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Abstract

Background: HIV-1C has been shown to have a greater risk of virological failure and reduced susceptibility towards
boosted protease inhibitors (bPls), a component of second-line combination antiretroviral therapy (CART) in South
Africa. This study entailed an evaluation of HIV-1 drug resistance-associated mutations (RAMs) among minor viral
populations through high-throughput sequencing genotypic resistance testing (HTS-GRT) in patients on the South
African national second-line cART regimen receiving bPls.

Methods: During 2017 and 2018, 67 patient samples were sequenced using high-throughput sequencing (HTS), of
which 56 samples were included in the final analysis because the patient’s treatment regimen was available at the

time of sampling. All patients were receiving bPIs as part of their cART. Viral RNA was extracted, and complete pol

genes were amplified and sequenced using lllumina HiSeq2500, followed by bioinformatics analysis to quantify the
RAMs according to the Stanford HIV Drug Resistance Database.

Results: Statistically significantly higher Pl RAMs were observed in minor viral quasispecies (25%; 14/56) compared
to non-nucleoside reverse transcriptase inhibitors (9%; 5/56; p = 0.042) and integrase inhibitor RAM (4%; 2/56; p =
0.002). The majority of the drug resistance mutations in the minor viral quasispecies were observed in the V82A
mutation (n=13) in protease and K65R (n=5), KIO3N (n=7) and M184V (n =5) in reverse transcriptase.
Conclusions: HTS-GRT improved the identification of Pl and reverse transcriptase inhibitor (RTl) RAMs in second-line
CART patients from South Africa compared to the conventional GRT with 220% used in Sanger-based sequencing.
Several RTI RAMs, such as K65R, M184V or K103N and Pl RAM V82A, were identified in < 20% of the population.
Deep sequencing could be of greater value in detecting acquired resistance mutations early.
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Background

High-throughput sequencing (HTS) has unique advantages
and significantly improves sensitivity in quantifying the mi-
nority HIV drug-resistant variants within HIV quasispecies
[1]. Increased identification of pre-treatment minority drug
resistance mutations (DRMs) compared to Sanger-based
sequencing genotypic resistance testing (GRT) was reported
from both resource-rich and resource-limited settings [2,
3]. The role of minority drug-resistant variants and their
clinical consequences in the failure of combination anti-
retroviral therapy (cART) is debatable [4—18]. The presence
of the minor variants remains unclear but clinical conse-
quences cannot be ignored.

Studies have shown that even in adherent patients,
those with pre-existing Y181C mutants have a triple
higher risk of virological failure on an efavirenz-based
cART regimen [19]. Several studies have shown that mi-
nority pre-treatment drug resistance was associated with
reduced treatment efficacy for first-generation non-
nucleoside reverse transcriptase inhibitors (NNRTIs),
but not for rilpivirine and integrase inhibitors (INIs) [3,
17, 20]. In contrast, other studies have indicated that in
a population with a relatively low prevalence of DRM,
the use of deep sequencing to detect minority HIV-1
DRM has limited clinical benefit [21]. However, a study
conducted by Inzaule et al., reported that incorporating
the minor DRMs might improve the predictive value of
GRT, but that very low thresholds of minority mutations
can compromise the test specificity [22]. Data on ac-
quired minority mutations on treatment-failure patients
are limited.

In sub-Saharan Africa, South Africa has 23.6% pre-
treatment drug resistance to efavirenz or NVP, followed
by Namibia with 13.8%, while Zimbabwe has 10.9% resist-
ance to NVP [8]. HIV-1 subtype C (HIV-1C) is the major
HIV-1 subtype in South Africa, responsible for more than
90% of infections. The recommended second-line cART
consists of the nucleoside reverse transcriptase inhibitors
(NRTIs) zidovudine or tenofovir and lamivudine and a
ritonavir-boosted (/r) protease inhibitor (PI), usually lopi-
navir (LPV/r) [23, 24]. Earlier studies from South Africa
and Sweden reported that despite good adherence, there
is an increased risk of virological failure in patients with
HIV-1C on bPI-based regimens [20, 25]. Ex vivo and
in vitro experiments also indicated large variations in sus-
ceptibility of HIV-1C viruses in the absence of PI
resistance-associated mutations (RAMs) [26].

