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Abstract

Merkel cell polyomavirus (MCPyV) has recently been identified in Merkel cell carcinoma (MCC), an aggressive cancer that
occurs in sun-exposed skin. Conventional technologies, such as polymerase chain reaction (PCR) and immunohistochem-
istry, have produced conflicting results for MCPyV infections in non-MCC tumors. Therefore, we performed quantitative
analyses of the MCPyV copy number in various skin tumor tissues, including MCC (n = 9) and other sun exposure-related skin
tumors (basal cell carcinoma [BCC, n = 45], actinic keratosis [AK, n = 52], Bowen’s disease [n = 34], seborrheic keratosis [n = 5],
primary cutaneous anaplastic large-cell lymphoma [n = 5], malignant melanoma [n = 5], and melanocytic nevus [n = 6]). In
a conventional PCR analysis, MCPyV DNA was detected in MCC (9 cases; 100%), BCC (1 case; 2%), and AK (3 cases; 6%). We
then used digital PCR technology to estimate the absolute viral copy number per haploid human genome in these tissues.
The viral copy number per haploid genome was estimated to be around 1 in most MCC tissues, and there were marked
differences between the MCC (0.119–42.8) and AK (0.02–0.07) groups. PCR-positive BCC tissue showed a similar viral load as
MCC tissue (0.662). Immunohistochemistry with a monoclonal antibody against the MCPyV T antigen (CM2B4)
demonstrated positive nuclear localization in most of the high-viral-load tumor groups (8 of 9 MCC and 1 BCC), but not
in the low-viral-load or PCR-negative tumor groups. These results demonstrated that MCPyV infection is possibly involved in
a minority of sun-exposed skin tumors, including BCC and AK, and that these tumors display different modes of infection.
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Introduction

Merkel cell carcinoma (MCC), which is a rare and aggressive

primary cutaneous neoplasm that affects elderly and/or immuno-

compromised individuals, tends to occur in sun-exposed skin [1].

The Merkel cell polyomavirus (MCPyV) was recently identified in

MCC [2], and its frequency in MCC has been reported to be

100% by immunohistochemical and/or polymerase chain reaction

(PCR) studies that were performed in western countries [2–23]

and in East Asia [24–27]. The monoclonal integration of MCPyV

DNA in host DNA has been demonstrated in neoplastic MCC

cells, indicating that the virus causes and/or promotes this specific

type of cutaneous neoplasm [2]. However, it remains unclear how

often MCPyV is associated with other cutaneous neoplasms and to

what extent racial factors influence the infection rates. In skin

tumors other than MCC, MCPyV has been detected at various

frequencies (0%–25%) by PCR. However, immunohistochemical

analyses have suggested that MCPyV is specific to MCC and is

absent from other skin tumors, including squamous cell carcino-

ma, basal cell carcinoma (BCC), and lymphoma [28,29]. MCPyV

T-antigen expression may be suppressed in infected cells in certain

circumstances, even though MCPyV viral DNA is integrated into

the cellular DNA. A significant number of MCPyV-positive cases

are positive for the small-T (ST) antigen but do not express the

large-T (LT) antigen [30]. Recently, Neumann et al. found that all

integrated genomes had truncation mutations in the LT antigen

[31]. However, it may be difficult to address these issues without

a sensitive quantitative detection method.

In the present study, we investigated the frequency of MCPyV

infection in skin tumors, including MCC and other sun exposure-

related skin tumors, such as BCC, actinic keratosis (AK), and

Bowen’s disease (BD), in Japan. Other representative non-

melanocytic, melanocytic, and lymphoid skin tumors were also

included. We applied digital PCR in order to calculate the

absolute viral copy number per haploid human genome [32,33].

This method uses nanofluidic technology to randomly distribute

applied DNA molecules to multiple small reaction chambers at

a concentration of 0 to 1 DNA molecules per chamber. Target and

reference genes are simultaneously PCR-amplified with a dual-

color amplification reaction, and their copy numbers are then

calculated by counting the numbers of signal-positive chambers.

This PCR-efficiency-independent method is highly robust for

comparing copy numbers using different primer sets. The results
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we obtained for viral load using this quantitative method revealed

the different biological characteristics of MCPyV in these tumors

and provided a reasonable explanation for the conflicting results

obtained so far.

