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Abstract – Cryptosporidium spp. and Enterocytozoon bieneusi are two prevalent opportunistic pathogens in humans
and animals. Currently, few data are available on genetic characterization of both pathogens in rabbits in China.
The aim of the present study was to understand prevalence and genetic characterization of Cryptosporidium spp.
and E. bieneusi in rabbits. We collected 215 fecal samples from 150 Rex rabbits and 65 New Zealand White rabbits
on two different farms in Heilongjiang Province, China. Cryptosporidium spp. and E. bieneusi were tested by
polymerase chain reaction (PCR) and sequencing the partial small subunit of ribosomal DNA (SSU rDNA) and
the internal transcribed spacer (ITS) region of rDNA, respectively. Cryptosporidium was detected in 3.3% (5/150)
of Rex rabbits and 29.2% (19/65) of New Zealand White rabbits. All the 24 Cryptosporidium isolates were identified
as C. cuniculus. Enterocytozoon bieneusi was only found in 14.7% (22/150) of Rex rabbits. Five known genotypes:
CHN-RD1 (n = 12), D (n = 3), Type IV (n = 2), Peru6 (n = 1), and I (n = 1), and three novel ones CHN-RR1 to
CHN-RR3 (one each) were detected. By analyzing the 60-kDa glycoprotein (gp60) gene sequences of C. cuniculus
isolates, three subtypes were obtained: VbA28 (n = 2), VbA29 (n = 16), and VbA32 (n = 3). All these three
C. cuniculus subtypes were reported previously in humans. Four known E. bieneusi genotypes have been found to
be present in humans. The three novel ones fell into zoonotic group 1. The results suggest zoonotic potential of
C. cuniculus and E. bieneusi isolates in rabbits.
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Résumé – Sous-typage de Cryptosporidium cuniculus et génotypage de Enterocytozoon bieneusi chez les lapins
dans deux fermes de la province du Heilongjiang en Chine. Cryptosporidium spp. et Enterocytozoon bieneusi sont
deux agents pathogènes opportunistes répandus chez les humains et les animaux. Actuellement, peu de données sont
disponibles sur la caractérisation génétique de ces deux agents pathogènes chez les lapins en Chine. Le but de la
présente étude était de comprendre la prévalence et la caractérisation génétique des Cryptosporidium spp. et
E. bieneusi chez les lapins. Nous avons recueilli 215 échantillons fécaux de 150 lapins Rex et 65 lapins blancs de
Nouvelle Zélande dans deux fermes différentes dans la province du Heilongjiang, en Chine. Cryptosporidium spp. et
E. bieneusi ont été testés par PCR et respectivement par séquençage partiel de la petite sous-unité de l’ADN
ribosomal (SSU-ADNr) et de la région ITS de l’ADNr. Cryptosporidium a été détecté dans 3.3 % (5/150) des lapins
Rex et 29.2 % (19/65) des lapins blancs de Nouvelle-Zélande. Tous les 24 isolats de Cryptosporidium ont été
identifiés comme C. cuniculus. Enterocytozoon bieneusi n’a été trouvé que dans 14.7 % (22/150) des lapins Rex.
Cinq génotypes connus : CHN-RD1 (n = 12), D (n = 3), Type IV (n = 2), Peru6 (n = 1) et I (n = 1), et trois
nouveaux, CHN-RR1 à CHN-RR3 (un de chaque) ont été détectés. En analysant les séquences du gène de la
glycoprotéine de 60 kDa (gp60) des isolats de C. cuniculus, trois sous-types ont été obtenus: VbA28 (n = 2), VbA29
(n = 16) et VBA32 (n = 3). Ces trois sous-types de C. cuniculus ont été rapportés auparavant chez l’homme. Quatre
génotypes d’E. bieneusi connus ont été rapportés chez les humains. Les trois nouveaux appartiennent au groupe
zoonotique 1. Les résultats suggèrent un potentiel zoonotique des isolats de C. cuniculus et E. bieneusi des lapins.
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Introduction

Cryptosporidium spp. and Enterocytozoon bieneusi are
obligate intracellular eukaryotes, and both of them can infect
the intestine of hosts. Clinical symptoms of human disease
caused by either Cryptosporidium or E. bieneusi are variable,
ranging from asymptomatic infection or self-limiting diarrhea
in healthy people to chronic or life-threatening diarrhea in
immunocompromsied individuals [33, 48]. Besides humans,
these microorganisms have also been found in numerous
animal species [33, 41].