Studies have reported that the rates of virological fail-
ure on second-line cART are high in resource-limited
settings, including South Africa, and are associated with
the duration of exposure to previous drug regimens and
poor adherence [27], mostly without any protease RAM
[28]. In South Africa, with more than 4.5 million HIV-
infected individuals accessing cART, approximately 145,
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000 (~4%) are accessing second-line cART [29]. How-
ever, the drug resistance pattern in patients failing on
bPIs is limited and often described by GRT through
Sanger sequencing [30]. An earlier study with only seven
patients indicated the presence of PI RAMs in bPI-
failure patients, which was missed by bulk Sanger se-
quencing [31]. In clinical settings, Sanger bulk sequen-
cing is the most common and widely used for HIV drug
resistance testing. The limitation of the Sanger bulk se-
quencing method is that it can only detect variants with
prevalence >20% which is well known [32-34]. Studies
have described the presence of minority HIV-1 drug re-
sistance mutations in treatment-naive patients which
could potentially impact treatment outcome [4, 13, 16,
19, 35]. Next-Generation Sequencing (NGS) method
have the unique advantage of detecting of minority vari-
ants with a threshold as low as 1%; although, this
method can also generate errors, so when reporting low-
frequency, caution should be exercised [36, 37]. There-
fore, the primary aim of the present study was to deter-
mine the level and pattern of HIV-1 drug resistance in
minor (<20%) and major viral populations in patients
receiving bPIs.

Methods

Ethics statement

The study was approved by the Faculty of Medicine and
Health Sciences, Health Research Ethics Committee
(HREC) Stellenbosch University, South Africa (N15/08/
071). The investigations also complies with the South
Africa National Health Act No 612003 and abides by the
ethical norms and principles for research as established
by the Declaration of Helsinki, the South African Med-
ical Research Council Guidelines as well as the Depart-
ment of Health Guidelines. A waiver of written informed
consent was awarded to conduct sequence analyses on
these samples by the Health Research Ethics Committee
of Stellenbosch University, South Africa.

Viral load

For HIV-1 viral load testing, we used the Abbott
m2000sp and the Abbott m2000rt analyzers (Abbott
Laboratories, Abbott Park, IL, USA). Viral RNA was iso-
lated from patient samples according to the manufac-
turer’s instructions using the Abbott RealTime HIV-1
Amplification Reagent Kit.

Study design

Convenient plasma samples were obtained from patients
receiving bPIs as part of their treatment regimen (as re-
ferred by the clinician) with viral load > 900 copies/mL
at the time of sampling from the diagnostic section at
the Division of Medical Virology, Stellenbosch Univer-
sity, and the South African National Health Laboratory
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Services (NHLS), and were collected between March
2017 and February 2018 [20, 38]. We excluded patient
samples with no previous cART regimen history and pa-
tients receiving first-line cART treatment regimens. Pa-
tients had their samples submitted for HIV-1 GRT to
the NHLS. The NHLS provides routine genotypic anti-
retroviral drug resistance testing for clinics in the West-
ern Cape, Gauteng and Eastern Cape provinces.

PCR amplification and HTS

Reverse transcriptase PCR (RT-PCR), which consists of
c¢DNA synthesis followed by first-round PCR, was per-
formed using the SuperScript™ III One-Step RT-PCR
System with Platinum™ Taq DNA Polymerase (Invitro-
gen/Life Technology, Cat. No. 12574026) using the
primers 1810F (5'-GCTACACTAGAAGAAATGATGA
CAGCATG-3") and 5220R (5'-CCCTAGTGGGATGT
GTACTTCTGA-3"). The second-round nested PCR was
performed with 2001F (5'-TGCAGGGCCCCTAGGA
AAAAGGGCTGTT-3’) and 5087R (5'- ATCCTGTCTA
CYTGCCACACAAYC-3") primers using the KAPA HiFi
HotStart ReadyMix PCR kit. The amplified products
were purified using the QIAamp gel extraction kit (Qia-
gen, Germany). For HTS, the purified amplicons were
fragmented, and the library was prepared using NEB-
Next® Ultra™ DNA Library Prep Kit for Illumina® (New
England Biolab, USA) with multiplexed NEB next adap-
tors. The samples were then pooled together with other
unrelated non-viral indexed libraries. Paired end se-
quences of read length 250 bp were carried out on the
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[lumina HiSeq2500. The sequences are available in SRA
(submission ID: SUB5871663).