Results

Diagnosis of MCC
The diagnosis of MCC was confirmed by the presence of

a perinuclear dot-like positive staining pattern for CK20 and

positivity for chromogranin A and synaptophysin (Table 1). None

of the other tumors, including a MCPyV-positive BCC tumor,

displayed the same staining pattern.

In our MCC series, none of the MCC patients were

immunocompromised, except for Case 2 in which primary

MCC had developed within 2 months after a living donor liver

transplantation for fulminant hepatitis of unknown etiology. The

patient passed away after 18 months because of MCC recurrence

and metastasis. Cases 1, 4, 5, and 6 involved limited disease

without metastasis or recurrence, while Cases 2, 3, 7, 8, and 9

involved synchronous or metachronous metastases.

PCR Amplification of MCPyV from Skin Tumors
We first analyzed whether MCPyV DNA fragments were

present or absent in skin tumor tissues by conventional PCR.

Nested PCR was performed in order to detect the 6 MCPyV DNA

fragments using DNA samples extracted from tissue samples. The

results are presented in Fig. 1 and Table 2. Positive results were

obtained in all 9 MCC cases (100%), in 1 of 46 BCC cases (2.2%),

and in 3 of 52 AK cases (5.8%). No PCR amplification fragments

were observed in any of the other skin tumors, such as BD (n= 34),

seborrheic keratosis (SK; n= 5), primary cutaneous anaplastic

large-cell lymphoma (PCALCL; n= 5), malignant melanoma

(MM; n= 5), or melanocytic nevus (MN; n= 6). Among the 6

fragments examined, the ST and LT1 fragments were amplified in

13 and 12 cases, respectively, while LT2 was the fragment that was

most frequently absent from the tumors (it was only observed in 6

cases). As a result, all 6 fragments were amplified in 7 cases (4 of 9

Table 1. Clinicopathological data of Merkel cell polyomavirus (MCPyV)-positive skin tumors.

Case
Age/
sex

Tumor
size

Clinical course
and follow up

Immunocompromised
or not Immunohistochemistry

CK20
Chromogranin
A Synaptophysin

MCC 1 71/F 2.162.061.8 cm No recurrence or
metastasis at 2 years

No dot,
30%

weak,
100%

–

2 62/M 3.562.562.5 cm Primary tumor found
after 2 months post living-
donor liver transplantation.
Lymph node metastasis
at 6 months. Death at
18 months with MCC.

Yes dot,
100%

weak,
100%

weak,
100%

3 73/M 7.065.661.2 cm Primary buttock MCC
with multiple inguinal
and pelvic lymph node
metastases. Death at
6 months with MCC.

No dot &
cytoplasmic,
90%

100% weak,
10%

4 73/F 1.460.960.2 cm No recurrence or
metastasis at 14 months.

No dot, 90% 60% 100%

5 59/F 0.9 cm No recurrence or
metastasis at 70 months.

No dot &
cytoplasmic,
80%

100% 100%

6 77/M 2.762.661.0 cm No recurrence or metastasis
at 22 months. Lost to
follow up.

No dot,
100%

100% 100%

7 76/F 5.463.5 cm Multiple liver metastases
after 2 months. Death
at 3 months

No dot,
90%

50% 90%

8 79/F 2.462.261.8 cm Multiple skin metastases
after 10 months. Systemic
metastases at 12 months.
Lost to follow up.

No dot,
90%

10% 100%

9 92/F 4.162.562.5 cm Multiple lymph node
metastases after 6 months.
Lost to follow up.

No dot,
60%

20% 100%

BCC 1 80/F 0.460.3 cm No recurrence or
metastasis.

