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SUMMARY 

While the Bacille-Calmette-Guérin (BCG) vaccine is used to prevent tuberculosis, it also offers 

protection against a diverse range of non-mycobacterial infections. However, the underlying 

protective mechanisms in humans are not yet fully understood. Here, we surveyed at single-cell 

resolution the gene expression and chromatin landscape of human bone marrow, aspirated before 

and 90 days after BCG vaccination or placebo administration. We show that BCG vaccination 

significantly alters both the gene expression and epigenetic profiles of human hematopoietic 

stem and progenitor cells (HSPCs). Changes in gene expression occur primarily on the most 

uncommitted stem cells and are reflective of a persistent myeloid bias. In contrast, BCG-induced 

changes in chromatin accessibility are most prevalent within differentiated progenitor cells at 

sites influenced by Kruppel-like factor (KLF)/SP and EGR transcription factors (TFs). These 

TFs are also activated in the most uncommitted stem cells, indicating that activated TFs, which 

drive persistent changes in HSC gene expression, likely also drive chromatin dynamics 

appearing within downstream progenitor cells. This perspective contests the prevailing notion 

that epigenetic modifications linked to innate immune memory transfer directly from stem cells 

to their differentiated derivatives. Finally, we show that alterations in gene expression and 

chromatin accessibility in HSPCs due to BCG vaccination were highly correlated (r>0.8) with 

the IL-1β secretion capacity of paired PBMCs upon secondary immune challenge. Overall, our 

findings shed light on BCG vaccination's profound and lasting effects on HSPCs and its 

influence on innate immune responses. 
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INTRODUCTION 
 

The adaptive memory response is an evolutionarily conserved mechanism of vertebrate 

immunity. It has classically been viewed as a unique feature of T- and B-lymphocytes, which can 

clonally expand to generate antigen-specific memory cells with faster and more robust responses 

to recurrent infections. Despite this dogma, increasing evidence suggests that innate immune 

cells such as monocytes, dendritic cells, natural killer cells and neutrophils may harbor some 

antigen-agnostic memory-like properties, a phenomenon referred to as ‘innate immune 

memory1,2. This form of immune cell memory is thought to be encoded within innate immune 

cells through persistent epigenetic rewiring of enhancer and promoter regions of host-resistance 

and metabolic genes as a result of exposure to pathogens or other inflammatory signals2. As 

innate immune cells are short-lived and do not divide, it has been suggested that persistent innate 

immunity may be mediated by epigenetic changes within long-lived immune stem cells 

(hematopoietic stem and progenitor cells, HSPCs) in the bone marrow1,2. It has been 

hypothesized that these stem cells may be capable of retaining pathogen-induced epigenetic 

signatures across cycles of self-renewal, and transmitting these signatures to downstream innate 

progeny, thus maintaining a circulating pool of innate immune memory cells. While some 

support for this hypothesis is available from mouse models, it has yet to be fully tested in 

humans.   

BCG vaccination is primarily used to prevent tuberculosis, but has broad ranging protective 

effects against a wide array of non-mycobacterial infections3–8. BCG vaccination protects young 

children in countries with high infectious pressure from all-cause mortality9 and infections10, 

while elderly adults receiving the BCG vaccine are significantly less likely to experience a new 

viral infection within the next year6. In murine models, BCG vaccination provides protection 
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against heterologous (Influenza virus) infections11, potentially via expansion and altered gene 

expression within HSPCs11,12. Macrophages derived in vitro from the bone marrow of BCG-

vaccinated mice demonstrate increased bacterial killing capacity for up to a year post-

vaccination12. This suggests that gene expression changes encoded within HSPCs and passed on 

to developing bone marrow-derived macrophages may be responsible for some of the prolonged 

heterologous protective effects of BCG vaccination.  

Still, the genomic mechanisms by which “memory” may be encoded in human bone marrow 

HSPCs, and to what extent such memory signatures are capable of rewiring the immune system’s 

response to infectious diseases, is incompletely understood. It was recently demonstrated that 

global changes in gene expression within human bone marrow persist 90 days post vaccination13. 

However, many critical questions remain unanswered, such as which HSPC cell types are most 

impacted, whether these expression changes are also coupled with epigenetic changes, and to 

what extent acquired changes in the bone marrow relate to changes in innate immune cell 

function. 

To address these questions, we performed droplet-based scRNA- and scATAC-sequencing on 

the human bone marrow aspirates from 20 healthy individuals, both before and 90 days after 

intradermal BCG vaccination or placebo. Our data indicate that BCG vaccination impacts both 

the gene expression and epigenetic profiles of HSPCs for at least 90 days and that these changes 

are predictive of corresponding functional changes in donor-matched PBMCs challenged with 

Candida albicans.  
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RESULTS 
 

Multimodal analysis of human bone marrow cells 

Healthy individuals were randomized to receive either the intradermal BCG Bulgaria vaccine 

(n=15) or intradermal placebo vaccine diluent (n=5), as previously described13. Participants were 

similar in age (BCG avg = 23.7 yrs, SD 7.3, SEM 1.8; placebo avg = 21.8 yrs, SD 1.8, SEM 0.8) 

and sex (BCG: 5F/10M, placebo: 2F/3M). Bone marrow aspirates were collected from the iliac 

crest of all 20 individuals prior to vaccine administration (D0), and 90 days after vaccination 

(D90) and cryopreserved for future processing (Fig 1A). To isolate HSPCs from each bone 

marrow sample, we stained bone marrow aspirates with fluorescence-conjugated antibodies 

targeting CD34, a transmembrane phosphoglycoprotein specific to HSPCs14. We also stained all 

bone marrow aspirates with a panel of antibodies targeting canonical immune cell markers (CD3, 

CD56, CD14, etc. for mature immune cells and CD90, CD10, CD110, etc. to distinguish 

between CD34+ HSPC subtypes, Table 1, Fig 1B). We used fluorescence activated cell sorting 

to sort out live, CD34+ HSPCs for downstream droplet-based scRNA-seq processing (115,698 

cells captured) and scATAC-seq (58,988 cells captured) processing while simultaneously 

collecting flow cytometry data. This workflow enabled the simultaneous collection of single cell 

gene expression, chromatin accessibility, and surface protein data for each sample (Fig 1A).  

 

BCG vaccination has a long-term impact on gene expression within HSPC populations 

Given that BCG vaccination was previously shown to impact gene expression in bulk RNA-seq 

of HSPCs13, we first asked whether the 90-day impact of BCG vaccination on gene expression 

within HSPCs was detectable at single-cell resolution, and what cell types within HSPCs were 

the most responsive to BCG vaccination. To assess the effect of BCG vaccination on gene 
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expression of different HSPC subtypes, we clustered all high-quality cells in the scRNA-seq 

dataset into 13 non-overlapping groups and then assigned them to known HSPC cell subtypes 

(HSCs, CMPs, MLPs, GMPs, MEPs, and Pre-BNK cells) (Fig 1C), based on the expression of 

pre-determined lineage-specific genes such as GATA1 (erythroid), DNTT (lymphoid), MPO 

(myeloid/neutrophilic), and SPIB (pDC) (Fig 1C).  

To investigate the overall HSPC signature after BCG vaccination, we collapsed the single-cell 

gene expression values for each of the 13 main clusters to generate pseudobulk estimates for 

each sample. Then, we used a mixed linear model to identify genes for which expression levels 

changed in response to BCG vaccination, while controlling for temporal changes independent of 

BCG vaccination (as measured in the placebo samples, Fig S1A, B). We used a multivariate 

adaptive shrinkage model (mash15), which leverages the correlation structure of effect sizes 

across cell types to increase power and refine effect size estimates. Genes with a stringent local 

false sign rate (lfsr) < 0.01 were considered differentially regulated (DR) due to BCG 

vaccination (Fig 2A,B, Table 2).  

DR genes were heterogenous across HSPC cell types, with the largest percentage residing within 

the stem-cell clusters HSC c1 and HSC c2 (Fig 2B). Strikingly, in HSC c1 and HSC c2, 238 and 

190 genes respectively were differentially regulated (lfsr<0.01) 90 days following BCG 

vaccination, with 59.7% of total DR genes in HSC c1 and c2 shared between the two clusters. 

Megakaryocyte-erythroid progenitor (MEP) clusters had the second highest number of DR genes 

(MEP c1 = 102, MEP c2 = 150, MEP c3 = 129). In contrast, no other cluster had more than 62 

DR genes, demonstrating that a single intradermal BCG vaccination preferentially impacts the 

gene expression landscape of the most long-term, self-renewing stem cells in the bone marrow at 

three months following vaccination.  
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Upon bacterial infection or LPS challenge, cytokines such as IL6, IL3, IL1β, G-CSF, TNF, IFNγ, 

and GM-CSF are produced either by non-hematopoietic cells or by HSPCs themselves16–18. 

However, our data showed that their gene expression levels were either very low (median log 

counts per million reads < 1) across all cell types (Figure S1C) or showed no significant 

difference between BCG and placebo groups (with a padj > 0.9). This suggests that by day 90, it 

is unlikely that HSCs or other cells are actively responding to any remaining vaccine antigens or 

pathogen-associated molecular patterns (PAMPs). 

