristic visual field (VF) defects match-
ing structural changes, including nerve fiber layer
thinning with ganglion cell loss and correspond-
ing optic nerve neuroretinal rim reduction, known
commonly as “cupping.”1,2 Currently, themainmodifi-
able risk factor is elevated intraocular pressure (IOP),
which, in combination with structural and function-
ing longitudinal imaging, is one of the main param-
eters followed during treatment. Standardized patho-
logic glaucomatous structural changes include retinal
nerve fiber layer (RNFL) and ganglion cell inner plexi-
form layer (GCIPL) thinning.

The normative database for the conventional Cirrus
spectral-domain optical coherence tomography (SD-
OCT) RNFL and optic nerve head (ONH) map
consists of 284 healthy individuals with an age range
between 18 and 84 years (mean age of 46.5 years).
Ethnically, 43% were Caucasian, 24% were Asian, 18%
were African American, 12% were Hispanic, 1% were
Indian, and 6% were of mixed ethnicity. The refractive
error ranged from −12.00D to +8.00D.3 Due to the
relatively small normative database, there is a signif-
icant percentage of false positives from high myopia
disc changes or thin RNFL from other nonglaucoma-
tous or artifactual reasons.4 One of the difficulties in
diagnosing glaucoma is that there is no single test with
a high sensitivity and specificity to confirm the diagno-
sis, which is why OCT alone is not the best label to
train a deep learning algorithm. Currently, clinicians
incorporate the color scale OCT printouts but use a
multimodal ground-truth label of glaucoma including
risk factors, clinical examination of the fundus, IOP

measurement, VF evaluation, treatment, and other
relevant clinical history along with OCT RNFL and
GCIPL maps to more accurately confirm glaucoma.

It is known that glaucoma changes extend deep into
the ONH at the level of the lamina cribrosa (LC),
a network of columns supporting the neuronal axon
connections as they traverse from the surface of the
retina to the visual cortex of the brain.5 However, only
qualitative enhanced depth imaging (EDI) SD-OCT
research protocols have been able to visualize these
changes in the past, and no quantitative printouts exist.

Based on current understanding of high-pressure
induced glaucoma, biomechanical deformation and
remodeling of the ONH leads to posterior displace-
ment of the LC relative to the sclera as well as
progressive loss of ganglion cell axons and cell bodies,
resulting inRNFL thinning.5 LC changes in glaucoma-
tous eyes, including focal defects, thinning, and poste-
rior displacement, have been previously reported.6–8
Due to errors in manual measurements and lack of
quantifiable LC morphology changes with normative
values, it is presently not part of routine glaucoma
evaluation in clinics.9,10 Thus, it seems reasonable to
hypothesize that there is additional information in a
routinely captured SD-OCTONHcube scan outside of
the extracted RNFL that currently is not being tracked
clinically but can be discovered through deep learning
as a separate differentiator of glaucoma from normal.
Despite multiple deep learning studies being designed
for automated glaucoma detection,11,12 since the real-
world translational use rarely matches the curated
datasets in these studies, the algorithms are often not
generalizable and none have been cleared by regulatory
Food and Drug Administration.13,14 Ideally, the train-
ing datasets must reflect diverse population charac-
teristics of the treatment population to be clinically
useful.
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Hence, this study concentrates on developing and
validating a three-dimensional (3D) neural network
to predict glaucoma based on better ground-truth
definitions as determined by multiple data inputs from
fundus photos, OCTs, visual fields, and clinical exam
data over time instead of a single test. The algorithm
excludes suspects and utilizes standard SD-OCT ONH
cube scans obtained from diverse real-world datasets
from four different countries. We attempt to under-
stand the model better by utilizing additional cropping
data augmentation and evaluate the model’s perfor-
mance on areas of interest on a subset of manually
cropped scans to see if ONH was an important part
of the algorithm performance versus nerve fiber layer.

Method

The study adhered to the tenets of the Declara-
tion of Helsinki,15 and the protocols were approved by
the respective institutional review boards of Stanford
School of Medicine (United States), The Chinese
University of Hong Kong (Hong Kong), Narayana
Nethralaya Foundation (India), and Tilganga Insti-
tute of Ophthalmology (Nepal). Informed consent
was waived based on the study’s retrospective design,
anonymized dataset of OCT images and test data,
minimal risk, and confidentiality protections.

In this work, a 3Dneural network is trained to detect
glaucoma using unprocessed raw SD-OCT ONH cube
(volume) scans retrospectively obtained from Byers
Eye Institute, Stanford School of Medicine (USA).
The performance of the model is evaluated on a
separate nonoverlapping test dataset from Stanford
and on three external datasets, each obtained from
HongKong, India, andNepal. Subsequent analyses are
done in subgroups stratified by eyes (right versus left),
myopia, and severity of glaucomatous optic neuropa-
thy (mild versus moderate or severe). The performance
of the model is also evaluated on glaucoma cases
without visual field defects. The classification accuracy
of this model is then compared with that of a glaucoma
specialist on a subset of cases. Saliency maps are gener-
ated to highlight the areas the model attended to in
order to make a prediction. The model’s performance
is further evaluated on partial ONH data on a subset
of manually cropped scans. Further, the performance
of the algorithm is evaluated across different severity
levels of myopia cases on the cropped scans.