Cryptosporidium is a complex genus. To date, 30
Cryptosporidium species and more than 40 genotypes have
been described, and among them, 20 Cryptosporidium
species/genotypes have been reported in humans, with
C. hominis and C. parvum responsible for the majority of
infections [15, 23, 28, 41, 42]. For E. bieneusi, more than
240 ITS genotypes have been identified worldwide [18, 45],
and at least 70 genotypes have been found in humans, with
33 genotypes being zoonotic [21, 33, 61]. In phylogenetic
analysis, all the published genotypes belong to nine distinct
groups. Group 1 is composed of the common zoonotic
genotypes and groups 2–9 mostly contain host-adapted
genotypes [14, 19, 33]. The findings of the same species/
genotypes of the two pathogens in humans and animals support
presumption of zoonotic potential [33, 41].

Currently, fumagillin is effective in the treatment of
microsporidiosis caused by E. bieneusi [2], while nitazoxanide
has an effect on cryptosporidiosis in non-HIV patients to a
certain extent [41]. However, understanding Cryptosporidium
and E. bieneusi epidemiology in different host species is still
a key step to prevent Cryptosporidium and E. bieneusi
infections in humans, particularly in determining the zoonotic
potential of animal-derived isolates.

In China, Rex rabbits are one of the most common farmed
animal species used for fur and meat production; and with the
development of the fur industry in recent years, the number of
Rex rabbits has been increasing. New Zealand White rabbits
are mainly used for food production and experiments.
The aim of the present study was to understand the prevalence
of natural infection and genetic characterization of
Cryptosporidium and E. bieneusi in Rex rabbits and
New Zealand White rabbits. In addition, the zoonotic
potential of Cryptosporidium and E. bieneusi isolates was
assessed.

Materials

Ethics statement

Before beginning this study, we described the protocol to
the farm managers and obtained their permission. In this study,
only fecal samples of the farm animals were collected.
Meanwhile, the study protocol was reviewed and approved
by the Research Ethics Committee and the Animal Ethics
Committee of Harbin Medical University. The work concern-
ing animals strictly followed guidelines in accordance with
the Regulations for the Administration of Affairs Concerning
Experimental Animals.

Specimen collection

During the period from March 2015 to February 2016, a
total of 215 rabbit fecal samples were collected from
Heilongjiang Province, China, including 150 from Rex rabbits
on a farm in Huaqiang Fur Breeding Base in Bayan County
and 65 from New Zealand White rabbits on a farm in Huaxing
Breeding Base of Rabbits in Harbin City. One fresh fecal
specimen (approximately 15 g) of each animal was collected.
All the fecal specimens were transported to our laboratory in
a cooler with ice packs within 24 h and stored in refrigerators
at 4 �C until molecular analysis. Rex rabbits and New Zealand
White rabbits were collected from the two different farms, both
accounting for approximately 5% of the total animals. Rex
rabbits and New Zealand White rabbits were five or six and
two or three months old, respectively. No apparent clinical
signs of diarrhea were observed at the time of sampling.

DNA extraction

To reduce interference from crude fiber and impurities in
rabbit manure, the fecal specimens were sieved and washed
with distilled water by centrifugation for 10 min at 1500 g·.
Genomic DNA was extracted from 180–200 mg washed fecal
pellets using a QIAamp DNA Stool Mini Kit (QIAgen, Hilden,
Germany) according to manufacturer-recommended proce-
dures. DNA was eluted in 200 lL of AE buffer and stored at
�20 �C in a freezer prior to polymerase chain reaction
(PCR) analysis.