DR genes were enriched for immune, metabolism, or proliferation/apoptosis pathways (Fig 2C, 

Table 3). Some immune-related pathways such as IL2/Stat5 signaling were enriched (padj < 0.1) 

predominantly within HSC clusters, suggesting that immune rewiring was greatest within the 

most undifferentiated stem cells. Others were more ubiquitous, such as ‘TNF via NFκB signaling 

pathway’ and ‘oxidative phosphorylation’ which were enriched across the spectrum of HSPC 

subtypes, representing a subset of universally modulated pathways. MEPs exhibited a unique 

metabolic signature compared to all other HSPC subtypes, with predominant enrichments in 

MYC signaling (critical in regulation of cellular metabolism, proliferation, differentiation, and 

apoptosis) but smaller enrichments in stress-related pathways (hypoxia, reactive oxygen species) 

that were more predominant in HSC and other progenitor clusters. Principal component analysis 

comparing HSPC subtypes based on gene set enrichment scores revealed a tight and distinct 

clustering of HSC c1 with HSC c2 and of MEP c1 with MEP c2 and MEP c3, away from the 

zero-reference point (Fig S1D). HSCs and MEPs clustered on opposite ends of PC1, further 

demonstrating the strong but differential impact of BCG vaccination on these cell types. Overall, 

the data show that BCG vaccination impacts the expression of immune, metabolism, and 

proliferative genes across HSPC subtypes for at least 3 months, but that the stem-like HSCs and 
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progenitor MEPs have the strongest propensity to maintain a lasting state of differential gene 

expression. Enrichments in TNF signaling and oxidative phosphorylation were uniquely 

pervasive across all cell types (Fig 2C), leading us to speculate that these gene expression 

differences reflect the select retention of specific immune and metabolic gene expression 

programs sustained within HSCs as they differentiate into downstream progeny.    

 

BCG vaccination heterogeneously impacts HSCs 

Our gene expression data indicated that HSC c1 and HSC c2 are the primary sites of differential 

gene expression 90 days after BCG vaccination. We reasoned that changes within these clusters 

may be of particular significance, given that HSC c1 and HSC c2 are capable of giving rise to all 

downstream progenitors. Thus, we decided to delve deeper into understanding how these cell 

populations were modified. In order to investigate BCG-induced gene expression changes within 

HSCs at higher resolution, we performed a refined clustering on cells classified as HSC c1 or 

HSC c2 into 10 total HSC subgroups (Fig 2D, E). We classified each subcluster as a Long 

Term(LT)-HSCs, Short Term(ST)-HSC, or multipotent progenitor (MPP) based on its expression 

of markers CD90, CD49f, and CD45RA, which have classically been used to differentiate 

between these HSC subtypes19 (Fig 2F). As we had previously done for each major cluster, we 

performed a differential gene expression analysis and gene set enrichment analysis for each HSC 

subcluster. Enrichments of pathways that were significant within HSC c1 and c2 (Fig 2C, Table 

3) were variable when assessed indivudally within each HSC subcluster (Fig S1E). Many 

pathways had the strongest enrichment within phenotypically LT-HSC – like subsets such as c0 

and c5. Interestingly, pathways enriched predominantly within HSCs (Fig 2C), but not within 

downstream progenitors were almost exclusively enriched only within LT-HSC- or ST-HSC-like 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 28, 2023. ; https://doi.org/10.1101/2023.11.28.569076doi: bioRxiv preprint 

https://doi.org/10.1101/2023.11.28.569076
http://creativecommons.org/licenses/by-nc-nd/4.0/


 9

clusters, but not MPPs. For example, the HSC-specific ‘Hypoxia’ pathway was enriched only 

within the most phenotypically LT-HSC subcluster c0 (Fig 2G; p.adj = 0.0039) and the pathway 

‘IL2-Stat5 signaling’ was enriched only within a phenotypically ST-HSC subcluster c5 (Fig 2H; 

p.adj = 0.0048). In contrast, the ‘TNF via NFκB signaling pathway’ which was significantly 

enriched not only within HSCs, but also within the most downstream progenitor clusters (CMP, 

GMP, MEP, MLP, and PreBNK), had the strongest enrichment in the phenotypically MPP-like 

subcluster c2 (Fig 2I, p.adj = 0.0018). Our data indicate that gene expression changes within 

HSCs appear to represent the heterogenous rewiring of LT-HSCs, ST-HSCs, and MPPs. 

Moreover, gene expression changes within MPP-like HSCs may be associated with transmission 

to downstream progeny, while gene expression changes harbored by the more quiescent LT-

HSCs and ST-HSCs are less likely to be transmitted or shared by downstream cell types.   

 

BCG vaccination results in lineage bias of HSCs  

Severe bacterial infections can induce a state of emergency myelopoiesis, in which the bone 

marrow increases the production of myeloid cells which circulate in the bloodstream and 

extravasate into sites of infection16. Well-controlled, localized infections (such as BCG 

vaccination) are not typically associated with the induction of emergency myelopoiesis. Yet, 

numerous studies in mice have suggested that exposure to BCG can rewire the bone marrow 

towards myelopoiesis20,21, at least acutely. Whether this is true in humans and could represent a 

persistently rewired state rather than an acute reaction, has not been investigated. Given that the 

detection of persistent gene expression changes was within HSCs, we next investigated whether 

the altered baseline of immune and metabolic gene expression programs in HSCs of BCG-

vaccinated individuals was associated with a persistent skewing of HSC lineage bias (Fig 3A,B). 
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To make lineage bias predictions within single cells we utilized CellRank22, a similarity-based 

trajectory inference method that utilizes RNA-velocity information (measurements of unspliced 

to spliced mRNA) to infer developmental directionality of HSCs at single-cell resolution within 

a snapshot in time (at D90).  

Comparing the composition of lineage biases between BCG and placebo individuals at day 90, 

we found that BCG vaccination led to a significant increase in the percentage of HSCs biased 

towards the CMP c2 terminal state (p = 0.018, Fig 3C, D). In support of this prediction, flow 

cytometry analyses of the bone marrow aspirates revealed an overall increase in CMPs among 

BCG-vaccinated relative to placebo individuals (Fig 3E; p=0.026), accompanied by a decrease in 

the percentages of CLP and MLP (Fig 3F) among BCG vaccinated individuals. Assessment of 

marker genes specific to CMP c2 revealed these cells to be the predominant expressors of 

CEBPB (Figure S2A), CSF3R (Figure S2B), MPO (Figure S2C), and CEBPA (Figure S2D), 

establishing their likely identity as neutrophil or MPO-expressing monocyte progenitors.  

BCG-vaccination increased the gene expression of CEBPB (lfsr = 0.1) within HSC c1, as well as 

decreased expression of MAPK14 (lfsr = 0.03), a prototypical p38 MAPK, which can act as an 

inhibitor of granulopoiesis23. Other transcription factors involved in inflammatory responses, 

such as KLF6 (lfsr = 0.001), which interacts with NFkB to promote pro-inflammatory gene 

expression within mature myeloid cells24–26, and IRF1 (lfsr = 0.004) which coordinates 

proinflammatory gene expression in response to viruses and bacteria27,28, were also significantly 

increased in HSC c1 upon BCG vaccination (Fig 3G, S2E). Together, these data show that BCG 

vaccination has a long-term impact both on genes involved in inflammation within HSCs and 

genes that promote neutrophil/monocyte bias and differentiation. This results in HSCs which 
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harbor a combination of altered baseline gene expression programs and lineage biases towards 

myelopoiesis.   

 

BCG vaccination impacts the chromatin accessibility of immune progenitors 

Epigenetic alterations are believed to be central to innate immune memory. Thus, we next 

investigated whether the gene expression signatures detected in our scRNA-seq data were 

associated with changes in the epigenetic landscape of HSPCs. To investigate the epigenetic 

effects of BCG we used sample-paired scATAC-sequencing data collected on CD34+ HSPCs 

before and after BCG vaccination (Fig 1A). After quality-control filtering, 58,988 high-quality 

cells were retained (see methods). These cells were clustered into 16 cell populations (Fig 4A). 

Initial cell type annotations (HSC, CMP, GMP, MEP, MLP, and PreBNK) were generated by 

mapping chromatin accessibility-based ‘gene activity’ scores calculated for well-established 

lineage-specific genes (Fig 4B) to gene expression within the scRNA-seq data (Fig 1C), and 

transferring scRNA-seq labels to the closest matched clusters in the scATAC-seq data. scATAC-

seq clusters mapped to the same broad cell type were then given a subtype label (HSC 1, 2, etc). 

In the same way we had previously detected differentially regulated genes, we asked whether 

BCG vaccination led to changes in peak accessibility (differentially accessible, or DA, peaks). 

We identified more than 13,000 total DA peaks (Figure 4C, Table 4) across all clusters, 

demonstrating that BCG vaccination not only had lasting impacts on gene expression, but also on 

the epigenetic landscape of HSPCs. The largest total number of these DA peaks were located 

within peripheral myeloid CMP, GMP, and MEP clusters, while fewer DA peaks were found 

within HSCs, despite these being the cell types harboring the most gene expression changes. 
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Clusters CMP3 and GMP2 harbored the greatest changes in chromatin accessibility, although 

many DA peaks were also detected within MEPs and other CMP/GMP clusters. 

Next, we aimed to identity what TFs are most likely responsible for the observed changes in 

chromatin accessibility. To do so, we combined related clusters into six main cell type groups 

(HSC, CMP, GMP, MEP, MLP, and PreBNK), and then searched for TF motifs that were 

enriched within the combined DA peaks of each cell type (Fig 5A). Not surprisingly, the 

strongest enrichments resided within CMPs and GMPs and included TFs families such as EGR1-

4, NRF1, and E2F6 with significant roles in macrophage immune modulation, cholesterol 

metabolism, and DNA methylation respectively (Table 5). The top three motif classes within 

CMPs were KLF/SP1 (fdr = 10-66), TCFL5 (fdr = 10-45), and E2F6 (fdr = 10-41). The top motifs 

within GMPs were highly overlapping, including the top three motifs, KLF/SP1 (fdr = 10-36), 

E2F6 (fdr = 10-22), and EGR1-4 (fdr = 10-19). When excluding motifs with low abundance 

(present within > 15% DA peaks) top enrichemnts within both CMP and GMP included the 

motif families EGR1-4, CTCF, and KLF/SP1 (Fig 5A).  