No – – –

AK 1 83/F 1.061.0 cm No – – –

2 63/M 1.161.0 cm No – – –

3 79/F 0.860.6 cm No – – –

MCC, Merkel cell carcinoma; BCC, Basal cell carcinoma; AK, Actinic keratosis; CK20, Cytokeratin20.
doi:10.1371/journal.pone.0039954.t001

Merkel Cell Polyomavirus Infection in Skin Tumor
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MCC, 1 BCC, and 2 of 3 AK). In MCC, all 6 MCPyV fragments

were detected in cases involving limited disease without distant

metastases (Cases 1, 4, and 6), while 1 or more of the fragments

was absent in 5 cases, 4 of which involved synchronous or

metachronous metastases (Cases 2, 3, 7, and 8). The amplification

pattern was the same in the primary and metastatic tumors in

Cases 2 and 3, but an additional loss of amplification was observed

in 1 of the 2 metastases in Case 8. PCR amplifications were

unstable in AK cases 2 and 3 where we observed significant gel

bands 2 to 4 times in 5 to 6 trials of the ST, VP1, and VP2 assays.

All PCR fragments in positive MCC, BCC, and AK cases were

subjected to DNA sequencing and confirmed to belong to the

MCPyV sequence. The full-length T-antigen sequence of MCPyV

from the BCC case was not determined because of the small

amount of available DNA.

Immunohistochemical Analysis of the MCPyV T Antigen
in Skin Tumors
Immunohistochemical analyses of MCPyV were performed to

determine the cellular localization and histological distribution of

the virus in tumor tissues. Full-section skin-tumor slides were

immunohistochemically analyzed with an antibody (CM2B4)

against the MCPyV T antigen (Fig. 2). Most MCC cases (8/9)

and 1 BCC case (1/46) were positive for the MCPyV T antigen,

and they all were also found to be positive in the PCR analysis

(Table 2). A diffuse nuclear staining pattern was observed in most

of the positive cases. The labeling ratio ranged from 80% to 100%,

except for in 1 case (Case 1, 30%). The staining intensity of the

tumor cell nuclei was strong in 4 cases, including the BCC case,

while it was diffusely weak and/or heterogeneous in the other

cases. In contrast to the positive PCR results, no positive staining

was observed in AK tumors. No immunoreactivity for the MCPyV

T antigen was detected in BD (n= 34), SK (n= 5), PCALCL

(n= 5), MM (n= 5), or MN (n= 6) tissues, and these results were

consistent with the PCR results.

Copy Number of MCPyV in Skin Tumors
In order to further investigate the mode of infection and

discrepancies between the PCR and immunohistochemistry

results, we performed digital-PCR-based quantitation of the

absolute viral copy number per human genome in MCPyV-

infected tumor tissue. Digital PCR analyses were performed using

a DNA template that was extracted from full-section slides. Case 4

was excluded from the digital PCR analysis because its tumor cell

ratio was very low (approximately 3%). We designed a MCPyV-

specific primer set that targeted the ST region because this

fragment was amplified in all infected cases in the present study

(Fig. 1 and Table 1). The ST region overlaps with the target

regions of the LT3 primer sets that were used in previous studies

[8,29,34]. In order to avoid possible assay errors due to MCPyV

sequence diversity, we confirmed the digital PCR results with an

additional second primer set and found that those results were

reproducible (data not shown). As a human genome reference, we

used the RNaseP gene, a single copy of which exists per human

haploid genome [32,33]. We performed a dual-color assay and

used the results to calculate the absolute viral copy number per

haploid human genome (Fig. 3). In MCC, the tissue viral load

varied from 0.119 to 42.843 (copies/haploid genome), but was

mostly distributed around 1 (Fig. 3 and Table 2). The viral load

was generally lower by 1 order of magnitude in AK tissue (between

0.019 and 0.068). The negative immunohistochemical results for 1

MCC and 3 AK cases were clearly linked to their low viral loads.

The viral load of MCPyV-positive BCC was more similar to that

of MCC tumors (0.662).

Methylation Status of Skin Tumors
The epigenetic silencing of tumor suppressor genes, such as the

RASSF1A promoter, plays a characteristic and essential role in

cancer development. Host RASSF1A DNA hypermethylation has

been demonstrated in SV40 polyomavirus-related tumors and cell

lines and in some cases of MCC [35,36]. Thus, our skin tumor

samples were subjected to methylation-specific PCR analyses.