Data Source

The 3D SD-OCT ONH cube (volume) scans of the
training, validation, test, and the external datasets used

in our studywere acquired usingCirrusHD-OCT (Carl
Zeiss Meditec, Dublin, CA, USA) according to the
optic disc cube scanning protocol. The 3D OCT cube
(volume) ONH scans of 2202 eyes of 1253 patients
evaluated at the Byers Eye Institute, Stanford School
of Medicine, from March 2010 to December 2017,
were extracted and used for the study. Prior to label-
ing as glaucoma versus normal, based on chart review,
749 eyes were excluded due to the presence of other
ocular pathologies and 93 eyes were excluded due to
the presence of OCT artifacts or due to signal strength
being less than 3, as per exclusion criteria mentioned
below. In total, 267 eyes diagnosed as suspects (high
and low risk) were excluded based on chart review.
Forty-two eyes were diagnosed as having glaucoma
without visual field defects. Twenty eyes were excluded
after arbitration as described below. Finally, 1012 eyes
of 562 patients (2461 scans) were labeled and used for
training, validation, and testing.

Ground-Truth Labeling

The inclusion criteria were (1) age equal to or older
than 18 years, (2) reliable visual field (VF) tests, and
(3) availability of one or more qualified SD-OCT optic
disc scans.

Glaucomawas defined as those eyes with glaucoma-
tous disc changes16 on fundus examination, with local-
ized defects onOCTRNFL/GCIPLdeviation or sector
maps that correlated with the VF defect that fulfilled
the minimum definition of Hodapp—Anderson—
Parrish glaucomatous VF defect and had IOP lower-
ing treatment as per chart review.17 Normal was defined
as nonglaucomatous optic disc on fundus exam with
no structural defects on OCT RNFL/GCIPL devia-
tion or sector map and normal visual fields, as well
as normal intraocular pressures. Glaucoma cases with
structural defects alone (as defined by Supplemen-
tary Table S1) without visual field defects were not
included in the training or validation dataset. More
information about ground-truth labeling is provided in
Supplementary Table S1. SD-OCT scans with signal
strength less than 3 or any artifact obscuring imaging
of the ONH, or any artifacts or missing data areas
that prevented measuring the thickness of the RNFL
at 3.4 mm diameter, were excluded from the study. A
signal strength of ≥3 was included because the entire
cube of data was being used and not the results from
the machine’s segmentation algorithm, which often
fails at low signal strength.18 Eyes with nonglaucoma-
tous ONH pathologies and retinal pathologies were
carefully excluded. Further details of inclusion and
exclusion criteria and grading of the SD-OCT scans
are provided in Supplementary Section S4. The severity
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of myopia was defined by slightly modifying the Blue
Mountain Eye Study (BMES).19 The BMES category
of moderate to severe myopia (>−3D) was modified
by further subdividing it intomildmyopia (up to−3D),
moderatemyopia (−3Dup to−6D), and severemyopia
(>−6D), using cutoffs established in the Beijing Eye
Study.20 Furthermore, glaucoma cases were classified
based on mean deviation (MD) values as severe (MD
≤ −12),moderate (−12 < MD ≤ −6), andmild (−6 <

MD).
To compare the performance of the model to that

of a human grader, a subset of 100 cases was randomly
drawn from the Stanford test dataset for grading by a
glaucoma fellowship-trained human grader (DC). The
human grader had access to multiple screening data,
including fundus images, OCT RNFL and GCIPL
printouts, IOP values, visual field parameters, access to
patient history and physical examination for grading
the cases as glaucoma versus normal. The performance
of the model was then evaluated on the same subset of
cases.

Training and Validation

In total, from the Stanford dataset, 1022 optic nerve
scans of 363 eyes from 207 patients with a diagnosis
of glaucoma (eyes randomly chosen) and 542 scans of
291 eyes from 167 patients of definitive normal were
included in the training set. A total of 142 scans of
48 eyes from 27 patients with a glaucoma annotation
and 61 scans of 39 eyes from 23 patients with a normal
annotation were included in the validation set.

The splitting of data into different sets was based
on patients, to make sure that scans belonging to each
patient are included in only one of the splits and there is
no data leakage between different sets. Each OCT scan
over the ONH is a 3D array of size 6mm × 6mm ×
2mm divided into a cube of resolution of 200 × 200 ×
1024, with numbers representing the height, width,
and depth of the array, respectively. For the dataset
from Stanford, cases were labeled according to the
criteria mentioned above by a glaucoma fellowship-
trained ophthalmologist with more than 2 years’
experience (SSM) based on fundus images, VF, OCT
RNFL, GCIPL parameters, and IOP-lowering treat-
ment (based on chart review). In cases where labeling
needed arbitration, a senior glaucoma specialist with
more than 10 years of experience (RTC) reviewed the
cases and his diagnoses were considered final. Twenty
out of 36 conflicting cases were eliminated based on
insufficient data on chart review. To compute inter-
grader agreement for diagnosis, a glaucoma fellowship-
trained specialist (DC) adjudicated the labeling of
randomly selected 50 glaucoma and 50 normal cases.

