

Evaluation of Cytotoxic Activity Alkaloid Fractions of Zanthoxylum acanthopodium DC. Fruits

Dina Maya Syari¹, Rosidah Rosidah^{1*}, Poppy Anjelisa Zaitun Hasibuan¹, Ginda Haro², Denny Satria³

¹Department of Pharmacology, Faculty of Pharmacy, Universitas Sumatera Utara, Medan, Indonesia; ²Department of Biochemistry, Faculty of Pharmacy, Universitas Sumatera Utara, Medan, Indonesia; ³Department of Pharmaceutical Biology, Faculty of Pharmacy, Universitas Sumatera Utara, Medan, Indonesia

chloroform at pH 7 and 9 was determined with MTT assay.

Abstract

Citation: Syari DM, Rosidah R, Hasibuan PAZ, Haro G, Satria D. Evaluation of Cytotxic Activity Alkaloid Fractions of Zanthoxylum acanthopodium DC. Fruits. Open Access Maced J Med Sci. 2019 Nov 30; 7(22):3745-3747. https://doi.org/10.3889/oamjms.2019.495

Keywords: Cytotoxic; Zanthoxylum acanthopodium DC.; Fruits: Alkaloid: Fraction

*Correspondence: Rosidah Rosidah. Department of Pharmacology, Faculty of Pharmacy. Universitas Sumatera Utara, Medan, Indonesia. E-mail: rosidah@usu.ac.id

Received: 25-Sep-2019; Revised: 17-Oct-2019; Accepted: 18-Oct-2019; Online first: 14-Nov-2019

Copyright: © 2019 Dina Maya Syari, Rosidah Rosidah, Poppy Anjelisa Zaitun Hasibuan, Ginda Haro, Denny Satria. This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0) Funding: This research did not receive any financial

Competing Interests: The authors have declared that no

Introduction

RESULTS: The IC₅₀ of fraction chloroform at pH 7 and 9 was (92.67 ± 1.37; 71.87 ± 1.04; 159.87 ± 0.63; 123.39 ± 0.81; and 103.09 ± 0.58 μ g/mLfor pH 7) and (451.29 ± 25.48; 247.18 ± 2.82; 318.46 ± 5.40; 303.96 ± 8.75; and 181.45 ± 1.35 μ g/mL for pH 9) respectively.

of alkaloid fractions of Zanthoxylum acanthopodium DC. fruits. Zanthoxylum acanthopodium DC.

CONCLUSION: The results reveal that alkaloid fractions at pH 7 and 9 of *Zanthoxylum acanthopodium* DC. Fruits have cytotoxic activity. Our further study is to isolate and assesses anticancer activity from alkaloid compounds.

AIM: This study was carried out to investigate cytotoxic activity towards T47D, 4T1, MCF-7, HeLa, and Raji cells

METHODS: The fruit was extracted by maceration. The ethanol extract was fractionated with liquid-liquid

extraction using n-hexane, chloroform at pH 3, 7, and 9 to obtained alkaloid fractions. Cytotoxic activity for fraction

Alkaloids are compound which contains a nitrogen atom in their heterocyclic ring structure. Grouping of alkaloids based on biosynthetic pathways is widely used to categorise alkaloids. Alkaloids have a broad distribution in the plants and mainly stand in Spermatophyta. Moreover, many alkaloids show prominent pharmacological activities, such as for asthma, analgesic, antibacterial, and cytotoxicity. Alkaloids are either the most important active compounds in natural products, and some of them have successfully improved into anticancer drugs [1], [2], [3], [4], [5].

Zanthoxylum acanthopodium DC. has been used as aromatic substances, tonic, and treat dysentery. Indian people have used Zanthoxylum acanthopodium DC. to treat paralysed and skin diseases such as abscess and leprosy. Andaliman has been used as spices at North Sumatera, especially at North Tapanuli [6], [7], [8]. The plants from Zanthoxylum genus contain many compounds such as phenol hydroquinones, flavonoids, steroids / triterpenoids, tannins, glycosides, volatile oils, alkaloids, coumarins, lignans, amides and terpenes [9], [10], [11], [12], [13], [14], [15], [16]. Ethylacetate extract of Zanthoxylum acanthopodium DC. fruits (EAF) was showed to have cytotoxicity effect against MCF-7 and T47D cell lines. EAF was found to have effect when combined the synergistic with doxorubicin. EAF was showed to have anticancer activity towards mice induced with benzo(a)pyrene, having a cardioprotective effect and active on T47D resistance cells [17], [18], [19]. The purpose of this research was to determine cytotoxicity activity alkaloid fractions of Zanthoxylum acanthopodium DC. fruits on cancer cells.