We then asked whether these TFs were the same TFs responsible for driving the differential gene 

expression programs detected within HSCs upstream. To this end we used the differential gene 

expression data from our scRNA-seq analysis (Fig 2) to make inferences about the differential 

activity of TFs underlying gene expression changes within HSCs. We performed a TF activity 

analysis utilizing the SCENIC29,30 pipeline, using our single cell gene expression data to search 

for evidence of up- or down-regulation of transcription factor modules within HSCs, each 

defined by a central driving TF and all of its predicted target genes. In this analysis, the 

differential expression of many gene targets of a TF is interpreted as evidence of altered TF 

activity. Despite limited power, we detected several TF modules with evidence of differential 
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activity (p < 0.05) induced by BCG within HSCs and MEPs (Fig S3A,B, Table 6).  Strikingly, 

we found that the TF motifs enriched among DA regions in CMP and GMP are significantly 

enriched within TFs that exhibit differential activity in HSCs following BCG vaccination (Fig 

5B-C, p = 1x10-6 and 6.8x10-3 in GMP and CMP, respectively). Overall, our data suggest a 

model wherein BCG-vaccination modulates the activity of a unique subset of TFs to induce a 

prolonged low-level myeloid bias and differential gene expression program within HSCs, that 

results in the establishment of a changed epigenetic landscape of downstream myeloid clusters. 

 

BCG-induced differential chromatin accessibility within myeloid-like HSPCs predicts 

increased IL1β secretion by PBMCs 

Given that CMPs and GMPs retained extensive epigenetic signatures, we asked whether 

chromatin accessibility changes within myeloid progenitors could have functional implications 

for the mature immune cells they give rise to. When assigned to their closest genes, DA peaks in 

CMPs and GMPs are enriched for reactome pathways related to TLR2 and TLR4 signaling and 

signaling by interleukins (Fig 6A), as well as biological process pathways such as ‘neutrophil 

activation’ and ‘neutrophil degranulation’ (Figure S4A, Table 7), which was the strongest within 

CMPs. DA peaks within other HSPCs (MEP, MLP, and PreBNK) had minimal enrichments, in 

agreement with lower numbers of DA peaks within those cell types. 

These results suggested that DA peaks within myeloid progenitors could regulate innate immune 

pathways, and that CMP- or GMP-derived innate immune cells entering the peripheral blood 

could have altered immune functionality. As a measure of peripheral blood cell immune 

functionality, we used previously collected cytokine secretion data from donor-matched 

PBMCs43 generated by Cirovic et al13. The data contain a panel of secreted cytokine 
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concentrations by the PBMCs of each donor in response to a 24-hour stimulation with heat killed 

C. albicans, and showed that BCG, compared to placebo vaccination, rewired PBMCs to 

produce increased levels of IL1β and IL6 in response to C. albicans challenge13. Although the 

BCG vaccination cohort generally secreted higher amounts of these proinflammatory cytokines, 

individual PBMC samples displayed a high degree of intra-cohort heterogeneity, suggesting that 

the effects of BCG vaccination likely rewired PBMC cytokines responses to varying degrees 

across individuals. We reasoned that if differential accessibility at DA peaks were directly 

involved in the reprogramming of these cytokine responses, one would expect to find individuals 

with the greatest magnitude of epigenetic rewiring to be the same individuals with the greatest 

increases in cytokine secretion. To test this hypothesis, we used elastic net regression to formally 

determine whether levels of differential accessibility at DA peaks (raw D90 vs. D0 log2FC 

values) had power to predict cytokine responses (FC D90 vs. D0) across individual donors. This 

demonstrated that the fold change increase in IL1β production could be predicted by log2FC DA 

peak accessibility to a high level of accuracy (Figure 6B; R = 0.761, p = 0.001) within the 

peripheral MPOhi CMP cluster, CMP5, but not other clusters. These data suggest that changes in 

chromatin accessibility that have a meaningful impact on IL1β cytokine secretion are specific to 

a single lineage and cell type.  

We asked whether the same individuals harboring the largest changes in CMP5 chromatin 

accessibility and increased cytokine secretion were the same individuals harboring the greatest 

BCG-induced changes in the activity of driver transcription factors and differential gene 

expression in HSCs. As done using DA peaks, we used elastic net regression to determine 

whether levels of differential expression of DR genes within HSCs had power to predict IL1β 

responses (FC D90 vs. D0) across individual donors (Figure 6C). Differential gene expression 
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within HSCs had strong and significant predictive power (R = 0.837, p=1x10-4), establishing that 

changes in IL1B secretion capacity are also tightly linked to day-90 differential gene expression 

within HSCs. Log2FC responses of hundreds of individuals genes within HSCs correlated 

significantly (padj < 0.1) with IL1β responses, further supporting the elastic net regression 

findings (Figure 6D). Importantly, the log2FC values of several transcription factors such as 

KLF6 (Figure 6E; in the KLF2/3/6 family) and FOSB (Figure 6F) were among these 

significantly correlated genes with R > 0.8. Moreover, the activity scores of several key 

transcription factors (including EGR1 and KLF5 whose motifs were strongly enriched within 

CMP DA peaks) within HSC had remarkably strong correlations with IL1β production (Figure 

6G-H, S4B-G). Finally, we found a significant correlation between IL1β production and the 

extent of BCG-induced CMP bias within HSCs (Fig 6I) as determined using cellrank (Fig 3). 

Collectively these data formally demonstrate that BCG-induced differential TF activity and gene 

expression in HSCs, induction of lineage bias towards CMP, downstream CMP progenitor 

chromatin accessibility, and peripheral immune cell cytokine secretion are linked processes. 

 

DISCUSSION 

Since clinical evidence and mouse models have suggested that the BCG vaccine may impact the 

immune system at the hematopoietic stem-cell level12,31–33 , we used single-cell RNA and ATAC 

sequencing on HSPCs isolated from human bone marrow aspirates to investigate how BCG 

vaccination affects gene expression and chromatin accessibility 3 months later. While the effect 

of BCG vaccination on innate and adaptive immunity have been studied extensively using 

samples from peripheral blood, our study is the first to assess the impact of BCG vaccination on 

gene expression and chromatin accessibility at single cell resolution, using samples derived 
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directly from healthy adult human bone marrow. Here we found that BCG vaccination alters the 

programming of gene expression, TF acitivty, lineage bias, and chromatin accessibility in a 

celltype specific manner within bone marrow cells. These features are variably modifed across 

individuals, and have significant power to predict IL1β secretion from donor paired PBMCs in 

response to a heterologous C. albicans challenge. These data support the hypothesis that long-

lasting activation within uncommitted HSCs directly influences the epigenetic landscape of 

downstream progenitors, which enter the circulation as functionally reprogrammed cells (Fig 7).  

Our model suggests that HSCs residing at the top of the differentiation hierarchy act as the 

central drivers of all changes detected downstream. Thus, our data raise critical questions about 

the drivers that maintain the re-wired TF circuits and gene expression programs within HSCs. Do 

small numbers of  bacteria persist three months following BCG vaccination? Or did the initial 

exposure to BCG induce a self-sustained, persistent epigenetic rewiring of HSCs? In support of 

the latter possibility, BCG was not detected in microbiological and molecular tests of the bone 

marrow samples13, suggesting that bacteria are cleared within three months of vaccination, or 

otherwise persist at undetectable levels. Likewise, HSPCs from BCG vaccinated individuals did 

not secrete increased levels of pro-inflammatory cytokines which direct immune activation of 

HSCs is known to induce. Instead, our data suggest that the baseline expression program within 

HSCs is altered by transient exposure to BCG, at least for intermediate (90 day) time scales. 

Future epigenetic analyses aimed at characterizing DNA methylation levels, for example, within 

HSCs could help determine the molecular drivers maintaining differential gene expression 

programs within HSCs.  

Interestingly, the gene expression and chromatin accessibility signatures of BCG vaccination 

appear to affect different populations of progenitor cells. As emphasized above, HSCs harbored 
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rewired myeloid-driving gene expression programs driven by altered transcription factor 

activities, while the resulting downstream myeloid progenitors harbored changes in chromatin 

accessibility, but not large numbers of DR genes. We hypothesize that these changes in 

chromatin accessibility serve as an epigenetic memory signature of altered transcription factor 

activities and binding patterns occurring at the HSC-stage of development that is subsequently 

imparted onto the downstream progeny, even as many of these differential gene expression 

programs are silenced. When performing formal comparisons of baseline (in D0 samples) peak 

accessibility between HSC and CMP, we have found that consistently higher percentages of 

peaks (~25%) have decreased (log2FC < 0; P.adj < 0.1), compared to increased (~11%) 

accessibility in CMP compared to HSC. Likewise, a peak in GMP is more likely to have 

decreased accessibility compared to the same peak within HSC (33.6% with significant reduction 

in accessibility compared to 17.7% of peaks with a significant increase), suggesting that 

quantitative losses in peak accessibility are a general feature of hematopoietic differentiation. It 

is likely that, as HSCs differentiate into the myeloid lineage, the gene expression programs 

regulated by these now closed regions of accessibility are also lost, allowing myeloid progenitors 

to retain only select differential gene expression programs such as those affecting TNF, NFκB, 

and oxidative phosphorylation programs. The differential accessibility landscape within these 

progenitors then may largely reflect the incomplete closing of peaks around the binding sites of 

TFs that were differentially active within upstream HSCs, leading to memory-like signatures. 

Future work involving direct investigations into TF binding through ChIP-like approaches within 

HSCs and the myeloid progenitors derived from them will be critical for further investigating 

this model.  
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Finally, this study represents the first single cell analysis to directly show that immune induced 

changes to both chromatin accessibility and differential gene expression patterns within human 

bone marrow are directly predictive of functional responses in the periphery. These findings 

demonstrate the systemic nature by which vaccines impact the immune system and highlight the 

fact that human vaccination with live attenuated vaccines can have lasting impacts not only on 

adaptive lymphocytes, but also on central compartments such as the bone marrow for at least 

three months. Ultimately, our data suggest that the impact of BCG on the bone marrow is very 

complex due to 1) high levels of HSPC heterogeneity, including at baseline conditions, and 2) 

the dynamic nature of continuous cell differentiation that continues to take place even as HSPCs 

are responding to the vaccine. We suggest future work consider lineage tracing to directly 

examine the inheritance of gene regulatory marks from stem to progenitor cells. More broadly, 

we hope that more work will focus on understanding the durability of central stem cell 

reprogramming, the types of pathogens against which this phenomenon might be protective, the 

inter-individual factors that dictate differences in HSPC responsiveness to BCG vaccination 

between individuals, and how, or whether, the unique sequences of infectious and immune 

challenges encountered by humans over the course of a lifetime may imprint unique HSPC 

memory fingerprints reflected within the innate immune cell compartment.  
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MAIN FIGURE LEGENDS 

Figure 1. Multimodal analysis of human bone marrow cells. (A) Overview schematic of 

experimental timeline and samples collected in a clinical trial setting for BCG vaccination, 20 

total donors on BCG (n=15) or placebo (n=5). Bone marrow aspirates and PBMCs were 

collected from all patients at D0 prior to vaccination and D90 (90 days after BCG or placebo). 