Following this, Cohen’s k value was calculated. Inter-
grader agreement calculations resulted in a Light’s k
(arithmetic mean of Cohen’s k) of 0.8535, considered
to represent almost perfect agreement.21

Test and External Validation Datasets

Data from four different countries were used in the
evaluation of themodel. The test dataset fromStanford
is composed of 694 additional OCT 3D cube scans: 241
OCT 3D cube volumes from 113 eyes (of 66 patients)
that were labeled as normal and 453 scans of 157 eyes
(of 89 patients) labeled as glaucoma. There was no
overlap of cases with this test set and that of cases in the
training or validation data sets. Three external valida-
tion datasets consisted of data each obtained from
single institutions in Hong Kong, India, and Nepal.
The Hong Kong dataset consists of 1625 OCT 3D
cube images from the Chinese University of Hong
Kong, with 666 OCT 3D cubes of 196 eyes (of 99
patients) labeled as normal and 959 OCT 3D cubes of
277 eyes (of 155 patients) labeled as glaucoma. The
India dataset is composed of 672 OCT 3D cube images
of ONH from the Narayana Nethralaya Foundation,
India. In total, 211 scans from 147 eyes of 98 patients
were labeled as normal and 461 OCT 3D cubes from
171 eyes of 101 patients had a glaucoma annotation.
Finally, the Nepal dataset contained 380 OCT 3D
cube images of ONH from the Tilganga Institute of
Ophthalmology, Nepal. In this dataset, 158 scans from
143 eyes of 89 patients were labeled as normal, and
222 scans from 174 eyes of 109 patients were labeled
as glaucoma.

In the dataset from Hong Kong, glaucoma was
defined as RNFL defects on thickness or deviation
maps that correlated in position with the VF defect,
which fulfilled the definition of glaucomatous VF
defects.17 Two glaucoma specialists worked separately
to label all the eyes with gradable SD-OCT scans into
normal/glaucoma combined with VF results. An SD-
OCT volumetric scan was labeled as gradable when
signal strength was equal to or better than 5 without
any artifacts or when the artifacts influenced <25
percentage peripheral area, excluding the measurement
center.

For the datasets from India and Nepal, glaucoma
specialists each with experience of more than 10 years
in glaucoma practice labeled the cases into glaucoma
and normal. The ground-truth labeling, inclusion crite-
ria, exclusion criteria, visual field, and SD-OCT device
used for the external validation datasets from India
and Nepal were the same as those used for the train-
ing dataset from Stanford. Details of dataset label-
ing are given in Supplementary Table S1 and details
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of inclusion and exclusion criteria are provided in
Supplementary Section S4. The splitting of data sets
in terms of number of scans, eyes, and patients from
each center is given in Supplementary Table S2. Even
though glaucoma caseswithout visual field defects were
not included in the training or validation dataset, we
evaluated the performance of the model on a nonover-
lapping set of these cases from Stanford. This included
a separate data set of 169 scans of 42 eyes from 27
patients. These glaucoma cases were those with struc-
tural defects on OCT RNFL and/or GCIPL maps
(thickness and/or deviation) and without any visual
field defects.

Development of the Deep Learning
Algorithm

Network Architecture
A 3D convolutional neural network (CNN) similar

to the classification network of De Fauw et al.22 is
used in our experiments (Supplementary Fig. S4). This
network uses multiple layers of dense convolutional
blocks.23 Each dense convolutional block consists of
one 3D spatial convolutional block (Fig. 1a) followed
by a 3D depth-wise convolutional block (Fig. 1b). Each
convolutional block applies a convolutional operation,
followed by group normalization24 and ReLU nonlin-
earity to the input, and the output is concatenated to
the input of the convolutional block along the channel
axis. The number of channels in a convolutional layer

is defined as a multiple of g, which is called growth rate
in theDenseNet23 architecture. All convolutional layers
have a stride of 1, and max pooling stride was set to 2
for dimensions that had a larger than 1 window size.

To increase the amount of effective training data,
random flipping and dense elastic deformations were
used as data augmentation during training (see Supple-
mentary Fig. S3). Adam optimizer with weight decay25
was used for training. After training, model checkpoint
with the best results on the validation set was selected
as the final model.

Finding Areas of Interest
After training, to get better insight into the predic-

tions of the model, we used saliency methods to try to
interpret how the model made its predictions. For this
purpose, the Grad-CAM saliency method26 was used.

To test whether the ONH area of the scan contains
any diagnostic information, a new experiment was
devised. Manual cropping of the OCT images on a
small subset of scans selected by random sampling was
done by a glaucoma fellowship-trained ophthalmolo-
gist (SSM) to only include the ONH, creating a 3D
mask for this area. For cropping the scans, we used
a software known as 3D Slicer,27 which is an open-
source software platform for biomedical image infor-
matics, image processing, and 3D visualization. The
ONH region was cropped by identifying the appropri-
ate zone of the image in the expected location relative
to Bruch’s Membrane Opening (BMO).

Figure 1. Building blocks of the dense convolutional blocks used in the convolutional neural network.
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For a border of dark/light junction at the typical
position of the anterior and posterior LC position
identified by consolidating and connecting, as well as
identified individual positions of likely target regions
under additional 3D visualization of axial scans.
Examples of cropped scans are shown in Supplemen-
tary Figure S2.

The novel method used for finding new areas in the
OCT scans that contain useful diagnostic information
has been termed DiagFind and is described in detail in
the next section.