Cryptosporidium genotyping and subtyping

All genomic DNA samples were subjected to nested PCR
targeting Cryptosporidium by amplification of an 830 bp
nucleotide fragment of the small subunit (SSU) rDNA of
Cryptosporidium. The primers and the cycling parameters in
PCR analysis were used as previously described by Xiao
et al. [52]. Subtyping of Cryptosporidium-positive samples
was performed by nested PCR amplification of an approxi-
mately 800–850 bp fragment of the gp60 gene [1].

E. bieneusi genotyping

To identify the presence and genotypes of E. bieneusi, all
the genomic DNA samples were subjected to nested PCR
amplification of a 389 bp nucleotide fragment of the rDNA
of E. bieneusi containing 76 bp of the 30 end of SSU rDNA,
243 bp of the internal transcribed spacer (ITS) region, and
70 bp of the 50 region of the large subunit (LSU) rDNA [7].
All the genotypes were named based on 243 bp of the ITS
region of E. bieneusi according to the established nomenclature
system [44].

Nucleotide sequencing and analyzing

All the secondary PCR products of the expected size were
directly sequenced with primers used for the secondary PCR
after being purified on an ABI PRISM 3730XL DNA Analyzer
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by Sinogeno- max Biotechnology Co. Ltd. (Beijing, China),
using the BigDye Terminator v3.1 Cycle Sequencing Kit
(Applied Biosystems, USA). Sequence accuracy was
confirmed by two-directional sequencing and by sequencing
a new PCR product if necessary for some DNA samples,
from which novel nucleotide sequences were obtained.
Nucleotide sequences obtained in the present study were
subjected to BLAST searches (http://www.ncbi.nlm.nih.gov/
blast/), and then aligned and analyzed with each other and
reference sequences from GenBank using Clustal X 1.81
(http://www.clustal.org/).

Phylogenetic analysis

Phylogenetic relationships among subtypes of
Cryptosporidium and genotypes of E. bieneusi determined in
the present study with those presently available in public
databases were explored using the Mega 5 program (http://
www.megasoftware.net/) to construct two neighbor-joining
trees based on the evolutionary distances calculated by the
Kimura 2-parameter model. The reliability of the trees was
assessed using the bootstrap analysis with 1000 replicates.

Results

Infection rates of Cryptosporidium and E. bieneusi

Cryptosporidium was detected in the two rabbit breeds by
nested PCR amplification of the SSU rDNA. Infection rates of
Cryptosporidium were 3.3% (5/150) and 29.2% (19/65) in Rex
rabbits and New Zealand White rabbits, respectively. There
was a significant difference in infection rates of Cryptosporid-
ium between the two rabbit breeds by means of a v2 test
(v2 = 30.67, p < 0.01) (Table 1).

By amplifying the ITS region of the rDNA, E. bieneusi was
detected in 14.7% (22/150) of Rex rabbits, and there was an
absence of E. bieneusi in New Zealand White rabbits.

Cryptosporidium species and subtypes

Analysis of 24 sequences of the SSU rDNA of
Cryptosporidium showed that all the Cryptosporidium isolates
were identical to each other and had 100% similarity with a
C. cuniculus isolate from a rabbit (HQ397716). C. cuniculus-
positive specimens were further subtyped by amplifying the

gp60 gene. Only 21 C. cuniculus isolates produced the
expected PCR product and were successfully sequenced. Three
subtypes were observed according to established nomenclature
[39]: VbA28 (n = 2), VbA29 (n = 16) and VbA32 (n = 3).
Two subtypes VbA28 and VbA29 were identified in New Zeal-
and White rabbits while one subtype VbA32 in Rex rabbits
(Table 1). Phylogenetic analysis of the gp60 nucleotide
sequences revealed that C. cuniculus subtypes VbA28,
VbA29 and VbA32 fell into the same clade as C. erinacei
subtype XIIIaA20R10, and were genetically close to
C. parvum subtype families IId and IIn, and C. hominis
subtype families Ib and Ii (Fig. 1).