Cryopreserved bone marrow samples were stained with a cocktail of lineage and HSPC-specific 

antibodies to enable flow cytometric analysis of cellular composition as well as simultaneous 

sorting of all CD34+ cells. Sorted CD34+ cells were immediately processed for scRNA-seq and 

scATAC-seq according to the respective 10X genomics protocols. (B) Revised model of 

hematopoiesis in which the developmental process is a continuum, as recent findings indicate 

that only a small fraction of HSC generate an equal outcome for all blood mature cell lines, while 

most HSC exhibit a differentiation bias toward one lineage. (C) PHATE of the scRNA-seq data 

collected from bone marrow CD34+ HSPCs of BCG and placebo vaccinated individuals at D0 

and D90. Cells were grouped into 13 non-overlapping clusters based on gene expression: HSC 

c1 (n=9637), HSC c2 (n=10953), CMP c1 (n=9174), CMP c2 (n=14918), CMP c3 (n=1715), 

GMP c1 (n=6631), GMP c2 (n=6423), MEP c1 (n=8871), MEP c2 (n=5439), MEP c3 (n=3811), 

MLP c1 (n=5153), MLP c2 (n=3837), PreBNK (n=3371). Marker gene colored PHATE plots by 

expression levels of lineage defining genes (from left to right) GATA1, GATA2, SPIB, DNTT, 

MPO. 

 

Figure 2. BCG vaccination has a long-term impact on gene expression within HSPC 

populations. (A) PHATE of the scRNA-seq data collected from bone marrow CD34+ HSPCs of 

BCG and placebo vaccinated individuals at D0 and D90. (B) Bar graphs summarizing the total 
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number of significant genes (lfsr<0.01) in each cell type. Blue and red shading indicate the 

number of genes whose expression was impacted negatively and positively, respectively, by 

BCG vaccination compared to placebo. (C) Summary plot of gene set enrichment analysis 

(GSEA) performed separately for each cell type. Genes were ordered by the rank statistic –

log10(pval)*logFC and compared against Hallmark gene sets. Circle size is scaled to –

log10(padj). All shown circles are pathways with p<=0.05. All circles with border have 

padj<=0.1 (D) Second-round clustering was performed on HSC c1 and HSC c2 (E) HSC 

subgroups after second round clustering of HSC c1 and HSC c2 cells. (F) HSC subclusters 

colored by CD90/CD49f/CD45RA (average z-score across the three genes). Darker shading 

indicates a higher score. (G-I). UMAPs of select Hallmark pathways. Shading of each subcluster 

is scaled to –log10(padj) enrichment of the pathway within the cluster. 

 

Figure 3. BCG vaccination results in lineage bias of HSCs. (A) Schematic of the experimental 

question. (B) Model of hematopoiesis showing possible terminal fates used in the Cellrank 

model. (C) Absolute percentages of CMP c2 biased HSCs for each donor at D90 (p=0.018). (D) 

Terminal fates of individual HSCs from BCG and placebo vaccinated individuals were predicted 

with CellRank for each donor. PHATE maps show HSCs from placebo individuals (top) or 

BCG-vaccinated individuals (bottom) colored by predicted terminal fate (green: CMPs/GMPs, 

blue: MLPs/PreBNK, orange: MEPs). (E) Percent CMPs in the bone marrow of 90 days post 

BCG (pink) compared to placebo (blue), Mann Whitney p = 0.026. (F) Bar graphs showing the 

percentage of each cell type among live CD34+ HSPCs at D90 as determined by flow cytometry 

analysis. CLP p = 0.026, MLP p = 0.075, MPP p = 0.095. (G) D90 vs. D0 Log2FC expression of 

CEBPB (lfsr =  0.1), KLF6 (lfsr = 0.001), MAPK14 (lfsr = 0.03) 
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Figure 4. BCG vaccination impacts the chromatin accessibility of immune progenitors. (A) 

UMAP of the scATAC-seq data collected from bone marrow CD34+ HSPCs of BCG or placebo 

vaccinated individuals at D0 or D90. Clustering based on chromatin accessibility grouped cells 

into 16 clusters: CMP1 (n=5041), CMP2 (n=2942), HSC1 (n=5750), HSC2 (n=5052), MEP1 

(n=4436), PreBNK (n=1876), GMP1 (n=3798), CLP (n=2146), MEP2 (n=2653), MEP3 

(n=3886), CMP3 (n=1458), MEP4 (n=2230), CMP4 (n=1952), CMP5 (n=5590), GMP2 (n=962), 

GMP3 (n=2806). (B) UMAPs colored by gene activity scores of lineage-defining genes (IRF8 – 

DC; GATA1 – MEP; PAX5 – lymphoid; MPO – granulocytic/myeloid). Gene scores are 

indicative of the degree of chromatin accessibility within a 100 kb window on either side of the 

gene body (dark = lo, bright yellow = hi). (C) The total number of significant peaks (FDR<0.1) 

for each cluster. Blue and red bars indicate peaks whose accessibility was impacted negatively 

and positively, respectively, by BCG vaccination compared to placebo. 

 

Figure 5. Changes in chromatin accessibility in downstream myeloid progenitors are 

coupled to TF-driven rewiring of HSCs. (A) Top transcription factor motif enrichments for 

broad cluster groups. Circle color is scaled to –log10(FDR). TFs shown with a circle have FDR 

< 0.001 and are present in at least 15% of DR peaks in at least one cell type. Areas with no circle 

indicate an enrichment with FDR >= 0.001. TFs highlighted in teal color also serve as gene 

expression drivers within HSCs (B-C). GSEA enrichment plots showing the enrichment of DA-

peak associated motifs of GMP (B) and CMP (C) within TFs that exhibit differential activity in 

HSCs following BCG vaccination. 
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Figure 6. BCG-induced differential chromatin accessibility within myeloid-like HSPCs 

predicts increased IL1β secretion by PBMCs. (A) DA peaks within each cluster were assigned 

to the gene with the closest TSS. Gene ontology enrichment analysis was performed for 

reactome pathways using all peak associated genes as background and genes associated with DR 

peaks as foreground. Plot circle size and shading darkness are both scaled to –log10(p-value) of 

enrichment. (B) Results of the elastic net regression. The scatterplot shows real IL1B FC (D90 

vs. D0) for each donor on the x-axis and predicted values from the model trained using DA peaks 

in CMP5 on the y-axis (Spearman rho = 0.761, p = 0.001). (C) Results of the elastic net 

regression using gene expression data for HSCs. The scatterplot shows real IL1B FC (D90 vs. 

D0) for each donor on the x-axis and predicted values from the model on the y-axis (Spearman 

rho = 0.837, p = 1x10-4). (D) Quantification of the total number of DR genes in HSCs with 

significant spearman correlations with fold change IL1B secretion for each cytokine tested. (E-

F) Spearman correlations between log2FC expression levels of the transcription factors KLF6 

(Spearman rho = 0.86) and FOS (Spearman rho = 0.83) and fold change IL1B secretion between 

D0 (before) and D90 (3 months-post BCG vaccination). (G-H) Example scatter plots correlating 

TF activity (regulon) scores in HSCs with fold change IL1B in PBMCs for KLF5 (spearman rho 

= 0.71, p = 0.0033) and EGR1 (spearman rho = 0.71, p = 0.0029). (I) Plot correlating the fold 

change IL1B secretion between D0 (before) and D90 in PBMCs with the △CMP lineage bias 

(percent HSCs biased towards CMPs (CMP c1, c2, or c3) at D90 vs. D0) for each individual 

(Spearman rho = 0.63, p = 0.01).  

 

Figure 7. Summary Figure. BCG vaccination rewires TF activity and gene expression within 

HSCs for at least 3 months. Progenitors deriving from these HSCs harbor changes in chromatin 
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accessibility at thousands of sites. These sites are predicted to serve as binding sites for TFs with 

altered activity within HSCs. Multiple features within the bone marrow, including the magnitude 

of differential gene expression change within HSCs, TF activity, myeloid bias, and chromatin 

accessibility changes within CMPs are predictive of changes in IL1B cytokine section by donor-

paired PBMCs. 

 

EXPERIMENTAL MODEL AND SUBJECT DETAILS 
 

Bone marrow aspirate staining, sorting, and sample collection 

The study enrolled twenty BCG-naive volunteers, both male and female, aged between 18 and 50 

years, as described in13. These participants were healthy, with no active infections, no signs of 

inflammation, and a negative Quantiferon-TB Gold test result. They were randomly divided into 

two groups: 15 participants were administered a standard dose (0.1ml) of intradermal BCG 

vaccine (BCG Bulgaria, Intervax), while the remaining 5 received 0.1ml of a placebo vaccine 

diluent. The trial was approved by the Arnhem-Nijmegen Ethical Committee (approval number 

NL55825.091.15). Cryopreserved bone marrow aspirates were processed, following the steps 

detailed below, on 7 separate days/batches, each batch containing 1) males and females and 2) 

samples collected on both D0 and D90. Five out of the seven batches contained samples from 

both placebo and BCG vaccinated cohorts (two contained only BCG cohort samples when there 

were no remaining controls).  