DiagFind

Algorithm 1: DiagFind
1: Train a neural network on a medical imagery classi-

fication task.
2: Utilize saliency methods to find areas of poten-

tial sensitivity, and confirm these areas are useful
by consulting a domain expert (e.g., a glaucoma-
specialized ophthalmologist for this paper)

3: Further refine these areas of sensitivity to those that
correlate with a diagnostic label for which themodel
is being trained.

4: Redo training, while utilizing a cropping data
augmentation that crops the focus onto the areas of
sensitivity.

5: Manually crop a number of evaluation data points
to the area of interest and evaluate and measure the
performance of the model on the cropped data.

6: If the resulting performance of the model is non-
trivial, it shows that the identified area contains
useful diagnostic information for the given medical
imagery problem, since the model has no input
other than the area of interest.

The DiagFind algorithm for finding new areas
with diagnostic information consists of multiple steps
that are described in Algorithm 1. Based on saliency
map observations, we utilized DiagFind and retrained
the model using additional random cropping data
augmentation. In this data augmentation, we found a
heuristic to select the subset of the scan that would
contain the area of interest according to the obser-
vations from the saliency maps with a high proba-
bility. During training, the data augmentation would
randomly select a subset of the scan cube and set all
the values outside the selected cube as zero. Note that
in this data augmentation, cube sampling was imple-
mented in a way that the heuristically identified scan
cube would be selected with a higher priority compared
to other plausible subset cubes. If this area of sensi-
tivity can be positively identified using DiagFind, it

can be further analyzed to uncover any causal relations
(stronger than the initial perceived correlation) between
the model prediction and the newly identified area of
interest.

Further, we also evaluated the performance of the
algorithm across different severity levels of myopia
cases on the cropped scans.

Statistical Analysis

Area under the (receiver operating) curve (AUC),
sensitivity, specificity, and F1 scores have been used to
quantify the performance of themodels on the test sets.

The AUC summarizes the performance of the
binary classifier for different values of discrimination
threshold.

To compute sensitivity and specificity, we used a
discrimination threshold from the validation set, such
that the resulting predictions would have a maximum
F2 score, givingmore weight to recall than to precision,
to have a smaller number of false-negative predictions.
The statistical analysis for comparisons of numerical
demographic data was performed with the MedCalc
software (Version 19.4). Results are expressed as
mean (±standard deviation). Independent two-sample
t-test was used to evaluate the level of significance. A
P value of 0.005 or less was considered significant. Chi-
squared test was used for comparisons of categorical
demographic data for proportions.

Results

Demographic and Clinical Background of the
Datasets

Demographic background of the training, valida-
tion, and test sets along with mean deviation (MD)
and mean refractive error values are presented in
Supplementary Tables S3, S4, and S5, respectively.
The demographic data include age, gender, and ethnic-
ity distribution, as these are parameters known to
affect the OCT cube tissue thicknesses indepen-
dent of glaucoma. Note that for some patients,
demographic data were incomplete, and therefore,
aggregate numbers do not necessarily add up to the
dataset size. Demographic information,MD, andmean
refractive error values for Hong Kong, India, and
Nepal are presented in Supplementary Tables S6, S7,
and S8, respectively.

The training dataset included patients of Asian,
Caucasian, African American, and Hispanic ethnicity
while the external datasets from Hong Kong, India,
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and Nepal included cases belonging to Asian ethnicity
only. There was a statistically significant difference in
the female to male ratio between the training dataset
(55:45) and the datasets from Hong Kong (67:33; P <

0.005), India (40:60; P < 0.005), and Nepal (40:60;
P < 0.005). There was no significant difference in the
average age among the glaucoma cases in the training
(age in years ± SD; 69.41 ± 14.70), validation (70.09
± 10.37, P = 0.74), and test set from Stanford (69.82
± 16.15, P = 0.79). The average age of patients labeled
as having glaucoma in Hong Kong (age in years ± SD;
65.90 ± 9.30; P < 0.005), India (63.84 ± 11.72, P <

0.005) and Nepal (45.34 ± 17.08, P < 0.005) datasets
was significantly lower than that of the training dataset
from Stanford (69.41 ± 14.70, P < 0.005). There was
a significant difference in the mean refractive error (in
terms of spherical equivalent) between the glaucoma
subsets in the training data (in diopters ± SD: −3.57
± 3.37) compared to the data from Hong Kong (−0.85
± 2.57, P < 0.005), India (−0.48 ± 2.25, P < 0.005),
and Nepal (−1.38 ± 2.38, P < 0.005). The distribu-
tion of cases in the datasets according to severity of
refractive error is shown in Supplemetary Table S10.
The glaucoma training dataset from Stanford had a
higher percentage (8.88%) of cases with severe myopia
compared to the datasets from Hong Kong (4.70%,
P = 0.12), India (0.0% , P < 0.005), and Nepal (2.5%,
P < 0.005). Also there is a significantly higher percent-
age of severe myopia in the normal subset of the
Stanford data compared to Hong Kong, India, and
Nepal datasets (P < 0.005). There was no significant
difference in severity of glaucoma (in terms of mean
deviation ± SD) between the training (−9.75 ± 7.50)
validation sets (7.89 ± 4.17, P = 0.07) and Stanford
test set (−9.01 ± 7.52, P = 0.27), Hong Kong dataset
(−8.50 ± 6.81, P = 0.035), and Nepal dataset (8.30 ±
7.04, P = 0.04), while the mean deviation was signifi-
cantly lower in the dataset from India (−12.74 ± 9.22,
P < 0.005). The percentage of severe glaucoma cases
in the India dataset was significantly higher (44.80%,
P < 0.005) compared to the training (28.40%), Hong
Kong (24.00%), and Nepal (21.10%) datasets. Severity
distribution of datasets from Stanford, Hong Kong,
India, and Nepal is shown in Supplementary Table