RASSF1A hypermethylation was detected in 6 of 9 MCC cases

(67%), 7 of 46 BCC cases (15%), and 1 of 52 AK cases (1.9%)

(Table 2). Interestingly, RASSF1A promoter hypermethylation

was also observed in MCPyV-positive BCC. No promoter

hypermethylation was seen in any other of the following skin

tumors: PCALCL (n= 5), MM (n= 5), MN (n= 6), SK (n = 5), or

Figure 1. Polymerase chain reaction (PCR) amplification of the Merkel cell polyomavirus in the skin tumors. Six MCPyV gene fragments
were detected in Merkel cell carcinoma, basal cell carcinoma (BCC), and actinic keratosis (AK). Cases involving synchronous or metachronous
metastases are marked with an asterisk. Specific PCR fragments, including large T (LT)2, VP1, and VP2, were not amplified constantly in AK cases 2 and
3 (see text). To clarify, we replaced this part with a picture of successful amplification in another trial. Abbreviations: BCC, basal cell carcinoma; AK,
actinic keratosis; 293T, polyomavirus SV40 T antigen-positive 293 cells. The lower panel indicates the single PCR proliferation band of the CDC25
gene.
doi:10.1371/journal.pone.0039954.g001

Merkel Cell Polyomavirus Infection in Skin Tumor
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BD (n= 34). No promoter hypermethylation of FHIT or

CDKN2A was identified in MCC, BCC, AK, or other skin

tumors (data not shown).

Discussion

In the present study, the frequency of MCPyV infection in

various skin tumors was analyzed by conventional PCR and

immunohistochemistry, and digital PCR technology was applied

to calculate the absolute viral copy number per haploid genome in

these tumor tissues.

The 100% PCR-based MCPyV detection rate that was

observed in MCC in this study was compatible with the findings

of studies performed in the US and Europe, but it was somewhat

higher than those reported in Australia and Japan [2–5,9,18,24].

The MCPyV detection rates in 2 reports from Europe [10] and

Asia [26] were over 90%, and this was similar to our detection

rate. One of the reasons for our 100% positive PCR results may be

due to a simple sampling problem because of the limited number

of cases, and another possible reason was MCPyV sequence

polymorphism within primer design regions. In the present study,

the nested primer sets targeting 6 different regions of MCPyV

were adopted for viral detection [24]. Interestingly, loss of the LT2

fragment was frequently observed in metastatic MCC and in

primary MCC that produced metastases. While all 6 MCPyV

fragments were amplified in 3 of the 4 cases involving limited

disease, the LT2 fragment was absent from 4 of the 5 cases

involving synchronous or metachronous metastases. While it could

be due to sequence diversity in these regions, it is possible that

extensive somatic mutations or deletions in these regions could be

associated with tumor progression. A previous study found that

a mutation in the LT region produced oncogenic effects through

a prematurely truncated LT protein [30,37]. Similar events have

been demonstrated to be involved in the transformation process in

animal polyomavirus models [38–41].

The presence and pathogenesis of MCPyV DNA in skin

tumors other than MCC are controversial. In previous studies,

MCPyV DNA was amplified by PCR from 32% of sporadic

non-melanoma skin cancers, including BCC (36/96, 37.5% and

3/24, 12.5%), SCC (7/28, 25%), and BD (4/23, 17.4%) [4,42].

In contrast, an immunohistochemical study did not detect any

positive BCC or SCC cases [28]. The major problem with these

previous studies was the lack of a method for quantitatively

assessing viral infection. Conventional PCR can amplify very

small amounts of viral DNA and provide us with the same

positive results in spite of different viral loads, whereas the

immunohistochemical method is dependent on the level of

protein expression and it is difficult to reliably detect low levels

of proteins. In the present study, we used digital PCR

technology to calculate the absolute viral load per haploid

human genome. The nanofluidic-based physical separation of

each DNA template makes this technology highly robust,

despite differences in the PCR efficiencies of different primers,

such as RNaseP and MCPyV ST. Assessing the absolute viral

load per haploid human genome is highly informative. First, the

viral load differed markedly between MCC (0.37–42.8) and AK

Table 2. Polymerase chain reaction, immunohistochemistry, and viral copy number per haploid human genome of MCPyV-
positive skin tumors.