Bioinformatics analysis

The raw reads were adapter-trimmed using TrimGalore
version 0.6.2, followed by the removal of the low-quality
bases (Phred value score < Q30) by Sickle version 1.33.
Duplicate reads were removed using FastUniq. The de
novo assembly was performed using the Iterative Virus
Assembler. The processed reads were aligned against in-
dividual pol gene sequences in very sensitive local mode
using Bowtie2 in order to select reads originated from
pol genes and create a consensus gene. The subtyping
was performed using REGA version 3. The selected
reads were then aligned against pol protein sequences
using the BLASTX program from the BLAST package.
The best BLASTX hit was chosen for each read for the
amino acid counting, which was performed by in-house
script. The resistance was interpreted as per the muta-
tion lists provided in the Stanford HIVDB, accessed on 6
January 2019 [39]. The complete script is available in
github: https://github.com/neogilab/MiDRMPol_
SouthAfrica.

Statistical analysis

Descriptive statistic like mean, standard division (for
normally distributed data), median, interquartile range
(IQR), frequency in percentage were performed in
GraphPad Prism version 8 (GraphPad Software, CA,
US). The association between categorical variables were
performed using Fisher’s exact test. Comparison between

mNone m=Majoronly =mMinoronly

Fig. 1 Percentage prevalence of PI, NRTI, NNRTI and INI RAMs in minor (< 20% of the population) and major (=20% of the population) viral
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two groups with continuous variable was performed with
Students t-tests. The p-value less than 0.05 considered
significant.

Results

Among the 67 samples sequenced, current treatment regi-
men data were not available for 11 samples, and therefore
they were excluded from further analyses. Among the 56
patients, 5.3% (n = 3) were on boosted ATV, while only one
patient was on DRV/r and the rest (93%; n = 52) were re-
ceiving LPV/r. The median (range) viral load was 71,814
(937-5,500,000) copies/mL. HIV-1 subtyping identified 55
samples as HIV-1C and one as CRF02_AG. The NRTI,
NNRTTI and INI RAMs were observed among 25% (14/56),
57% (32/56), 50% (28/56) and 7% (4/56), respectively.
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Statistically significantly higher PI RAMs (25%; 14/56) were
observed only in the minor viral quasispecies compared to
NNRTI (9%; 5/56; p = 0.042) and INI RAM (4%; 2/56; p =
0.002). A total of 41% (23/56) did not have any PI RAMs
(Fig. 1). The complete mutation profile is presented in the
supplementary Table 1. There was no statistical difference
in viral load (log;o copies/mL) in patients who only had PI
DRM in minor population variants compared to patients
who had only DRM in the major viral population [mean
(SD): 4.92 (0.74) vs. 4.66 (0.88); p = 0.43].

All 56 patients harbored at least one DRM. Most of the
DRMs in the minor viral quasispecies were observed in
V82A mutation (n=13) in protease and K65R (n=05),
K103N (n=7) and M184V (n=5) in reverse transcriptase
(Fig. 2). Despite no mention of use of any INIs by the

Any DRM
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Y181C
V106M
K103N
K101E/P
L100I
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Fig. 2 Number of different RAMs in minor (< 20% of the population) and major (220% of the population) viral populations
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clinical reports, three patient sequences had the Y143R mu-
tation in major viral quasispecies and one in minor viral
quasispecies, which confers resistance to raltegravir (RAL).
However, resistance to INI inhibitors was low in the set-
tings. The predicted resistance pattern (as per the Stanford
HIV Drug Resistance Database [HIVDB]) is given in Fig. 3.
Half (28/56) of the patients had doravirine cross resistance.
There were two patients (ZA94 and ZA97) who were resist-
ant to all classes of drugs, indicating the presence of ex-
tremely drug-resistant HIV-1 strains in South Africa.