Initial thawing and incubation: Cryopreserved samples were thawed and cultured in RPMI 1640 

(Fisher) supplemented with 10% fetal bovine serum (Corning), 2 mM L-glutamine (Fisher), 2% 

HEPES (Thermo Fisher Scientific), 1% non-essential amino acids (Thermo Fisher Scientific), 

1% essential amino acids (Thermo Fisher Scientific), 0.14% 5N NaOH, 1mM sodium pyruvate 
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(Thermo Fisher Scientific), 100U/ml penicillin (Thermo Fisher Scientific), and 100μg/ml 

streptomycin (Thermo Fisher Scientific) for 2 hours. After incubation, samples were washed 

with PBS, passed through a 100 µm filter, and counted.  

Antibody staining: To prepare samples for flow cytometry analysis and sorting, cells were 

incubated with 1:50 Live/dead fixable blue (Invitrogen) at a final cell concentration of 1M 

cells/100 µL for 20 mins (on ice). Samples were washed with 1% BSA (Miltenyi Biotec) in PBS 

(used for all further washing and staining steps) and resuspended in F/C block solution (BD 

Biosciences) for 10 minutes. Cells were washed and resuspended in a cocktail of antibodies 

targeting mature and stem/progenitor cell surface markers (See Table 1) for a final cell 

concentration of 1M cells per 100 µL. After 30 minutes on ice, cells were washed, resuspended, 

and passed through a 70 um Flowmi cell strainer (Fisher) immediately prior to sorting.  

Sorting: Sorting was performed on a Symphony S6 cell sorter in the UChicago Human Disease 

and Immune Discovery core (HDID) using a 100 µm nozzle. For any given batch, samples 

collected from the same donor were sorted sequentially alternating between starting timepoints 

(for example, batch1: S1 D0, S1 D90, S2 D0, S2 D90; batch 2: S3 D90, S3 D0, S4 D90, S4 D0). 

Following sorting, CD34+ cells were washed in 1% BSA in PBS, counted, and then processed 

for single cell RNA and ATAC captures are described below:  

Single cell RNA capture: Immediately prior to capture, samples were combined into two pools (2 

or 3 samples per pool). Multiplexed cell pools were used as input for the single cell captures. For 

pools containing 2 or 3 samples, 6600 cells or 10,000 cells respectively were targeted for 

collection using the Chromium Single Cell 3’ Reagent (v3.1 chemistry) kit (10X Genomics). 

Post Gel Bead-in-Emulsion (GEM) generation, the reverse transcription (RT) reaction was 
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performed in a thermal cycler as described (53°C for 45 min, 85°C for 5 min), and post-RT 

products were stored at -20°C until downstream processing. 

Single cell ATAC capture: Leftover cells in each pool not used for single cell RNA capture were 

lysed for 3 minutes to isolate nuclei, transposed, and used as input for the single cell ATAC 

captures. Variable numbers of nuclei (ranging from 2,026 to 9,085, depending on the number of 

leftover cells) were targeted for collection using the Chromium Next GEM Single Cell ATAC 

Reagent (v1.1 chemistry) kit (10X Genomics). Post Gel Bead-in-Emulsion (GEM) generation, 

the GEMs were incubated in a thermal cycler as described (72°C for 5 min, 98°C for 30 sec, 12 

cycles of 98°C for 10 sec, 59°C for 30 sec and then 72°C for 1 min), and post-incubation 

products were stored at -20°C until downstream processing. 

Bulk CD34- processing: Total RNA was extracted from the sorted CD34- cell fraction of each 

sample using the miRNeasy Micro kit (Qiagen) or miRNeasy Mini kit (Qiagen). RNA-

sequencing libraries were prepared using the Illumina TruSeq protocol. Indexed cDNA libraries 

were pooled in equimolar amounts and sequenced single-end 100 bp reads on an Illumina 

NovaSeq. 

Single cell library preparation and sequencing 

Single cell RNA libraries: Post-RT reaction cleanup, cDNA amplification, and sequencing 

library preparation were performed as described in the Single Cell 3’ Reagent Kits v3.1 User 

Guide (10X Genomics). Briefly, cDNA was cleaned with DynaBeads MyOne SILANE beads 

(ThermoFisher Scientific) and amplified in a thermal cycler using the following program: 98°C 

for 3 min, 11 cycles x 98°C for 15 s, 63°C for 20 s, 72°C for 1 min, and 72°C 1 min. After 

cleanup with the SPRIselect reagent kit (Beckman Coulter), the libraries were constructed by 

performing the following steps: fragmentation, end-repair, A-tailing, SPRIselect cleanup, adaptor 
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ligation, SPRIselect cleanup, sample index PCR (98°C for 45 s, between 11 and 13 cycles x 

98°C for 20 s, 54°C for 30 s, 72°C for 20 s, and 72°C 1 min), and SPRIselect size selection. Prior 

to sequencing, all multiplexed single-cell libraries were quantified using the KAPA Library 

Quantification Kit for Illumina Platforms (Roche) and pooled in an equimolar ratio. Libraries 

were sequenced 100 base pair (read1: 28, i7: 10, i5: 10, read2: 90) on an Illumina NovaSeq. 

Single cell ATAC libraries: Post GEM incubation cleanup and sequencing library preparation 

were performed as described in the Single Cell ATAC Reagent Kits v1.1 User Guide (10X 

Genomics). Briefly, post-incubation GEMs were cleaned up first with DynaBeads MyOne 

SILANE beads (ThermoFisher Scientific) and then with SPRIselect reagent (Beckman Coulter). 

Libraries were constructed by performing sample index PCR (98°C for 45 s, 9 or 10 cycles of 

98°C for 20 s, 67°C for 30 s, 72°C for 20 s, and 72°C 1 min) followed by SPRIselect size 

selection. Prior to sequencing, all multiplexed single-cell libraries were quantified using the 

KAPA Library Quantification Kit for Illumina Platforms (Roche) and pooled in an equimolar 

ratio. Libraries were sequenced 100 base pair (read1: 50, i7: 8, i5: 16, read2: 50) on an Illumina 

NovaSeq. 

 

QUANTIFICATION AND STATISTICAL ANALYSIS 
 

Mapping, demultiplexing, and cell filtering  

Single-cell RNA-seq data: FASTQ files from each multiplexed capture (n=14) were mapped to 

the GRCh38-2020-A-2.0.0 human reference genome using cellranger (v6.0.2) (10X Genomics). 

Demuxlet34 was used to demultiplex each capture into its constituent samples based on 

genotypes in a common VCF file containing genotype (GT) and genotype likelihood (PL) for 

each individual. Demuxlet implements a statistical model to determine the likelihood of RNA-
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seq reads from any given single cell to map to a set of single nucleotide polymorphisms, 

therefore leveraging natural genetic variation to differentiate between samples from different 

individuals. Following demultiplexing, the Seurat (v3.2.3 Rv4.1.0) pipeline was used to retain 

only high-quality cells based on the following criteria: “singlet” as determined by Demuxlet 

(“doublets” and “ambiguous” cells removed), percent mitochondrial reads < 15%, and RNA read 

count (nCount_RNA) > 500. Out of the initial 115,698 cells captured across all batches, 92,014 

were retained as high-quality singlets.  

Single-cell ATAC-seq data: FASTQ files from each multiplexed capture (n=14) were mapped to 

the GRCh38-2020-A-2.0.0 human reference genome using cellranger-atac (v2.0.0) (10X 

Genomics). Demuxlet34 was used to demultiplex each capture into its constituent samples as 

described above using the same common VCF file. Following demultiplexing, we used the 

ArchR (v1.0.1, ArchRGenome: hg38) pipeline to filter the data, retaining only high-quality cells. 

Cell filtering and the creation of ArrowFiles was performed in a single step using the 

createArrowFiles function on cells with “singlet” demuxlet status and using parameters minTSS  

= 4 and minFrags  = 1000 to further retain only cells with a sufficient signal to background ratio 

(high accessibility at transcription start sites) and at least 1000 unique nuclear fragments. Across 

all batches, 58,988 cells were retained as high-quality singlets. 

Clustering, cell type assignments, and UMAP analysis 

scRNA-seq data: Following quality-control filtering, we split cells first by timepoint giving rise 

to two groups of cells: Td0 (from D0 samples, n=42,493) and Tm3 (from D90 samples, 

n=49,521). Since individuals received either the BCG vaccine or placebo, we further split Tm3 

cells into two subgroups: BCG (n=37,999) or CTL (n=11,522) – leading to 3 final groups of 

cells: Td0, Tm3_BCG, and Tm3_CTL. We ran the function SCTransform separately for each 
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group to normalize and scale UMI counts, to identify the most variable features, and to regress 

out variables corresponding to percent mitochondrial reads or capture. We then integrated the 

transformed data using the following Seurat functions: SelectIntegrationFeatures 

(nfeatures=3000), PrepSCTIntegration, FindintegrationAnchors, and IntegrateData. To perform 

dimensionality reduction downstream of integration we used the functions RunPCA (npcs=30), 

RunUMAP (dims=1:30), FindNeighbors (dims=1:20), and FindClusters (resolution=0.5). This 

resulted in 23 preliminary clusters. 

To annotate the clusters according to HSPC cell type, we used the FindTransferAnchors function 

(dims = 1:30, reference.reduction = "pca", reference.assay = "SCT", query.assay = "integrated") 

to map our integrated scRNA-seq data onto a pre-labelled human bone marrow reference dataset 

(thawed, stained, sorted, and processed for scRNA-seq as described above) we previously 

annotated using CellID35.  

scATAC-seq data: Following quality-control filtering and creation of arrow files for each sample, 

we combined all arrow files into a ArchRProject used in all downstream processing steps. 