S9. Details of additional clinical information such
as cup-to-disc ratio, IOP, gender distribution, pattern
standard deviation, and visual field index, along with
statistical comparisons, are shown in Supplementary
Table S11.

Performance in Detecting Glaucoma on
Primary and External Datasets

On the Stanford test set, our model was able to
achieve an AUC value of 0.91 (95%CI, 0.90–0.92) with
a sensitivity value of 0.86 (95%CI, 0.80–0.92), to differ-
entiate between healthy and normal eyes. The model
was able to achieve an AUC value of 0.80 (95% CI,
0.78–0.82) with a sensitivity value of 0.73 (95% CI,
0.67–0.79) on the Hong Kong dataset, an AUC value
of 0.94 (95% CI, 0.93–0.96) on the India dataset with
sensitivity of 0.93 (95% CI, 0.88–0.99) and an AUC of
0.87 (95% CI, 0.85–0.90) on the dataset from Nepal
with a sensitivity of 0.79 (95% CI, 0.68–0.90). The
complete results of the model are presented in Table
1. AUCs and sensitivities at fixed specificities (90% and
95%) are presented in Supplementary Table S12. AUCs
for all the datasets, with standard deviations computed
over five runs of the model to plot the shaded areas, are
shown in Figure 2.

Performance in Comparison to Human
Grader

We also computed the performance of the human
grader on a subset of scans from the Stanford test set,
and the AUC value of the human grader was 0.91.
Further, we also evaluated the sensitivity at matched
specificity for human grading. On the same subset,
our proposed model was able to achieve an average
AUC value of 0.92 (95% CI, 0.90–0.94) (see Fig. 3).
The difference between the performance of the human
grader and the performance of the proposed model
on the Stanford test set was not statistically significant
(P = 0.99).28–31 From five runs of our model, the worst
P value obtained was 0.367. At a matched specificity of
94%, the sensitivity of the human grader was 89.80%

Table 1. Results of the Proposed Model on the Stanford Test and External Data Sets

Dataset AUC, 95% CI Sensitivity, 95% CI Specificity, 95% CI F1 Score, 95% CI

Stanford 0.91 (0.90–0.92) 0.86 (0.80–0.92) 0.78 (0.68–0.88) 0.87 (0.86–0.89)
Hong Kong 0.80 (0.78–0.82) 0.73 (0.67–0.79) 0.73 (0.61–0.85) 0.76 (0.75–0.77)
India 0.94 (0.93–0.96) 0.93 (0.88–0.99) 0.71 (0.51–0.91) 0.91 (0.90–0.92)
Nepal 0.87 (0.85–0.90) 0.79 (0.68–0.90) 0.79 (0.66–0.92) 0.80 (0.78–0.83)

The 95% confidence intervals (CIs) are computed over five independent runs of the model.
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Figure 2. AUC for all the data sets, with standard deviations computed over five runs of the model to plot the shaded areas.

versus a sensitivity of 73.64% (95% CI, 69.86–77.43)
of the model.

Performance onMyopia

The model was able to achieve an F1 score of 0.97
(95% Cl, 0.96–0.98) and AUC of 0.99 (95% CI, 0.97–
1.00) on severe myopia cases. The model was also able
to achieve an F1 score of 0.91 (95% CI, 0.86–0.96) and
AUC of 0.97 (95% CI, 0.93–1.00) on moderate myopia

cases (Table 2). Themodel achieved an F1 score of 0.87
(95% CI, 0.84–0.91) and AUC of 0.92 (95% CI, 0.89–
0.95) on mild myopia cases.

Performance on Different Severity of
Glaucoma

Additionally, we evaluated the performance of
our algorithm across different levels of glaucoma
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Figure 3. AUC for the proposed model on the subset of the Stanford test set that was graded by a glaucoma fellowship-trained ophthal-
mologist, with standard deviations computed over five runs of the model to plot the shaded areas. To assign a ground-truth label, human
grader had access to other screening data, including fundus images, OCT RNFL and GCIPL printouts, IOP values, and visual field parameters,
and also had access to patient history and physical examination data, while the model only had access to the OCT scan cube.

severity. The model was able to achieve recall
values of 0.84 (95% CI, 0.74–0.94), 0.92 (95% CI,
0.89–0.95), and 0.99 (95% CI, 0.97–1.00), on mild,
moderate, and severe glaucoma, respectively (see
Table 4).