Discussion
HTS assays have an intrinsic capability of detecting mi-
nority HIV-1 quasispecies mutation variants before they
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emerge as a majority variant under selection pressure,
which might lead to virological failure. In this study we
used HTS to type the DRM in both minor (<20% of the
population) and major (>20% of the population) viral
quasispecies and identified increased PI RAM in minor
viral populations. Our study also indicated very low
levels of transmitted INI RAMs in patients failing on a
bPI-based regimen.

Earlier study have indicated that PI RAMs were un-
common in patients failing on second-line cART, with
only 7% of patients on bPIs showing PI RAMs [40]. A
study using Sanger sequencing indicated that 35% of the
patients who had PI DRM failed on bPIs. A South
African study conducted by Cohen et al. showed high-
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Fig. 3 Predicted level of resistance to different antiretroviral drugs based on the Stanford HIVDB
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level resistance to LPV/r in 76/339 (22%), while 45/339
(13%) had high-level resistance to atazanavir and 2/339
(0.6%) had high-level resistance to darunavir [41]. Our
study also showed that 34% of the patients had major PI
RAMs in the major viral population, while 25% of the
patients had PI DRM in the minor viral population. All
the patients had at least one DRM. As most of the pa-
tients had high viral loads, there is a high chance of
transmission of DRM if not treated timely. Furthermore,
the PI RAMs in the minor viral population can evolve to
become the majority under drug selection pressure.

Earlier studies indicated that HIV-1C has reduced sus-
ceptibility towards PIs without the emergence of major
PI RAM [42] and that there is higher risk of virological
failure [25]. Gag mutations can also confer reduced sus-
ceptibility towards Pls [43]. Furthermore, a study con-
ducted in Nigeria reported PI RAMs in 62% of patients
receiving PI-based second-line cART, with GRT being
limited to patients with good adherence [44]. In East Af-
rica, Inzaule et al. [45] found one or more major PI re-
sistance mutations in 32% of unselected Kenyan patients
with second-line ART failure and a median duration on
PI-based ART of 3.1years [45]. Few other observational
studies in the African region have reported on ART ex-
haustion in 9 to 32% of patients failing second-line ther-
apy [46, 47]. Clinical studies also reported that second-
line failure was frequent in South African settings [30],
which could further increase the chance of transmission
of primary DRMs.

Even though there is no indication of the patients be-
ing administered RAL, three of the patients in our study
harbored Y143R mutation in >20% of the population.
Previous studies on HIV-1C have shown major INI mu-
tations at baseline in less than 5% of patients from
Ethiopia (T66I, E138K, Q148R, and Q148H) and South
Africa (Q148H, T66S, E92G, S147G, T66A, Y143YF and
Y143H) [3, 20, 28]. However, the presence of INI RAMs
in minor viral population is deemed not to have any
clinical consequences [48].

Conclusion

We show that the use of high-throughput resistance
testing for GRT can greatly improve the identification of
acquired PI RAMs in bPI-failing patients. Using HTS-
GRT, PI RAMs (V82A) and RTI RAMs (K65R, M184V
or K103N) were identified in <20% of the population
that Sanger-based sequencing failed to identify, strength-
ening their role in detecting the acquired mutations
early. In resource-limited settings, the use of these high-
throughput resistance-testing assays might help in the
early detection of minor variants before evolving as a
majority variant. Acquired drug resistance poses a sig-
nificant threat to achieving the WHO/UNAIDS 90-
90-90 targets for 2020. A recent WHO report also
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indicated an alarming surge in drug resistance across
Africa [23]. Continuous surveillance, prevention, and
monitoring at both minority variant and population-
based level are critical to achieving the WHO/
UNAIDS 90-90-90 target.
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