Material and Methods

Materials

Fresh fruits of *Zanthoxylum acanthopodium* DC. were collected from Onan Rungu village, Samosir Regency, Sumatera Utara Province, Indonesia. *Zanthoxylum acanthopodium* DC. was determined in Herbarium Bogoriense, DMSO (Merck), [3-(4,5-dimethylthiazole-2-yl)-2,5-diphenyl tetrazolium bromide] (Sigma), chloroform (Full Time), n-hexane (Full Time).

Extraction and Fractionation

Zanthoxylum acanthopodium DC. fruits powdered (1.000 g) were extracted with ethanol 96% (3 x 3 d, 7.500 mL). at room temperature with occasional stirring. The filtrate was collected and then evaporated with a rotary evaporator (Stuart, Stone, UK) until obtained viscous extract [19], [20], [21]. The viscous extract was fractionated with n-hexane and continue with chloroform at pH 3, 7, 9 and 11 [22].

Analysis of Alkaloids with Thin Layer Chromatography

The chloroform fractions at pH 7 and 9 were carried out by thin-layer chromatography using silica gel GF_{254} as stationary phase and chloroform: methanol: ammonia (18: 15: 1) as mobile phase. Dragendorff solution was used as a sprayer reagent to identify alkaloid compounds [22], [23].

Cytotoxicity assay

Alkaloid fractions were submitted for cytotoxic examination. Wheresoever (4T1 and MCF-7 cells line) were grown in DMEM medium, (T47D and HeLa) were grown in RPMI medium, Raji was grown in IMDM medium completely. The cytotoxic examination was adopted from Satria, et al., (2017) [21], [23], [24].

Statistical Analysis

The results were interpreted as means \pm SD. The statistical analysis was performed with SPSS edition 21.

Results

Thin Layer Chromatography

The result of analysis of alkaloid compounds with thin layer chromatography using the GF_{254} gel

and the chloroform: Methanol: ammonia in the ratio (18: 15: 1) were shown in Figure 1, and Rf values were shown in Table 1.

Table 1: Rf value of alkaloid spots on TLC analysis and sprayed with $\ensuremath{\mathsf{Dragendorff}}$

Crat	Rf Value	
Spot	pH 7	pH 9
1	0.06	0.08
2	0.14	0.16
3	0.48	0.44
4	0.61	-
5	0.68	-

The results of the TLC analysis used the stationary phase of silica gel 60 F254 with the appearance of dragendorff spots.

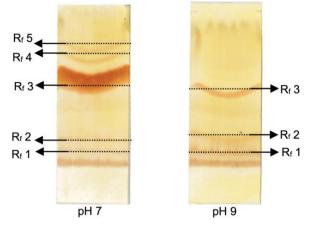


Figure 1: Thin layer chromatography plates after sprayed with Dragendorff

Inhibitory Concentration 50% (IC50)

[3-(4,5-dimethylthiazole-2-yl)-2,5-diphenyl tetrazolium bromide] assay was used to determine cell viability. In each handling, of fractions were shown to inhibit cells growth. The IC_{50} value was shown in Table 2.

Table 2: IC_{50} value of alkaloid fractions at pH 7 and 9 of Zanthoxylum acanthopodium DC. fruits towards several cell lines

Cell Line	Chloroform Fraction (µg/mL)	
	pH 7	pH 9
T47D	92.67 ± 1.37	451.29 ± 25.48
4T1	71.87 ± 1.04	247.18 ± 2.82
MCF-7	159.87 ± 0.63	318.46 ± 5.40
HeLa	123.39 ± 0.81	303.96 ± 8.75
Raji	103.09 ± 0.58	181.45 ± 1.35

Discussion

The cytotoxic activity from natural materials is correlated with the phytochemical compounds, including in *Zanthoxylum acanhopodium* DC. and alkaloids estimated as active compounds [21], [25]. The majority of studies focus on the induced cytotoxicity of well-known alkaloids such as, taxol, vincristine and vinflunine that are used clinically in cancer therapy worldwide. Screening for novel agents has led to the discovery of new alkaloid that showed promising anti-neoplastic and apoptotic abilities in several cancer cell lines [1], [4], [5].