Case ST LT1 LT2 VP1 VP2 VP3
IHC
(MCPyV)

IHC staining
pattern

viral CN per haploid
human genome

Tumor
ratio

RASSF1A
hypermethylation

MCC 1 Tumor + + + + + + +(30%) heterogeneous
partial

42.843 4 U

2 Tumor + + 2 + + + +(90%) strong diffuse 0.369 4 M/U

MLNM + + 2 + + +

3 Tumor + + 2 2 2 2 +(90%) weak diffuse 1.361 4 M/U

MLNM + + 2 2 2 2

4 Tumor + + + + + + +(100%) heterogeneous
diffuse

1 M/U

5 Tumor + + 2 + + + 2 2 0.119 2 M/U

6 Tumor + + + + + + +(80%) heterogeneous
diffuse

1.253 4 U

7 Tumor + + 2 + + + +(90%) heterogeneous
diffuse

1.065 4 U

8 Tumor + + 2 + + + +(100%) strong diffuse 0.759 4 M/U

Skin
metastasis

+ + 2 + + +

Skin
metastasis

+ + 2 2 2 +

9 Tumor + + + + + + +(100%) strong diffuse 0.756 4 M/U

BCC 1 Tumor + + + + + + +(100%) strong diffuse 0.662 2 M/U

AK 1 Tumor + + + + + + 2 2 0.068 2 U

2 Tumor + + + + + + 2 2 0.031 2 U

3 Tumor + 2 2 + + 2 2 2 0.019 2 U

IHC, immunohistochemistry; MCC, Merkel cell carcinoma; BCC, Basal cell carcinoma; AK, Actinic keratosis; MLNM, Multiple lymph node metastases; ST, small T; LT, large T;
CN, copy number, Tumor ratio: 1, ,10%; 2, .10% and ,30%; 3, .30% and ,70%; 4, .70%.
doi:10.1371/journal.pone.0039954.t002
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(0.02–0.07), suggesting that the biology of MCPyV infection

differs between these 2 tumor groups. Second, there was a strong

correlation between the immunohistochemical findings and viral

load, which explains the conflicting results that were obtained

with conventional PCR and immunohistochemistry. One

possibility is that MCPyV-containing lymphocytes infiltrate

within or around the atypical epidermis in AK. Another

possibility is the infection of a small subset of tumor cells. It is

worth noting that a lack of immunostaining and a relatively low

copy number were observed in 1 MCC case (0.119 in Case 5).

Therefore, we could not rule out the possibility that MCPyV

had infected AK cells in our AK cases, and further studies are

needed to examine this. Third, in most MCC cases, the

MCPyV copy number per haploid genome was around 1.

Taking the diffuse immunohistochemical staining seen in the

majority of MCC cells into account, there is a realistic

possibility that each MCC cell had clonally integrated 2 copies

of the MCPyV genome, which could not be the case for AK.

In the present study, we observed the presence of MCPyV DNA

fragments in 1 of 46 BCC cases (2.2%). The strong and diffusely

positive immunohistochemical staining and moderate viral load

(compared to that observed in the MCC) observed in this tumor

confirmed that it had been infected by MCPyV. These findings

suggest that MCPyV may also contribute to the development of

the minority of sun-exposed skin tumors in addition to MCC.

Interestingly, hypermethylation of RASSF1A was detected in this

case of BCC, as was found in two-thirds of the MCC cases.

Hypermethylation of host DNA has been detected in SV40

polyomavirus-related tumors and cell lines as well as in some

MCC [13,14]. MCPyV infects progenitor skin endocrine cells, but

it may sometimes infect cells that can differentiate into other cell

types.

Although further studies are needed for a complete understand-

ing of these results, our quantitative analysis of the viral load per

haploid genome revealed that MCPyV infection displays different

biological characteristics and epidemiology in skin tumor tissues.