E. bieneusi genotypes

By nucleotide sequence analysis of the ITS region of the
rDNA of E. bieneusi, eight genotypes were identified in
the Rex rabbits, including five known genotypes (CHN-RD1,
Type IV, Peru6, D, and I) and three novel ones
(CHN-RR1, CHN-RR2, and CHN-RR3) (Table 1). Genotype
CHN-RD1 was found in 54.5% (12/22) of E. bieneusi isolates,
showing dominance. The remaining genotypes were all at a
low frequency: 13.6% (3/22) for genotype D, 9.1% (2/22) for
genotype Type IV, and 4.5% (1/22) for genotypes I, CHN-RR1,
CHN-RR2, and CHN-RR3.

Genotype CHN-RR1 (KU182745) had two base deletions
at nucleotide sites 51 and 52 of the ITS region. Genotypes
CHN-RR2 (KU182746) and CHN-RR3 (KU182747) were
observed to have one and two single-nucleotide polymor-
phisms compared to genotype G (AF135834) and genotype
Peru6 (JF927955), respectively. In phylogenetic analysis, all
the genotypes except genotype I (clustered into group 2) here
belonged to zoonotic group 1: genotypes Peru6, CHN-RR1,
and CHN-RR3 in subgroup 1b; genotype D in subgroup 1a;
genotype Type IV in subgroup 1c; and genotypes CHN-RD1
and CHN-RR2 in subgroup 1e (Fig. 2).

Discussion

In the present study, Cryptosporidium was identified in the
two rabbit breeds, with overall prevalence of 11.2% (24/215).
Epidemiological data indicate that Cryptosporidium has
previously been identified in rabbits in Japan, with 30.3%
(20/66) in dead juvenile animals and 3.33% (1/30) in healthy
animals [47], and in Australia (6.8%; 12/176) [35] as well as

Table 1. Prevalences and genotypes/subtypes of C. cuniculus and E. bieneusi in rabbits.

Host Sample (n) C. cuniculus E. bieneusi

No. of positive (%) Gp60 subtype (n) No. of positive (%) ITS genotypes (n)

Rex rabbits 150 5 (3.3) VbA32 (3) 22 (14.7) CHN-RD1 (12); D (3);
Type IV (2); Peru6 (1);
I (1); CHN-RR1 to
CHN-RR3 (1 each)

New Zealand
White rabbits

65 19 (29.2) VbA29 (16); VbA28 (2) – –

Note: The bars denote negative results.
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in some areas of China:Sichuan (1.03%; 3/290), Heilongjiang
(2.38%, 9/378), and Henan (3.4%, 37/1081) [30, 46, 55].
In fact, Cryptosporidium in farm rabbits is not often recognized
due to a low prevalence and asymptomatic course of infection.
However, there is an outbreak of massive mortality among
farm rabbits associated with Cryptosporidium infection in
Poland [20]. Here, E. bieneusi was only found in 14.7%
(22/150) of Rex rabbits, and the prevalence was higher than
that (0.94%; 4/426) reported in a recent study in China [57].
To our best knowledge, there are another two studies
reporting E. bieneusi infections in rabbits, where only a small
number of rabbits were involved [11, 13]. The present finding
of Cryptosporidium and E. bieneusi in the asymptomatic
rabbits emphasized the importance of epidemiological
investigations of the two pathogens in these animals.