Benzophenanthridine and furoquinoline are alkaloids compound from *Zanthoxylum buesgenii*, which has cytotoxic activity in several cell lines [26]. Benzophenanthridine derivates from *Zanthoxylum nitidum* exhibited A549, HeLa, SMMC-7721 and EJ cancer cells with IC₅₀ 27.50; 37.50; 16.95; and 60.42 μ M respectively [27]. Acridone alkaloids from *Zanthoxylum leprieurii* Guill. was showed modest cytotoxicity with LD₅₀13.1 μ g/mL at brine-shrimp (*Artemia salina* Leach) and active towards A549 and DLD-1 cells [28].

In conclusion, the results reveal that Zanthoxylum acanthopodium DC. fruits alkaloid fractions provide effective as anticancer towards several cell lines.

References

1. Wang ZT and Liang GY. Zhong yao hua xue. Shanghai Scientific and Technical, 2009.

2. Lee MR. The history of Ephedra (ma-huang). J Royal College of Phys of Edinburgh. 2011; 41(1):78-84. https://doi.org/10.4997/JRCPE.2011.116 PMid:21365072

3. Benyhe S. Morphine: new aspects in the study of an ancient compound. Life Sciences. 1994; 55(13):969-979. https://doi.org/10.1016/0024-3205(94)00631-8

4. Li W, Shao Y, Hu L. BM6, a new semi-synthetic Vinca alkaloid, exhibits its potent in vivo anti-tumor activities via its high binding affinity for tubulin and improved pharmacokinetic profiles. Cancer Biology and Therapy. 2007; 6(5):787-794. <u>https://doi.org/10.4161/cbt.6.5.4006</u> PMid:17387272

5. Huang M, Gao H, Chen Y. Chimmitecan, a novel 9-substituted camptothecin, with improved anticancer pharmacologic profiles in vitro and in vivo. Clinical Cancer Research. 2007; 13(4):1298-1307. https://doi.org/10.1158/1078-0432.CCR-06-1277 PMid:17287296

6. Suryanto E, Sastrohamidjojo H, and Raharjo S, Tranggongo. Antiradical Activity of Andaliman (Zanthoxylum acanthopodium DC.) Fruit Extract. Indonesian Food Nutri Prog. 2004; 11(1):15-19.

7. Hynniewta SR, Kumar Y. Herbal Remedies Among The Khasi Traditional Healers and Village Folks in Meghalaya. Indian J Trad Knowledge. 2008; 7(4):581-586.

8. Sirait M, Siahaan M, Mangkudidjojo. Pemeriksaan Minyak Atsiri dan Isolasi Senyawa Getir dari Buah Andaliman (Zanthoxylumacanthopodium DC,). Makalah. Farmasi Institut Teknologi Bandung, Bandung,1991:11.

9. Parhusip A. Kajian Mekanisme Antibakteri Ekstrak Andaliman (Zanthoxylum acanthopodium DC.) terhadap Bakteri Patogen Pangan. Thesis. Institut Pertanian Bogor.2006;

10. Fernandez CC, Vieira PC, Silva VC, Dall'Oglio EL, Silva LE, Sousa PT. 6-acetonyl-N-methyl-dihydrodecarine, a New Alkaloid from Zanthoxylum riedelianum. J. Braz. Chem. Soc. 2009; 20(2):379-382. https://doi.org/10.1590/S0103-50532009000200025

11. Yao-Kuassi PA, Caron C, Ramiarantosa H, Prost E, Harakat D, Magrex-Debar EL, et al. New Nitro-benzo[c]phenantridine and Indolopyridoquinazoline Alkaloids from Zanthoxylum atchoum. C.R Chimie.v2015; 18(8):891-897. <u>https://doi.org/10.1016/j.crci.2015.01.005</u>

12. Hu J, Shi X, Mao X, Chen J, Li H. Cytotoxic Mannopyranosides of

Indole Alkaloids from Zanthoxylum nitidum. Chemistry & Biodiversity. 2014; 11(6):970-974. <u>https://doi.org/10.1002/cbdv.201300381</u> PMid:24934682

13. Hu J, Zhang WD, Liu RH, Zhang C, Shen YH, Li HL, et al. Benzophenantridine Alkaloids from Zanthoxylum nitidum (Roxb.) DC, and Their Analgesic and Anti-Inflammatory Activities. Chemistry & Biodiversity. 2006; 3(9):990-995.

https://doi.org/10.1002/cbdv.200690108 PMid:17193331

14. Yang ZD, Zhang D, Ren J, Yang M. Skimmianine, a Furoquinoline Alkaloid from Zanthoxylum nitidum as a Potential Acetylcholinesterase Inhibitor. Med Chem Res. 2012; 21:722-725. https://doi.org/10.1007/s00044-011-9581-9