Performance on Right Versus Left Eyes

Supplementary Table S13 shows the results of the
subgroup analysis in right versus left eyes in all the
test datasets. There was no significant difference in
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Table 2. Results of the Proposed Model on the Stanford Test Set for Each Myopia Severity Level

Myopia
Severity

Number of
Scans (Eyes) AUC, 95% CI Sensitivity, 95% CI, % Specificity, 95% CI, % F1 Score, 95% CI

Mild 166 (67) 0.92 (0.89–0.95) 89.37 (84.53–94.21) 69.09 (59.78–78.40) 0.87 (0.84–0.91)
Moderate 52 (18) 0.96 (0.93–1.00) 91.43 (83.37–99.48) 89.17 (80.51–97.82) 0.91 (0.86–0.96)
Severe 51 (13) 0.99 (0.97–1.00) 94.47 (91.46–97.48) 90.00 (73.00–100.0) 0.97 (0.96–0.98)

The 95% confidence intervals (CIs) are computed over five independent runs of the model.

Table 3. Results of the Proposed Model Trained With the DiagFind Algorithm, on the Cropped Scans From the
Stanford Test Set for Each Myopia Severity Level

Myopia Severity Number of Scans (Eyes) AUC Sensitivity, % Specificity, % F1 Score

Mild 24 (24) 0.77 71.43 50.00 0.69
Moderate 7 (7) 0.75 75.00 66.67 0.75
Severe 4 (4) 1.00 100 100 1.00

The number of cropped scans with myopia severity information that have severe and moderate levels of myopia is very
small.

Table 4. Results of the Proposed Model on the
Stanford Test Set for Each Glaucoma Severity Level, for
Scans Where We Have Glaucoma Severity Information

Glaucoma
Severity

Number of
Scans (Eyes) Recall, 95% CI

Mild 225 (50) 0.84 (0.74–0.94)
Moderate 70 (20) 0.92 (0.89–0.95)
Severe 66 (29) 0.98 (0.97–1.00)

The 95% confidence intervals (CIs) are computed over five
independent runs of the model.

performance of the model in right versus left eyes in
any of the test data sets (P > 0.005).

Performance on Glaucoma Cases Without
Visual Field Defects

We evaluated the performance of the model
with a nonoverlapping set of glaucoma cases from
Stanford, without any visual field defects. The
performance of the model in terms of recall for
these data was found to be 0.76 (95% CI, 0.68–
0.85).

Analysis of False Predictions

False predictions were analyzed on the Stanford test
set, as can be seen in Table 5. Among the 15 false-
positive cases, age >70 years was observed to be a

Table 5. Observed Causes of False Predictions of
Glaucoma Versus Normal on the Stanford Test Set

False Predictions Number (%) of Eyes

False positives 15
Age >70 11 (73.3)
Severe myopia with tilted discs 2 (13.3)
Large CD (>0.7) 1 (6.6)
Causes unidentifiable 1 (6.6)

False negatives 34
Mild glaucoma MD >6 26 (76.47)
Small CD (<0.3) 3 (8.82)
Age <50 3 (8.82)
Causes unidentifiable 2 (5.88)

common association in 73.3% of cases. Severe myopia
with tilted discs and large cup disc ratio (CD) (>0.7)
were the other observed causes of false-positive results.
Among the 34 cases identified as false negative by the
model, 26 cases (76.47%) were mild glaucoma cases
with mean deviation >−6. Small cup to disc ratio
(<0.3) and age <50 were observed as other causes for
false-negative predictions in less than 10% of cases.
Examples of saliency visualizations with wrong predic-
tions are shown in Supplementary Figure S1.

Results of Saliency Maps Analysis

Saliency visualizations show that in most of
the cases in which the model makes a glaucoma
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Figure 4. Saliency visualizations for two cases from the Stanford Test set. (a) Top and (b) side view of saliency visualizations of a correctly
classified normal eye. (c) Top and (d) side view of saliency visualizations of a correctly classified glaucomatous eye. As can be seen, in most
of the cases, a highlight in the lamina cribrosa region is mostly correlated with Glaucoma prediction, while for cases with normal prediction,
the retinal layer is mostly highlighted. Saliency visualization has been obtained with respect to the predicted class. Regions with a higher
value are more salient for the model in making the final prediction.

prediction, the LC is highlighted (see Figs. 4a, 4b).
Out of the 156 cases predicted as glaucoma by the
model on the Stanford test set, all the cases had
LC highlighted on the saliency visualizations, with or
without retina highlighting. However, when the predic-
tion was normal, superficial retina was highlighted in a
high number of cases (see Figs. 4c, 4d). Out of the 92
cases predicted as normal, 67.3% had superficial retina
highlighting.

Performance on Cropped Data Using the
DiagFind Algorithm

The initial model (without random cropping data
augmentation) was able to achieve an AUC value of
0.41 on the manually cropped test set. The model
trained on the same data with the same hyperparam-
eters, with the addition of the random cropping data
augmentation, increased the AUC value to 0.69.
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We also tried this experiment by utilizing more
training data from each of the external test sets, in
addition to the training set from Stanford. Twenty
percent of the cases from each external test set were
randomly selected. This resulted in 322 additional
normal scans and 474 additional glaucoma scans.
Using these additional data and retraining using the
procedure described in the Algorithm 1, the AUC
on the cropped scans increased to 0.77, which is a
substantial relative increase, even though the differ-
ence is not statistically significant (P = 0.071).29–31
We evaluated the performance of the algorithm
across different severity levels of myopia cases on
the cropped scans (see Table 3). The algorithm
performed with an AUC of 0.77, 0.75, and 1.00
on mild, moderate, and severe myopia cases, respec-
tively.