By sequence analysis of the partial SSU rDNA, all 24 PCR
specimens positive for Cryptosporidium were identified as
C. cuniculus. C. cuniculus is one of the zoonotic Cryptosporid-
ium species, which has been strongly linked to human
cryptosporidiosis [41]. Molecular epidemiological data of
human cryptosporidiosis have presented increasing occurrence
of C. cuniculus in humans in some regions/countries. It was
even considered to be the third most common Cryptosporidium
species in clinical patients with cryptosporidiosis during the
2007–2008 period in the UK [10], including a waterborne
outbreak of human cryptosporidiosis caused by C. cuniculus
from a wild rabbit entering a treated tank [9]. In fact, some
sporadic human cases have been reported in Nigeria, Australia,
France, and Spain [3, 22, 32, 34]. Currently, natural infection
of C. cuniculus has only been reported in rabbits and humans,
as well as a kangaroo [22]. Rabbits have been confirmed to be
the main hosts of natural infection of C. cuniculus. To date,
experimental infections have only been established in
weanling rabbits (Oryctolagus cuniculus), immunosuppressed
Mongolian gerbils (Meriones unguiculatus), and immunosup-
pressed adult Porton strain mice (Mus musculus) [40].
C. cuniculus seems to have a narrow host range. The true host
range of C. cuniculus needs to be confirmed by subsequent
molecular epidemiological studies of Cryptosporidium. Gp60
gene sequencing is the most commonly used tool for
Cryptosporidium subtyping, aimed at identifying infection
sources, investigating transmission dynamics, and understand-
ing genetic diversity within and between Cryptosporidium
species/genotypes as well as their taxonomy [41]. In the pre-
sent study, gp60-based subtyping of C. cuniculus isolates was
achieved and three subtypes were identified: VbA28, VbA29,
and VbA32. The observation that all the three subtypes here
have been detected in humans [10] suggests their significance
in public health. Here, subtype VbA28 was found in rabbits for
the first time. Actually, two different families (Va and Vb) have
been described within C. cuniculus. To date, nine and 20
subtypes have been found in the two different subtype families,
respectively [5, 9, 10, 20, 22, 30, 35, 36, 40, 46, 55] (Table 2).
Based on the data summarized in Table 2, the subtypes in the
Va family are mostly found in humans and occasionally seen in
rabbits; in contrast, the subtypes in the Vb family appear to be
more common in rabbits than in humans. By phylogenetic
analysis, the subtypes in the Vb family fell into a clade with
C. parvum and C. hominis (Fig. 1). In a previous phylogenetic
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Figure 1. Phylogenetic relationship of gp60 subtypes of
Cryptosporidium species/genotypes. The relationships between
C. cuniculus subtypes identified in the present study and known
subtypes of other Cryptosporidium species/genotypes deposited in
the GenBank were inferred by a neighbor-joining analysis of
gp60 gene sequences based on genetic distance by the Kimura
2-parameter model. The numbers on the branches are percent
bootstrapping values from 1000 replicates. Each sequence is
identified by its accession number, host origin, and subtype
designation. The circles filled in black indicate the subtypes
identified in this study.
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Figure 2. Phylogenetic relationships of Enterocytozoon bieneusi genotype groups. The relationships between Enterocytozoon bieneusi
genotypes identified in the present study and other known genotypes deposited in the GenBank were inferred by a neighbor-joining analysis
of ITS sequences based on genetic distance by the Kimura 2-parameter model. The numbers on the branches are percent bootstrapping values
from 1000 replicates. Each sequence is identified by its accession number, host origin, and genotype designation. The group terminology for
the clusters is based on the work of Zhao et al. [60]. The squares and circles filled in black indicate novel and known genotypes identified in
this study, respectively.
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analysis of the SSU rDNA and hsp70 genes, C. cuniculus was
observed to be genetically most closely related to C. hominis,
sharing 99.2% similarity with C. hominis at the SSU rDNA
locus and 99.7% similarity with C. hominis at the hsp70 locus
[43]. In another study, on the basis of a distance matrix
derived from the alignment utilized herein to construct the
phylogeny, C. cuniculus was reported to be genetically closest
to C. parvum and C. hominis, sharing 98% similarity with each
of them [35].