15. Cui XG, Zhao QJ, Chen QL, Xu L, Song Y, Jin YS, et al. Two New Benzophenantridine Alkaloids from Zanthoxylum nitidum. Helvetica Chemica Acta. 2008; 91(1):155-158. https://doi.org/10.1002/hlca.200890006

16. Chen JJ, Yang CK, Kuo YH, Hwang TL, Kuo WL, Lim YP, et al. New Coumarin Derivatives and Other Constituents from The Stem Bark of Zanthoxylum avicennae: Effects of Neutrophil Pro-Inflammatory Responses. Int. J. Mol. Sci. 2015; 16(5):9719-9731. https://doi.org/10.3390/ijms16059719 PMid:25938967 PMCid:PMC4463613

17. Hasibuan PAZ, Harahap U, Sitorus P, Satria D. Ethylacetate extract of Zanthoxylum acanthopodium DC. fruit against doxorubicin-resistanced T47D cells. Der Pharma Chemica. 2016; 8(20):172-174.

18. Sihotang YM. Uji Aktivitas Antikanker Payudara dan Krdiopretektif dari Ekstrak Etilasetat Daun Poguntano (Picria fel-terrae Lour.) dan Buah Andaliman (Zanthoxylum acanthopodium DC.) secara In-Vivo. Thesis. Fakultas Farmasi USU. 2015.

19. Anggraini R, Hadisahputra S, Silalahi J. Combinational effects of ethylacetate extract of Zanthoxylum acanthopodium DC. with doxorubicin on T47D breast cancer cells. International Journal of PharmTech Research. 2014; 6(7):2032-2035.

20. Satria D, Furqan M, Hadisahputra S, Rosidah. Combinational effects of ethylacetate extract of picria fel-terrae lour and doxorubicin on T47d breast cancer cells. Int J Pharm Pharm. Sci. 2015; 7:73-76.

21. Hasibuan PAZ, Jessy C, Denny S. Combination effect of ethylacetate extracts of Plectranthus ambonicius (Lour.) Spreng. with doxorubicin againts T47D breast cancer cells. Int J Pharm Pharm. Sci. 2015; 7:155-159.

22. Atta-ur-Rahman, Atia-tul-Wahab, Sultani SZ, Sarfraz A, Nawaz, Choudhary MI. Bisbenzylisoquinoline alkaloids from Cocculus pendulus. Natural Product Research. 2009; 23(14):1265-1273. https://doi.org/10.1080/14786410500185303 PMid:19479625

23. Satria D, Nasution NP, Ilyas S. Cytotoxcicity effect of sea horse (Hippocampus trimaculatus Leach.) extract and fractions on MCF-7 cell line. International Journal of PharmTech Research. 2014; 6(1):212.

24. Nugroho AE, Ikawati M, Hermawan A, Putri DDP, and Meiyanto E. Cytotoxic effect of ethanolic extract fractions of Indonesia Plant Ficus septica Burm. F. On human breast cancer t47d cell lines. International Journal of Phytomedicine. 2011; 3(2):216-226.

25. Yadav VR, Sahdeo P, Bokyung S, Ramaswamy K, Bharat BA. Targetting Inflammatory Pathways by Triterpenoids for Prevention and Treatment of Cancer. Toxins. 2012; 2(10):2428-66. https://doi.org/10.3390/toxins2102428 PMid:22069560 PMCid:PMC3153165

26. Sandjo LP, Kuete V, Tchangna RS, Efferth T, Ngadju BT. Cytotoxic benzophenanthridine and furoquinoline alkaloids from Zanthoxylum buesgenii (Rutaceae). Chemistry Central Journal. 2014; 8(1):61. https://doi.org/10.1186/s13065-014-0061-4 PMid:25349626 PMCid:PMC4207896

27. Wang CF, Fan L, Tian M, Du SS, Deng ZW, Feng JB. Cytotoxicity of benzophenanthridine alkaloids from the roots of Zanthoxylum nitidum (Roxb.) DC. var. fastuosum how ex Huang. Natural Product Research. 2015; 29(14). https://doi.org/10.1080/14786419.2014.1002090 PMid:25647513

28. Ngoumfo RM, Jouda JB, Mouafo FT, Komguem J, Mbazoa CD, Shiao TC, et al. In vitro cytotoxic activity of isolated acridones alkaloids from Zanthoxylum leprieurii Guill. et Perr. Bioorganic and Medicinal Chemistry. 2010; 18(10):3601-360. https://doi.org/10.1016/j.bmc.2010.03.040 PMid:20413315