Discussion

In this study, the authors developed and validated
a 3D deep learning system using real-world raw OCT
ONH volumes to detect manifest glaucoma as defined
bymultiple inputs. The proposedmodel performedwell
in both the Stanford test and external datasets, suggest-
ing that automated detection of glaucoma using raw
SD-OCT cube scans is feasible on diverse data sets
using deep learning methods. This algorithm may
provide new insights by going beyond solely looking at
normative data of segmented RNFL, namely also the
lamina.

The differences in the performance of the model on
datasets from Hong Kong, India, and Nepal can be
attributed to the variances in demographic and clini-
cal characteristics. Apart from this, the difference in
performance on the Hong Kong dataset may be due to
the differences in labeling criteria, which defined struc-
tural changes in glaucoma based onRNFLmaps alone.
Although the latter cannot not be attributed to the
lower performance, as per this definition, scans with
glaucomatous changes only in the macula would be
included in the normal category, which would have
influenced the performance of the algorithm in this
dataset. The higher performance of the model on the
dataset from India can be attributed to a significantly
higher percentage of eyes with severe disease in this
dataset, which would likely be easier to differentiate
from normal cases. The performance of the model on
glaucoma cases without VF defects despite the model
not being trained on this subtype of cases suggests that
the model was not overfitted and that the model can
generalize to unseen data.

The model performed slightly better compared to
human grader in terms of AUC values (albeit statisti-
cally insignificant). But atmatched specificity, the sensi-
tivity of the human grader was higher than the sensi-
tivity of the model. The human grader had access
to multiple screening data, including fundus images,
OCT RNFL and GCIPL printouts, IOP, VF parame-
ters, access to patient history, and physical examination
data, while the model used information from the OCT
cube scans alone, which still attests to the strength of
the model.

Myopic refractive error is known to impact RNFL
and macular thickness measurements due to stretching
and thinning of these layers and due to increased axial
length and optical projection artifact of the scanning
area,4 resulting in many false-positive diagnoses, also
known as “red disease.” Using the entire cube and
highlighting the LCmay help researchers study this LC
region more closely in myopes when trying to differ-
entiate glaucoma from normal. The difference in the
performance in the myopia subsets compared to the
total dataset could be due to the fewer number of cases
in each subgroup (Table 2). The assessment of false-
positive predictions by the present model showed only
13.3% of cases to be associated with severe myopia,
despite the fact that severe myopia is one of the most
common reasons formisdiagnosis of glaucoma in clini-
cal presentations.4 This suggests that by training the
model on scans of eyes with high myopia, as long as
there are no data loss artifacts in the scans, the train-
ing examples provide enough information within the
volumes of slices for the model to avoid myopia from
affecting the result. The performance of the model
across different severity levels of myopia cases on
cropped scans (see Table 3) points toward the possi-
bility of utilization of diagnostic information at the
LC level in different degrees of myopia in glaucoma
diagnosis, especially as an alternative to unreliable
RNFL parameters in severe myopia.4 This requires
further evaluation due to the small data distribution of
the present study.

The training dataset included cases with signal
strength ≥3. This is because at times, clinicians do not
have high-quality OCT images for diagnosis and evalu-
ation of glaucoma, due to patient cooperation, medial
opacity, tear film issues, small pupils, or other limita-
tions. Furthermore, it has been reported that a signal
strength of >3 is acceptable to obtain reproducible
scanning images among patients with ocular media
opacities.32 Since real-world data collection rarely
matches the standards and quality control described
in many deep learning studies, it is one of the reasons
for variable performance of the algorithm in real-
life settings.13,14 Variances in SD-OCT raw images,
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such as differences in machine calibration and image
intensity (e.g., background noise, brightness), could be
contributing to the differences in performance among
external datasets. The present study aimed to train the
algorithm to be able to identify glaucoma even on low-
quality images (without data loss), hence replicating
real-world representations.

The saliency maps generated showed that for cases
with normal prediction, the areas on superficial retina
were mostly highlighted, and for glaucoma prediction,
the LC region was highlighted. This agrees with the
established clinical parameters for glaucoma diagno-
sis (e.g., cup diameter/volume and rim area/volume).
Given that clinicians do not routinely review every
single slice of the cube, and because current OCT
RNFL and ONH printouts do not provide any
diagnostic information based onLC, saliency visualiza-
tion highlighting the LC region suggests that it should
also be looked at closely by clinicians.