Materials and Methods

Tissue and Cell Samples
Skin tumors, which were surgically resected or biopsied from

1996 to 2009, were retrieved from the database of the Department

of Pathology, Tokyo University Hospital. Each histological

diagnosis was independently confirmed by S.O and Y.T. Skin

Figure 2. Morphology and immunohistochemical staining. Representative cases of Merkel cell carcinoma (MCC; A, B), a basal cell carcinoma
(BCC)-positive case (C, D), and a BCC-negative case (E). Immunohistochemical staining with the anti-MCPyV large T-antigen antibody (CM2B4) (B, D, E).
Heterogeneous and diffuse staining was observed in MCC (B), and strong diffuse positivity (D) and total negativity (E) was detected in BCC. Inset:
Nuclear staining of MCPyV in MCC (B) and BCC (D,E).
doi:10.1371/journal.pone.0039954.g002

Merkel Cell Polyomavirus Infection in Skin Tumor
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tumors used in this study included MCC (n= 4), BCC (n= 46),

AK (n= 52), BD (n= 34), SK (n= 5), PCALCL (n= 5), MM

(n=5), and MN (n= 6). Additionally, 5 cases of MCC from

Toranomon Hospital were also analyzed. All of these tumors were

fixed by formalin and embedded in paraffin for diagnostic

purposes. Immunostaining of CK20, synaptophysin, and chromo-

granin A was used to confirm the diagnosis of MCC. This study

was approved by the University of Tokyo Institutional Ethical

Committee. Clinical samples with written informed consent were

collected under the University of Tokyo Institutional guidelines for

the study of human tissues.

As for the cultured cells, 293T cells (American Type Culture

Collection, Manassas, VA) were maintained, as described pre-

viously.

Preparation of DNA from Paraffin-embedded Clinical
Material
Serial sections of tumor specimens were subjected to hematox-

ylin and eosin staining, immunohistochemistry, and DNA

preparation. To isolate DNA from formalin-fixed paraffin-

embedded skin tumor samples, 3 10 mm-thick sections were

placed into 1.5-mL sterile tubes, and a DNeasy Tissue Kit

(QIAGEN GmbH, Hilden, Germany) was used to purify DNA

according to the manufacturer’s instructions. Extracted DNA was

used for PCR and digital PCR.

PCR Primers for Polyomavirus DNA
The quality of DNA was checked by amplifying the cdc25

(forward: 59-TGGTGGGCCAAACACTATCC-39, reverse: 59-

ATCGTTGGGCTCGCAGATCACC-39) and glyceraldehyde-3-

phosphate dehydrogenase (forward: 59-GAAGGTGAAGGTCG-

GAGTC-39, reverse: 59-GAAGATGGTGATGGGATTC-39)

genes.

For MCPyV detection, 6 nested primer sets, including primers

for ST, LT, and VP1-3 regions were prepared, and nested PCR

was performed, as described previously [24], with 40 ng of

extracted DNA.

DNA Sequencing
PCR-amplified fragments of MCPyV and other polyomaviruses

were purified using MicroSpin S-300 HR Columns (GE

Healthcare, Piscataway, NJ), and purified PCR products were

then applied to an ABI sequencer (Life Technologies Corporation,

Carlsbad, CA) and analyzed according to the manufacturer’s

protocol. All sequences of PCR-amplified fragments were com-

pared to each other for similarity using NCBI-BLAST and were

fully matched with the Merkel cell polyomavirus genome

sequence, which was already reported [37]. Additional Merkel

Cell Polyomavirus sequencing for hot spot in Large T antigen was

analyzed in Figure S2.

Antibodies and Immunohistochemistry
Immunohistochemistry was applied to formalin-fixed and

paraffin-embedded tissue samples in all cases. Immunohistochem-

istry was performed with monoclonal antibodies against the

MCPyV LT antigen (CM2B4; Santa Cruz Biotechnology, Inc,

Santa Cruz, CA, 1:50 dilution), CK20 (Leica Microsystems Inc,

Buffalo Grove, IL, 1:100 dilution), chromogranin A (Dako

Denmark A/S, Glostrup, Denmark, 1:200 dilution), and synapto-

physin (Dako Denmark A/S, 1:100 dilution). Immunohistochem-

istry was performed according to standard techniques on

a Ventana Benchmarks XT Autostainer (Ventana Medical

Systems, Inc, Tucson, AZ) with the labeled streptavidin-biotin

peroxidase method and diaminobenzidine visualization. Appro-

priate positive and negative controls were included for each

immunohistochemical experiment.

Nuclear staining was considered to indicate positivity for the LT

antigen of MCPyV.