Dimensionality reduction, batch effect correction, clustering, and UMAP visualization were 

performed using the following functions of the ArchR pipeline: addIterativeLSI (with 

parameters: iterations = 2, resolution = c(0,2), sampleCells = 10000, n.start = 10, varFeatures = 

25000, dimsToUse = 1:30), addHarmony, addClusters (resolution=0.8, reducedDims=Harmony), 

and addUMAP (nNeighbors = 30, minDist = 0.5, metric = “cosine”). To annotate clusters 

according to HSPC cell type matching those in the scRNA-seq data, we first performed an 

unconstrained integration using the addGeneIntegrationMatrix function to broadly map each 

scATAC cluster to a cell type within our scRNA-seq data. Using this approach, we made the 

following preliminary assignments: 
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scATAC clusters "C5", "C6", "C19", "C8" � “HSC”  

scATAC clusters "C22", "C17", "C2", "C4", "C3", "C1", "C21", "C16" � “CMP” 

scATAC clusters "C10", "C23", "C24" � “GMP” 

scATAC clusters "C7", "C14", "C15", "C18" � “MEP” 

scATAC clusters "C12", "C13" � “MLP” 

scATAC clusters "C11", "C9" � “PreBNK” 

scATAC cluster “C20” � “unknown” 

To generate more detailed cluster mappings (i.e., separating “HSCs” into “HSC c1” or “HSC 

c2”) we then performed a second-round constrained integration by rerunning 

addGeneIntegrationMatrix with the newly defined broad group labels, leading to the following 

final cluster assignments (annotated as: raw scATAC cluster name/scRNAseq equivalent): 

C1/CMP c1, C2/CMP c1, C3/CMP c2, C4/CMP c1, C5/HSC c2, C6/HSC c1, C7/MEP c1, 

C8/HSC c2, C9/PreBNK, C10/GMP c2, C11/PreBNK, C12/MLP c2, C13/MLP c2, C14/MEP 

c1, C15/MEP c3, C16/CMP c1, C17/CMP c3, C18/MEP c3, C19/HSC c2, C20/unknown1, 

C21/CMP c2, C22/CMP c2, C23/GMP c1, C24/GMP c1  

Following exclusion of ‘unknown’ clusters, or clusters for which there were more than 12 

samples filtered (see below) the following final cluster names were used downstream of the 

differential accessibility analysis (below): 

C3 -> CMP1, C4 -> CMP2, C5 -> HSC1, C6 -> HSC2, C7 -> MEP1, C9 -> PreBNK, C10 -> 

GMP1, C12 -> MLP, C14 -> MEP2, C15 -> MEP3, C17 -> CMP3, C18 -> MEP4, C21 -> 

CMP4, C22 -> CMP5, C23 -> GMP2, C24 -> GMP3 

scATAC-seq Peak calling 
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We called peaks using the ArchR function addReproduciblePeakSet which utilizes MACS236,37 

to call cluster-specific peaks using pseudo-replicates, and then creates a merged peak set using 

iterative overlap peak merging. For peak calling we used the initial raw, unprocessed alignment 

data but with added cell type labels derived as described above.  

Pseudobulk estimates 

For downstream analyses of scRNA-seq data we summarized single cell expression into 

pseudobulk estimates for each sample (each unique donor-timepoint pair), allowing a bulk 

RNAseq-like approach to investigating effects of BCG vaccination on human bone marrow for 

each cell type. For each of the final 13 unique clusters with a defined cell type label (HSC c1, 

HSC c2, CMP c1, CMP c2, CMP c3, GMP c1, GMP c2, MEP c1, MEP c2, MEP c3, MLP c1, 

MLP c2, and PreBNK) we summed raw UMI counts belonging to all cells from the same sample 

using the sparse_Sums function in textTinyR (v1.1.4). Thus, for each cluster we converted an 

initial cell by gene (n x m) matrix to a sample by gene (s x m) matrix. 

For scATAC-seq data, we summarized single cell peak counts into pseudobulk estimates as 

described above, only using called peaks instead of genes. As described above, we summed raw 

peak counts belonging to all cells from the same sample using the sparse_Sums function in 

textTinyR separately for all clusters (n=24). Thus, for each cluster we converted an initial cell by 

peak (n x p) matrix to a sample by peak (s x p) matrix. 

Modelling effect of BCG on gene expression and integration with mashr 

Data filtering/normalization/transformation 

Gene expression data: For each cell type, we analyzed pseudobulk gene expression as if it were 

bulk-RNA sequencing expression data. We first removed any samples for which there were 

fewer than 20 cells, and any samples for which there was not a matching Td0 or Tm3 timepoint 
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(retaining only paired samples). Lowly expressed genes were filtered by removing all genes for 

which the median logCPM values calculated for samples in each condition (Td0 CTL, Tm3 CTL, 

Td0 BCG, Tm3 BCG) were all below 1. Then, we normalized gene expression counts across all 

samples using the calcNormFactors function implemented in the edgeR R package (version 

3.34.1) which utilizes the TMM algorithm (weighted trimmed mean of M-values) to compute 

normalization factors, and we log-transformed the data using the voom function from the limma 

package. 

Peak accessibility data: Similarly for peak accessibility data, we analyzed each pseudobulk peak 

count matrix as if it were bulk-ATAC sequencing data. Data was filtered by removing samples 

with fewer than 20 cells and any samples for which there was not a matching Td0 or Tm3 

timepoint. We filtered out low-count peaks for which the median logCPM values calculated for 

samples in each condition (Td0 CTL, Tm3 CTL, Td0 BCG, Tm3 BCG) were all below a cell-

type specific threshold (1.25 for C12 and C15, 1.75 for C9 and C18, 2 for C23, 2.25 for C21, 2.5 

for C17, and 1 for all other clusters). Custom thresholds were chosen as we found betas to be 

positively or negatively skewed when binned by expression level prior to filtering, and that 

different thresholds for filtering out lowly expressed peaks were required to center these beta 

distributions. Finally, we normalized peak counts across all samples using the calcNormFactors 

function in edgeR, and log-transformed the data using the voom function in limma.  

Model fitting 

We wanted to investigate the 90-day impact of BCG vaccination on gene expression and peak 

accessibility in human bone marrow by comparing expression/accessibility levels from 

vaccinated individuals at day 90 (after vaccination) and day 0 (prior to vaccination). However, 

expression and peak accessibility measurements can naturally change across time, independent 
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of whether the individual received the BCG vaccine or only a placebo. Moreover, although 

individuals assigned to the placebo or BCG cohorts were matched for age, sex, and lack of 

previous BCG exposure there could be random preexisting baseline differences when comparing 

the cohorts. To correct for these effects, we independently fit scRNA and scATAC pseudobulk 

data to a mixed model to estimate the impact of time and cohort assignment on 

expression/accessibility while also giving an estimate of the independent contribution of BCG-

vaccination to changes in expression/accessibility at day 90.  

Separately, for each feature (genes or peaks) and each cell type, we fit the following model: 

 

��: ���, �� ~ 
��
 ����� � �� �  ���, �� �� ��������� � ������� ��  0
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����� �  ������ �  ����_��	�
���� � ��������������� �   �� �  ���, ��  �� ��������� � "�# ��  90
% 

 

Where E(i,j) represents the estimate for each feature i and sample j. E(i,j) is modelled as a 

function of the fixed effects, β0, βD90, βBCG_cohort, and βvaccination, and the random effects Zu. β0(i) 

represents the intercept for the feature i, βD90(i) is the natural effect of time on feature i, 

βBCG_cohort(i) represents pre-existing baseline differences in feature i between the control and 

BCG cohorts, and βvaccination(i) represents the effect of BCG vaccination on feature i at D90. The 

vector u is an mx1 vector of random effects to control for individual donor differences where m 

is the number of unique donors (m=X; m=j/2). Z is an incidence matrix of 1’s and 0’s that maps 

each sample j to one of m individuals. The model was fit using the R package EMMREML. 

Mashr 

To increase our power to detect BCG-responsive genes shared or unique to each cell type, we 

applied Multivariate Adaptive Shrinkage in R (mashr version 0.2.57) to outputs from emmreml 
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for scRNA-seq data. We did not apply mashr to scATAC data because peaks accessible enough 

to pass initial filtering steps are highly cell type specific, decreasing the utility of mashr in this 

context. For scRNA data, effect sizes were obtained by extracting the betas (βvaccination) for each 

cell type and the standard error of the effect size for each gene was given by taking the square 

root of varbeta estimates from emmreml.  Effect sizes and standard errors for each cell type were 

arranged into n x m matrices, n being the number of genes and m being the number of cell types. 

We then fit the mash model using canonical and data driven covariance matrices and then 

stringently defined significant genes as those with an lfsr < 0.01. 

HSC scRNA-seq subcluster analysis 

HSC subcluster analysis was performed by including only cells labelled as HSC c1 and HSC c2 

and applying the clustering, pseudobulk, modelling, and mashR steps outlined above. 

MPP score 

Calculation of the MPP score was based on known differences in the expression of CD90, 

CD49f, and CD45RA between MPPs and LT/ST-HSCs. To calculate the score, we first obtained 

mean expression values for each of the three genes across single cells for each HSC subcluster. 

The unprocessed mean values were centered and scaled using the scale function in R to 

normalize all values to a mean=0 and standard deviation of 1. Scaled scores for each individual 

gene were averaged to generate the final composite score. 

Velocyto, Cellrank, and terminal state prediction 

We used velocyto38 followed by the CellRank39 pipeline to determine single cell RNA-velocity 

measurements and to predict the terminal lineage fate of HSCs from each sample.  

We first used the velocyto run10x command to quantify spliced and unspliced read counts 

(which are required downstream in the pipeline to estimate RNA velocities) for each gene within 
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every cell of our scRNA-seq dataset. Then, separately for cells of each unique donor-timepoint 

sample, we ran the CellRank39 pipeline in python to predict terminal fates of individual HSCs 

within each sample. Briefly, for each sample, we first removed genes with very low 

spliced/unspliced mRNA counts, normalized and log-transformed the data, subset on only the 

top-most variable genes, and computed principal components and moments for velocity 

estimation using the following CellRank functions: scv.pp.filter_and_normalize (with parameters 

min_shared_counts=20 and n_top_genes=2000), sc.tl.pca, sc.pp.neighbors (with parameters 

n_pcs=30 and n_neighbors=30), and scv.pp.moments (with parameters n_pcs=None and 

n_neighbors=None). Next, we used dynamical modelling to estimate RNA velocities for each 

single cell using the function scv.tl.recover_dynamics and computed a velocity graph indicating 

the likelihood that one cell will transition into another based on their RNA velocities and relative 

positions using scv.tl.velocity(mode="dynamical") and scv.tl.velocity_graph. Visualization of 

these velocity graphs was performed with the function scv.pl.velocity_embedding_stream.  