The present algorithm’s ability to utilize the
diagnostic information at the LC from the conventional
scans (without EDI) using the DiagFind algorithm
is a new insight since it does correspond with the
disease process. In a recent study by Rahman et al.,33
an automated system was constructed using 600 SD-
OCT images (Heidelberg Engineering GmbH, Heidel-
berg, Germany) of 60 patients. The model was used
to quantify the morphologic parameters of the LC,
including depth, curve depth, and curve index from
OCT images. The model consisted of a two-stage deep
learning model, which was composed of the detection
and the segmentationmodels as well as a quantification
process with a postprocessing scheme. Similar to what
our model discovered, this study proposes that incor-
porating these morphologic parameters in glaucoma
detection can contribute to obtaining high-accuracy
detection results for diagnosing glaucoma.33

Recently, Maetschke et al.11 employed a 3D CNN
to detect glaucoma from raw, unsegmented Cirrus SD-
OCT ONH volumes (total of 1110 scans split into
888 training, 112 validation, and 110 test samples) and
achieved a substantially high AUC of 0.94. The neural
network used in this work has a simpler architecture
compared to the network used in our work. There is a
higher probability that a larger network would perform
better compared to a simpler network. However, to
correctly compare their network and the network used
in this work, and to prove this claim and measure the
relative merit of the larger, more complex architec-
ture, both should be trained on the same data with
a large enough budget dedicated to hyperparameter
search, to make sure that both networks are able to
obtain their best results given the training data. Similar
to the present study, for healthy eyes, the network in

Maetschke et al.11 tends to focus on a section across
all layers and ignores the optic cup/rim and the lamina
cribrosa. In contrast, for glaucomatous eyes, the optic
disc cupping, neuroretinal rims, and the LC and its
surrounding regions were highlighted.

In the recent study by Ran et al.,12 a 3D deep
learning system performed with an AUC of 0.97 to
detect glaucoma. This study used 2926 raw unseg-
mented Cirrus SD-OCT ONH scans for training, 975
scans for testing, and 976 scans for primary validation.

Similar to our study, the heatmaps generated in
their study showed neuroretinal rim and areas cover-
ing the LC to be highlighted in the detection of
glaucoma. Apart from this, the RNFL and choroid
were also potentially found to be related to the
detection of glaucoma. The difference in their study
from ours was in the definitions used for glauco-
matous structural defect (which was based on OCT
RNFL thickness and deviation maps alone) and inclu-
sion of images with signal strength ≥5. Another
difference was the distribution of ethnicity in their
training set, which consisted exclusively of Chinese
Asian eyes, while our training, validation, and test
data from Stanford included subjects belonging to
multiple ethnicities.

The present study has several strengths. Multiple
international datasets provide diversity in our database
for evaluation purposes, which is rare to have for
glaucoma datasets. Fine-tuning the model on the exter-
nal data sources would have probably resulted in
increased accuracy on the external test sets, but this was
not done due to the differences in ground-truth defini-
tions among the datasets.

Another significant strength of ourmethodwas that
the training dataset was not cleaned for this experiment
to more closely follow the challenges that are faced in
real-world clinical settings and included all ranges of
myopia and disc sizes. One other major highlight of
our study was that the ground-truth labeling included
various multimodal evaluations, replicating real-world
clinical settings. Additionally, using the DiagFind
algorithm, the current study was able to show that the
LC region in the routine SD-OCT scan, which is mostly
not used by ophthalmologists, contains useful diagnos-
tic information that can serve as an additional signal
in the glaucoma diagnosis. Apart from this, the exper-
iment with cropped scans had encouraging results for
using the ONH region with a focus on LC in diagno-
sis of the disease, especially in high myopia and severe
glaucoma, where conventional RNFL parameters have
limitations.

On the other hand, our study has a few limita-
tions. Despite using the term “real-world” dataset,
due to the absence of acceptable consensus on the
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definition of glaucoma suspects among experts and
incomplete records across countries, we did not include
these cases in our study. Other cases that are diffi-
cult to be diagnosed by skilled clinicians have been
excluded, including cases with concomitant retinal or
optic nerve pathology. Second, even though we have
not excluded any cases based on disc sizes or presence
of myopic tilted discs in our dataset and have included
cases with low signal strength, we have not looked
into the performance of our model across subsets.
Due to the unavailability of data on signal strength
of individual scans (other than the information of it
being>3), the present study is unable to analyze perfor-
mance based on varying signal strength. Another possi-
ble drawback of our study is that during ground-truth
labeling, some glaucoma cases that had focal defects
that were only seen on the deviation map with an “all
green” RNFL/GCIPL map might have been excluded
as being classified as glaucomatous.

Going forward, we plan to develop a 3D deep learn-
ing algorithm using a wider range of data includ-
ing high- and low-risk suspect cases that would help
in identifying cases that require referral for manage-
ment by glaucoma specialists. This would be based
on acceptable definitions structured with inputs from
multiple international experts. Second, we plan to
compare the performance of our model with that of
multiple human graders at various levels of expertise
in glaucoma care. Finally, we plan to include raw OCT
macula cube scans along with ONH scans for better
algorithm correspondence.

Conclusion

Our 3D deep learning model was trained and tested
using the largest OCT glaucoma dataset so far from
multinational data sources, and it has been able to
detect glaucoma from raw SD-OCT volumes across
severity of myopia and severity of glaucoma. By using
a multimodal definition of glaucoma, we could include
more scans from the real world, including low signal
strength, which are typically excluded from studies. The
saliency visualizations highlighted the LC as an impor-
tant component in the 3D ONH cube in differentiat-
ing glaucoma, whichmay be useful in highmyopes who
have thin RNFL. Based on this information, and using
the DiagFind algorithm, we studied the performance
of the model in the case that only the ONH crop of
the full scan was given to the model. We observed that
our model, trained with additional random cropping
data augmentation, was able to detect glaucoma on the
cropped scans.
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