By sequence analysis of the ITS region of the rDNA, eight
genotypes were identified out of 22 E. bieneusi isolates,
including five known and three novel isolates (Table 1).
Genotype CHN-RD1 showed predominance in Rex rabbits
(54.5%; 12/22). This genotype was originally detected in
reindeers living in the northeast forest region of Great Hinggan
Mountains, China [29]. The other four known genotypes
(Type IV, Peru6, D, and I) have previously been found in both
humans and animals, suggesting possible zoonotic transmis-
sion from Rex rabbits to humans [33, 45]. Genotypes D and
Type IV are currently the two most common genotypes diag-
nosed in human cases of microsporidiosis caused by E. bien-
eusi [33]. Genotype D has the widest geographical
distribution and animal host range [45, 60]. In China, both
genotypes have been identified in children, and in HIV-positive
and HIV-negative patients [50, 51, 53]. Meanwhile, they have
also been found in nonhuman primates, pigs, deer, foxes,
raccoon dogs, dogs, cats, rabbits, squirrels, chinchillas, snakes,
Siberian tigers, lions, hippopotamus, common cranes, a red-
crowned crane, a Fischer’s lovebird, and some other captive
wildlife, as well as in wastewater and lake water [12, 16–18,
24–27, 38, 54, 58, 59, 61, 63]. Compared to genotypes D
and Type IV, genotypes Peru6 and I have a small number
and a limited geographical area in human cases infected with
E. bieneusi, with the former only found in Peru and Portugal
[4, 8, 31, 49], and the latter only in China [56]. In China, to
date, genotype Peru6 has been identified in sheep and goats,
reindeers, red-crowned cranes, ducks, geese, and pigeons, as
well as in wastewater [25, 29, 62, 63]; genotype I has been

found in nonhuman primates, cats, a chicken, pigeons, pigs,
and golden takins [13, 16, 17, 37, 39, 59, 60].

In a phylogenetic analysis, all the three novel genotypes fell
into zoonotic group 1. Group 1 is reported to contain 94% of
the published ITS sequences of E. bieneusi and almost all the
human-pathogenic genotypes are in this group [33]. Thus, the
novel genotypes obtained here may have a large zoonotic
potential.

In the present study, it was observed that there were only
241 bp in the ITS region of novel genotype CHN-RR1. In fact,
length variation of the ITS region of the rDNA of E. bieneusi
has been found: 241 bp for genotypes CHN3, CHN4
and CHN5 from children in China [56], and 242 bp for
genotype CAF4 from a human in Gabon [6]. The ITS region
is 243 bp in length for the vast majority of E. bieneusi
genotypes.

Conclusion

Our present study demonstrated an occurrence of
C. cuniculus and E. bieneusi in rabbits in Heilongjiang
Province, China. All the C. cuniculus subtypes have previously
been reported in humans. All the known E. bieneusi genotypes
except CHN-RD1 are human-pathogenic, with all the novel
ones falling into zoonotic group 1. The facts above suggest
zoonotic potential of C. cuniculus and E. bieneusi isolates in
these animals. It is therefore necessary to make farmers and
veterinarians aware of the potential for zoonotic transmission
of cryptosporidiosis and microsporidiosis as a result of close
contact with infected rabbits.
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Table 2. Subtypes of C. cuniculus in humans and rabbits worldwide.

Host Country Va family Vb family Ref.

Human Australia VbA25 [22]
UK VaA9; VaA11; VaA18; VaA19; VaA21;

VaA22; VaA23
VbA20; VbA22; VbA25; VbA26;

VbA28; VbA29; VbA30; VbA32;
VbA33; VbA34; VbA36; VbA37

[10, 40]

VaA18; VaA22 [9]
VaA18; VaA22; VaA23; VaA32 [5]

Rabbit Australia VbA23R3; VbA26R4 [35]
VbA22R4; VbA23R3; VbA24R3;

VbA25R4; VbA26R4
[36]

China VaA31 [30]
VbA21; VbA32 [55]
VbA36; VbA35; VbA29 [46]
VbA28, VbA29 and VbA32 This study

Czech Republic VaA19 [9]
Poland VbA24 [20]
UK VaA18 [9]
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