We then used a velocity Kernel to formally predict the terminal lineage fate of each HSC for 

each sample. We first used the commands VelocityKernel and vk.compute_transition_matrix on 

the single cell data, pre-processed as described above, to compute a cell-cell transition matrix 

based on RNA velocity. We combined this velocity kernel with a connectivity kernel to create a 

less noisy combined kernel (combined_kernel = 0.8 * vk + 0.2 * ck). Using a GPCCA 

(Generalized Perron Cluster Analysis) estimator, we computed a schur decomposition with 

g.compute_schur(n_components=20). Finally, we pre-defined all possible terminal states using 

g.set_terminal_states (with possible states: MLP c1, MLP c2, GMP c1, GMP c2, MEP c1, MEP 

c2, MEP c3, CMP c1, CMP c2, CMP c3, PreBNK) and then calculated the terminal state 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 28, 2023. ; https://doi.org/10.1101/2023.11.28.569076doi: bioRxiv preprint 

https://doi.org/10.1101/2023.11.28.569076
http://creativecommons.org/licenses/by-nc-nd/4.0/


 35

probabilities for each HSC using g.compute_absorption_probabilities(use_petsc=True, n_jobs=5, 

solver='gmres'). 

To compare terminal state differentiation probabilities across time for any given donor we 

labelled each single HSC with the terminal state towards which it had the greatest differentiation 

probability. For each donor (excluding donors with fewer than 20 total HSCs) we then computed 

the percentage of HSCs at day 0 and day 90 having maximal differential probability towards 

each terminal state and computed the difference across time (%day90 - %day0), leading to a 

“differentiation-shift” score for each possible terminal state, for each donor. For statistical 

comparisons of differentiation-shift scores of BCG and placebo groups we used a Wilcoxon test. 

scHINT motif enrichment  

Preprocessing: Transcription factor motif enrichments and foot printing were performed using 

HINT-ATAC from the Regulatory Genomics Toolbox. Raw bam files for each 10X capture were 

split by vaccination cohort, timepoint, and assigned cell type using samtools (v1.9) view. We 

focused on comparing BCG samples at D0 and D90, so only BCG samples (i.e., BCG_D0_HSC, 

BCG_D90_HSC, BCG_D0_CMP, BCG_D90_CMP, …) were processed further. Matching bam 

files from each capture were merged using samtools merge to generate BCG D0 and BCG D90 

merged bam files for HSCs, CMPs, GMPs, MEPs, MLPs, and PreBNK (12 total files) for 

downstream foot printing and motif analyses. 

Motif enrichment: To determine which motifs were present within DR peaks we performed rgt-

motifanalysis matching on DR peaks using the JASPAR CORE Vertebrates set of curated 

position frequency matrices to determine whether specific motifs were significantly enriched we 

used the rgt-motifanalysis enrichment function with cluster-specific DR peaks as the foreground 

and the shared total peak set as the background for all clusters.  
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Foot printing: To predict the locations of transcription factor footprints we ran the rgt-hint 

footprinting function with parameters --atac-seq --paired-end --organism=hg38 on all peaks for 

each merged bam file generated in the preprocessing step. To predict which transcription factors 

were likely bound at each predicted footprint, we used the rgt-motifanalysis matching function to 

find motifs present within footprints.  

Assigning DA peaks to genes and GO enrichment 

To investigate which genes were located closest to differentially regulated peaks, we assigned 

each DR peak to the gene with the closest TSS using the Homer40 function annotatePeaks with 

default parameters. This peak-gene association was performed separately for DR peaks within 

CMPs, GMPs, HSCs, MEPs, MLPs, and PreBNK clusters. To determine whether specific 

pathways were enriched among genes closest to DA peaks we specified the parameter -GO when 

running the annotatePeaks function which outputs peak-gene assignments and gene ontology 

enrichments using DA peaks as foreground peaks and a total peak set (common to all clusters) as 

background. Output gene ontology enrichment p-values were corrected with the p.adjust 

function in R. 

Regulon analysis 

We used pySCENIC30, the python implementation of the SCENIC29 pipeline, to predict 

transcription factor activity levels within each cluster. Briefly, we first created a loom file for 

each cluster for which the analysis was to be performed using the build_loom function 

implemented in the SCopeLoomR package. Then we used the pyscenic grn function on the loom 

object to derive co-expression modules from the single cell expression data. Next, the pyscenic 

ctx function was run with default parameters to search for transcription factor motifs at promoter 

regions among members of each co-expression module and to trim targets lacking the target 
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transcription factor motifs. Finally, pyscenic aucell was used to generate an activity score for 

each pruned co-expression module for every cell.  

To compare transcription factor module activity scores across different conditions, we averaged 

activity scores for all cells belonging to the same sample to generate average TF activity scores 

per donor per timepoint. For each donor, we computed the Tm3/Td0 activity score ratio to 

compute the fold change in activity score across time. Then we compared Tm3/Td0 activity 

scores between donors of the placebo versus BCG cohorts and used the Wilcoxon rank sum test 

to derive a p-value.   

Definition of driver TFs 

We defined “driver TFs” as transcription factors with evidence of changes in activity score (p < 

0.05, see ‘Regulon analysis’ above) and/or TFs whose encoding gene was differentially 

expressed (lfsr < 0.1) in the scRNA-seq analysis (see above). 

Gene set enrichment analysis 

Gene set enrichment analyses (GSEA) were performed using the fgsea R package (version 

1.18.0) with parameters: maxSize  = 500, nperm=100000. To investigate biological pathway 

enrichments among BCG-responsive genes, we ordered genes by the rank statistic: -

log10(lfsr)*PM where lfsr and PM (posterior mean) were output from running mashr as 

described above. The rank-ordered gene list was compared with the Hallmark gene sets from the 

MSigDB collections. 

To investigate enrichment of driver TFs (see ‘Driver TFs’ above) among TF motifs found within 

differentially accessible peaks of downstream progenitors, we ordered motifs by the rank statistic 

perc*-log10(fdr), where perc is the percentage of significant peaks within which the motif is 

found, and fdr is the enrichment of the motif among DA peaks compared to a background of all 
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peaks. For each the progenitor cell type the rank-ordered TF motifs were compared with the list 

of driver TFs identified for HSCs.  

Elastic net regression 

We built an elastic net model using the glmnet R package41 to determine whether the magnitude 

of BCG-induced differential accessibility of peaks within progenitors, or differential gene 

expression in HSCs, was predictive of the log2FC value of cytokine production of PBMCs after 

BCG vaccination. To choose the optimal value of alpha, we tested alphas ranging from 0 to 1 in 

increments of 0.1 and chose the alpha that maximized the R2 value between the elastic net 

predicted IL1B log2FC values, and their experimentally measured values. The regularization 

parameter lambda was chosen to minimize mean-squared error during n-fold internal cross-

validation. 

We used a leave-one-out cross-validation approach to generate predicted IL1B log2FC values for 

each donor. We first separated all samples (each sample corresponding to a donor) into training 

and test samples and quantile normalized the raw log2FC values (BCG vs. placebo) for each 

differentially accessible peak, or differentially expressed gene, within each sample to a standard 

normal distribution. Then, we split the test sample from the training samples, and on the 

remaining training samples, quantile normalized across samples to a standard normal 

distribution. For each peak/gene within the test sample, we compared log2FC differential 

accessibility/expression to the empirical cumulative distribution function for the training 

samples. This allowed us to estimate the quantile into which the peak/gene fell and to assign this 

quantile value using the qnorm function in R.  

Correlations 
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All correlations were performed with the cor.test function in R with parameter method= 

“spearman”. 
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SUPPLEMENTARY FIGURE LEGENDS 

Supplementary Figure 1. BCG vaccination has heterogenous impacts on gene expression 

after 90 days. (A) Schematic showing the general scRNA-seq analysis approach. Raw ‘CELL x 

GENE’ UMI counts generated through the Seurat pipeline were transformed into ‘SAMPLE x 
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GENE’ pseudobulk matrices for each cell-type/cluster. Pseudobulk expression was fit to a linear 

model that estimates and corrects for natural expression changes across time in placebo 

individuals and allows identification of BCG-specific effects on gene expression. (B) Example 

boxplots showing a gene (LINC01128) for which BCG vaccination had a significant differential 

impact on expression compared to placebo and a non-significant gene (AL157893.2) that 

exhibited similar across-time changes in expression in both placebo and BCG vaccinated 

individuals. C- Principal component analysis showing cell types clustered by Hallmark pathway 

enrichment (NES) scores as computed for GSEA in Fig 2C. “Ref” point (gray diamond) is a 

vector of zeros, representing a baseline unaffected state with no enrichment of any pathway. NES 

values for pathways with p>0.05 were set to 0. D- Raw, normalized log2CPM expression levels 

of pro-inflammatory and myeloid-differentiation cytokines (IL1B, TNFA, GM-CSF, IL3, IL6, 

IFNG, G-CSF) in each cluster. E- Dot plot of select enriched hallmark pathways within HSC c1 

and HSC c2 (Fig 2C) The relative enrichment of the pathway (-log10(padj)) was determined for 

each HSC subcluster following within-subcluster differential gene expression analysis and 

GSEA as performed in Fig 2. Enrichment z-score for each pathway was calculated by comparing 

enrichment scores across subclusters. 

 

Supplementary figure 2. The CMP c2 cluster is MPOhi. (A-D) UMAPs colored by expression 

levels of monocyte or granulocyte-associated genes (A. CEBPB; B. CSF3R; C. MPO; D. 