Copy Number Assessment Using Digital PCR
A primer set targeting the ST region, which overlaps with the

target regions of the LT3 primer sets used in previous studies, was

designed (STF 576: 59-TCGCCAGCATTGTAGTCTAAAAAC-

39; STR 668: 59-CCAAACCAAAGAATAAAGCACTGA-39, and

ST probe: 59-AGCAAAAACACTCTCCCCACGTCAGACA-39)

(Fig. S1). For additional digital PCR quantification, a second

primer set was designed (STF 550: 59-TGCGCTTGTAT-

TAGCTGTAAGTTGT-39; STR 640: 59-AAAACACTCTCCC-

CACGTCAGA-39; and ST probe: 59-AGCAAAAA-

CACTCTCCCCACGTCAGACA-39).

For each panel, 10 mL of reaction mixture containing 1 6
TaqMan Gene Expression Master Mix (Life Technologies), 1 6
RNase P-VIC TaqMan assay, 1 6 MCPyV ST-FAM TaqMan

assay (900 nM primers and 200 nM probe), 1 6 sample loading

reagent (Fluidigm Corporation, South San Francisco, CA), and

Figure 3. MCPyV copy number in various skin tumors. (A) Digital
PCR software-generated composite heat maps showing chambers with
positive signals for both control RNaseP genes (blue) and MCPyV (red).
Digital PCR heat maps are indicated in the upper panel for Merkel cell
carcinoma case 6, in the middle panel for basal cell carcinoma (positive
case), and in the lower panel for actinic keratosis (case 1). (B) Scatter
plot of the MCPyV copy number of Merkel cell carcinoma, basal cell
carcinoma, and actinic keratosis. Immunohistochemically positive cases
are shown as black dots (&), and negative cases are indicated by
triangles (m).
doi:10.1371/journal.pone.0039954.g003

Merkel Cell Polyomavirus Infection in Skin Tumor
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3.5 mL of extracted genomic DNA was prepared. The reaction

mix was applied to the 12.765 digital array, which contained 765

small chambers for each sample, and was analyzed using the EP-1

system (Fluidigm Corporation) [33]. Thermocycling conditions

included an initial step of 95uC for 10 min, which was followed by

40 cycles of 2-step PCR: 15 s at 95uC for denaturing and 1 min at

60uC for annealing and extension. Data was transformed from the

observed positive chamber count to the estimated copy number

using the mathematical formula described by Dube S et al. [32],

and the absolute viral copy number per haploid genome was

defined as the ratio of MCPyV ST copy number to RNaseP copy

number. Tumor cell ratios were counted and graded as follows: 1,

,10%; 2, .10% and ,30%; 3, .30% and ,70%; or 4, .70%.

The absolute viral copy number per haploid genome by the

second primer showed similar results (data not shown).

Methylation-specific PCR (MS-PCR)
Methylation analysis was performed to evaluate the promoter

hypermethylation status of MCC, BCC, and AK. The promoter

regions of RASSF1A, CDKN2A, and FHIT were examined, as

described previously [10]. The extracted template DNA was

modified by the bisulfite reaction using an EpiTect Bisulfite kit

(QIAGEN GmbH). Methylation status was distinguished by MS-

PCR using sequence-specific primer pairs. MS-PCR experiments

were performed at least twice. PCR primers and conditions were

described previously [10].

Supporting Information

Figure S1 The primer used for digital PCR targeting the
ST region, which overlaps with the target regions of the
LT3 primer that was previously reported by Feng.

(DOCX)

Figure S2 Merkel Cell Polyomavirus sequencing for hot
spot in Large T antigen.

(DOC)
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19. Touzé A, Gaitan J, Maruani A, Le Bidre E, Doussinaud A, et al. (2009) Merkel

cell polyomavirus strains in patients with Merkel cell carcinoma. Emerg. Infect.

Dis. 15: 960–962.

20. Wetzels CT, Hoefnagel JG, Bakkers JM, Dijkman HB, Blokx WA, et al. (2009)

Ultrastructural proof of polyomavirus in Merkel cell carcinoma tumour cells and

its absence in small cell carcinoma of the lung. PLoS ONE 4: e4958.

21. Sihto H, Kukko H, Koljonen V, Sankila R, Böhling T, et al. (2009) Clinical
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