CEBPA). (E) D90 vs. D0 Log2FC expression of IRF1 (lfsr = 0.004) 

 

Supplementary Figure 3. BCG vaccination induces changes in TF activity and gene 

expression. (A) Number of transcription factor regulons with differential activity (p < 0.05) in 

each broad cluster group. (B) Bubble plot showing TFs that are differentially expressed within 
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each cluster from the RNA-seq data. Red indicates higher expression within BCG vaccinated 

individuals and blue indicates decreased expression. 

 

Supplementary Figure 4. DR peaks in GMPs enrich for innate immune pathways. (A) DA 

peaks within each cluster were assigned to the gene with the closest TSS. Gene ontology 

enrichment analysis was performed for biological process pathways using all peak associated 

genes as background and genes associated with DR peaks as foreground. Plot circle size and 

shading darkness are both scaled to – log10(p-value) of enrichment. Pathways related to 

immunity, immune development, and MAPK signaling are outlined in pink. (B-G) Example 

scatter plots correlating TF activity (regulon) scores in HSCs with fold change IL1B in PBMCs 

for B) EGR3 (spearman rho = 0.75, p = 0.0013), C) FOS (spearman rho = 0.7, p = 0.0035), D) 

KLF6 (Spearman Rho = 0.71, p = 0.0033), E) JUN (Spearman Rho = 0.72, p = 0.0023), F) 

KLF10 (Spearman Rho = 0.74, p = 0.0017), and G) CEBPB (Spearman Rho = 0.78, p = 6e- 4). 
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Figure 1. Multimodal analysis of human bone marrow cells. (A) Overview schematic of experimental timeline 
and samples collected in a clinical trial setting for BCG vaccination, 20 total donors on BCG (n=15) or 
placebo (n=5). Bone marrow aspirates and PBMCs were collected from all patients at D0 prior to 
vaccination and D90 (90 days after BCG or placebo). Cryopreserved bone marrow samples were stained 
with a cocktail of lineage and HSPC-specific antibodies to enable flow cytometric analysis of cellular 
composition as well as simultaneous sorting of all CD34+ cells. Sorted CD34+ cells were immediately 
processed for scRNA-seq and scATAC-seq according to the respective 10X genomics protocols. (B) 
Revised model of hematopoiesis in which the developmental process is a continuum, as recent findings 
indicate that only a small fraction of HSC generate an equal outcome for all blood mature cell lines, while 
most HSC exhibit a differentiation bias toward one lineage. (C) PHATE of the scRNA-seq data collected 
from bone marrow CD34+ HSPCs of BCG and placebo vaccinated individuals at D0 and D90. Cells were 
grouped into 13 non-overlapping clusters based on gene expression: HSC c1 (n=9637), HSC c2 (n=10953), 
CMP c1 (n=9174), CMP c2 (n=14918), CMP c3 (n=1715), GMP c1 (n=6631), GMP c2 (n=6423), MEP c1 
(n=8871), MEP c2 (n=5439), MEP c3 (n=3811), MLP c1 (n=5153), MLP c2 (n=3837), PreBNK (n=3371). 
Marker gene colored PHATE plots by expression levels of lineage defining genes (from left to right) GATA1, 
GATA2, SPIB, DNTT, MPO.
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Figure 2. BCG vaccination has a long-term impact on gene expression within HSPC populations. (A) PHATE of 
the scRNA-seq data collected from bone marrow CD34+ HSPCs of BCG and placebo vaccinated individuals 
at D0 and D90. (B) Bar graphs summarizing the total number of significant genes (lfsr<0.01) in each cell type. 
Blue and red shading indicate the number of genes whose expression was impacted negatively and positively, 
respectively, by BCG vaccination compared to placebo. (C) Summary plot of gene set enrichment analysis 
(GSEA) performed separately for each cell type. Genes were ordered by the rank statistic –log10(pval)*logFC 
and compared against Hallmark gene sets. Circle size is scaled to –log10(padj). All shown circles are pathways 
with p<=0.05. All circles with border have padj<=0.1 (D) Second-round clustering was performed on HSC c1 
and HSC c2 (E) HSC subgroups after second round clustering of HSC c1 and HSC c2 cells. (F) HSC 
subclusters colored by CD90/CD49f/CD45RA (average z-score across the three genes). Darker shading 
indicates a higher score. (G-I). UMAPs of select Hallmark pathways. Shading of each subcluster is scaled to –
log10(padj) enrichment of the pathway within the cluster.
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Figure 3. BCG vaccination results in lineage bias of HSCs. (A) Schematic of the experimental question. 
(B) Model of hematopoiesis showing possible terminal fates used in the Cellrank model. (C) Absolute 
percentages of CMP c2 biased HSCs for each donor at D90 (p=0.018). (D) Terminal fates of individual 
HSCs from BCG and placebo vaccinated individuals were predicted with CellRank for each donor. 
PHATE maps show HSCs from placebo individuals (top) or BCG-vaccinated individuals (bottom) colored 
by predicted terminal fate (green: CMPs/GMPs, blue: MLPs/PreBNK, orange: MEPs). (E) Percent CMPs 
in the bone marrow of 90 days post BCG (pink) compared to placebo (blue), Mann Whitney p = 0.026. (F) 
Bar graphs showing the percentage of each cell type among live CD34+ HSPCs at D90 as determined by 
flow cytometry analysis. CLP p = 0.026, MLP p = 0.075, MPP p = 0.095. (G) D90 vs. D0 Log2FC 
expression of CEBPB (lfsr =  0.1), KLF6 (lfsr = 0.001), MAPK14 (lfsr = 0.03)
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Figure 4. BCG vaccination impacts the chromatin accessibility of immune progenitors. (A) UMAP of 
the scATAC-seq data collected from bone marrow CD34+ HSPCs of BCG or placebo vaccinated 
individuals at D0 or D90. Clustering based on chromatin accessibility grouped cells into 16 clusters: 
CMP1 (n=5041), CMP2 (n=2942), HSC1 (n=5750), HSC2 (n=5052), MEP1 (n=4436), PreBNK 
(n=1876), GMP1 (n=3798), CLP (n=2146), MEP2 (n=2653), MEP3 (n=3886), CMP3 (n=1458), MEP4 
(n=2230), CMP4 (n=1952), CMP5 (n=5590), GMP2 (n=962), GMP3 (n=2806). (B) UMAPs colored by 
gene activity scores of lineage-defining genes (IRF8 – DC; GATA1 – MEP; PAX5 – lymphoid; MPO – 
granulocytic/myeloid). Gene scores are indicative of the degree of chromatin accessibility within a 
100 kb window on either side of the gene body (dark = lo, bright yellow = hi). (C) The total number of 
significant peaks (FDR<0.1) for each cluster. Blue and red bars indicate peaks whose accessibility 
was impacted negatively and positively, respectively, by BCG vaccination compared to placebo.
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Figure 5. Changes in chromatin accessibility in downstream myeloid progenitors are coupled to TF-driven 
rewiring of HSCs. (A) Top transcription factor motif enrichments for broad cluster groups. Circle color is 
scaled to –log10(FDR). TFs shown with a circle have FDR < 0.001 and are present in at least 15% of DR 
peaks in at least one cell type. Areas with no circle indicate an enrichment with FDR >= 0.001. TFs 
highlighted in teal color also serve as gene expression drivers within HSCs (B-C). GSEA enrichment plots 
showing the enrichment of DA-peak associated motifs of GMP (B) and CMP (C) within TFs that exhibit 
differential activity in HSCs following BCG vaccination.
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Figure 6. BCG-induced differential chromatin accessibility within myeloid-like HSPCs predicts increased IL1  secretion by 
PBMCs. (A) DA peaks within each cluster were assigned to the gene with the closest TSS. Gene ontology enrichment 
analysis was performed for reactome pathways using all peak associated genes as background and genes associated with 
DR peaks as foreground. Plot circle size and shading darkness are both scaled to –log10(p-value) of enrichment. (B) Results 
of the elastic net regression. The scatterplot shows real IL1B FC (D90 vs. D0) for each donor on the x-axis and predicted 
values from the model trained using DA peaks in CMP5 on the y-axis (Spearman rho = 0.761, p = 0.001). (C) Results of the 
elastic net regression using gene expression data for HSCs. The scatterplot shows real IL1B FC (D90 vs. D0) for each donor 
on the x-axis and predicted values from the model on the y-axis (Spearman rho = 0.837, p = 1x10-4). (D) Quantification of the 
total number of DR genes in HSCs with significant spearman correlations with fold change IL1B secretion for each cytokine 
tested. (E-F) Spearman correlations between log2FC expression levels of the transcription factors KLF6 (Spearman rho = 
0.86) and FOS (Spearman rho = 0.83) and fold change IL1B secretion between D0 (before) and D90 (3 months-post BCG 
vaccination). (G-H) Example scatter plots correlating TF activity (regulon) scores in HSCs with fold change IL1B in PBMCs for 
KLF5 (spearman rho = 0.71, p = 0.0033) and EGR1 (spearman rho = 0.71, p = 0.0029). (I) Plot correlating the fold change IL1B 
secretion between D0 (before) and D90 in PBMCs with the △CMP lineage bias (percent HSCs biased towards CMPs (CMP 
c1, c2, or c3) at D90 vs. D0) for each individual (Spearman rho = 0.63, p = 0.01). 
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Figure 7. Summary Figure. BCG vaccination rewires 
TF activity and gene expression within HSCs for at 
least 3 months. Progenitors deriving from these 
HSCs harbor changes in chromatin accessibility at 
thousands of sites. These sites are predicted to 
serve as binding sites for TFs with altered activity 
within HSCs. Multiple features within the bone 
marrow, including the magnitude of differential gene 
expression change within HSCs, TF activity, myeloid 
bias, and chromatin accessibility changes within 
CMPs are predictive of changes in IL1B cytokine 
section by donor-paired PBMCs.
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