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Gene expression profiles of tissues treated with drugs have recently been used to infer

clinical outcomes. Although this method is often successful from the application point

of view, gene expression altered by drugs is rarely analyzed in detail, because of the

extremely large number of genes involved. Here, we applied tensor decomposition

(TD)-based unsupervised feature extraction (FE) to the gene expression profiles of 24

mouse tissues treated with 15 drugs. TD-based unsupervised FE enabled identification

of the common effects of 15 drugs including an interesting universal feature: these

drugs affect genes in a gene-group-wide manner and were dependent on three tissue

types (neuronal, muscular, and gastroenterological). For each tissue group, TD-based

unsupervised FE enabled identification of a few tens to a few hundreds of genes affected

by the drug treatment. These genes are distinctly expressed between drug treatments

and controls as well as between tissues in individual tissue groups and other tissues.

We also validated the assignment of genes to individual tissue groups using multiple

enrichment analyses. We conclude that TD-based unsupervised FE is a promising

method for integrated analysis of gene expression profiles from multiple tissues treated

with multiple drugs in a completely unsupervised manner.

Keywords: tensor decomposition, unsupervised learning, gene expression profiles, gene selection, drug treatment

BACKGROUND

Drug design is a time-consuming and expensive process.Multiple coordinated experimental efforts,
involving large-scale trial-and-error methods, are required to investigate new compounds. In
general, this is due to the inherent difficulties in identifying novel therapeutic targets such as genes
that cause disease. Even where potential target genes are identified robustly, it is difficult to find
drug candidate compounds that successfully bind to the proteins they encode.

Computer-based methods have been introduced in an attempt to shorten the period of drug
development and to reduce the expenses involved. The two major computer-aided drug design
strategies are ligand-based drug design (LBDD) and structure-based drug design (SBDD). LBDD
has various advantages including less required computational resources and better success rates
for drug design. However, it also has the disadvantage of limited ability to find drug candidate
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compounds with low structural similarity to known drugs. To
compensate for the weaknesses of LBDD, SBDD shows a greater
ability to find drug candidate compounds lacking in structural
similarity with known drugs. This is because SBDD tries to
screen drug candidate compounds by investigating whether these
can bind to target proteins. The weak point of SBDD is that
it requires massive computational resources, and this prevents
its application to large-scale screening, in which candidate drug
compounds often number several million.

Considering the relatively low cost of obtaining gene
expression profiles, a third computer-aided strategy has been
proposed: gene expression profile-based drug design. In this
strategy, the gene expression profiles of tissues/cell lines treated
with candidate drug compounds are collected. The collected
profiles are then compared with those of tissues/cell lines treated
with known drug compounds. If the candidate drug compounds
share a gene expression profile to some extent with known drug
compounds, they are identified as having therapeutic potential
against target diseases/proteins.

Some databases have been established to assist gene expression
profiling for drug design. For example, chemical checker (Duran-
Frigola et al., 2020) includes gene expression in computer-aided
drug design, whereas PharmacoDB (Smirnov et al., 2017) is
fully implemented to consider the dose dependence of drug-
treated cell lines for drug design. Many papers have been
published on the use of gene expression profiles for computer-
aided drug design (Chengalvala et al., 2007; Bates, 2011). For
instance, Huang et al. (2019) used combinatorial analysis of
drug-induced gene expression for cancer drugs, which were then
experimentally confirmed in vitro. Lee et al. (2017) proposed
DeSigN, a robust and useful method for identifying candidate
drugs using an input gene signature obtained from gene
expression analysis. Kim et al. (2019) performed computational
drug repositioning for gastric cancer using reversal of gene
expression profiles, and De Wolf et al. (2018) analyzed high-
throughput gene expression profiles to identify similarities
between drugs and to predict compound activity. Hodos et al.
(2017) tried to fill in missing gene expression observations
in cells treated with drugs by predicting cell-specific drug
perturbation profiles using available expression data from related
conditions. Pabon et al. (2018) predicted protein targets for
drug-like compounds using transcriptomics. In contrast, Liu
et al. (2017) performed comparative analysis of genes that are
frequently regulated by drugs based on connectivity to map
transcriptome data.

In contrast to these successful applications of gene expression
profile analysis to computer-aided drug design, it is unclear how
individual gene expression is affected by drug treatment. First,
the number of genes expressed in a dose dependent-manner
is as large as the number of genes expressed. Thus, it is not
easy to invent a useful method to integrate and understand the
dose dependent-genes pertaining to individual gene expression
profiles. For example, Lukačišin and Bollenbach (2019) employed
principal component analysis (PCA) to integrate the dose
dependence of gene expression profiles upon combinatorial drug
treatment. They reported a convex (not monotonic) dependence
on dose density and identified this as evidence of the cooperative

effects of dual drug treatments. Nevertheless, convex dependence
on dose was reportedly observed in a single drug treatment if
tensor decomposition (TD) was employed to integrate multiple
gene expression profiles of cell lines treated with a single
drug (Taguchi, 2019). Thus, it is primarily important to identify
an effective method that can integrate numerous gene expression
profiles of tissues/cell lines treated with drugs.

Recently, Kozawa et al. (2020) used the gene expression
profiles of mouse tissues treated with drugs to predict
human clinical outcomes. In this paper, we applied TD-based
unsupervised feature extraction (FE) to the gene expression
profiles used in their study and attempted to identify the
changes in gene expression profiles of mouse tissues treated with
individual drugs.

METHODS AND MATERIALS

Figure 1 shows the flow chart of analysis.

Gene Expression Profiles
The gene expression profiles used in this study were
downloaded from the gene expression omnibus (GEO)
with GEO ID GSE142068. Twenty four profiles named
“GSE142068_count_XXXXX.txt.gz” were downloaded, where
“XXXXX” indicates one of the 24 tissues, i.e., AdrenalG, Aorta,
BM (Bone marrow), Brain, Colon, Eye, Heart, Ileum, Jejunum,
Kidney, Liver, Lung, Pancreas, ParotidG, PituitaryG, SkMuscle,
Skin, Skull, Spleen, Stomach, Spleen, Thymus, ThyroidG,
and WAT (white adipose tissue), which were treated with 15
drugs: Alendronate, Acetaminophen, Aripiprazole, Asenapine,
Cisplatin, Clozapine, Clozapine, Empagliflozin, Lenalidomide,
Lurasidone, Olanzapine, Evolocumab, Risedronate, Sofosbuvir,
and Teriparatide, and Wild type (WT).

TD-Based Unsupervised FE
For applying TD-based unsupervised FE (Taguchi, 2020) to the
downloaded gene expression profiles, they must be formatted as
a tensor. In this analysis, they were formatted as tensor, xijkm ∈

R
N×24×18×2, for N genes, 24 tissues, 18 drug treatments, and

two replicates. Then, the HOSVD (Taguchi, 2020) algorithm was
applied to xijkm and we obtained TD

xijkm =
∑

ℓ1ℓ2ℓ3ℓ4

G(ℓ1, ℓ2, ℓ3, ℓ4)uℓ1juℓ2kuℓ3muℓ4i (1)

where G ∈ R
N×24×18×2 is the core tensor, uℓ1j ∈ R

24×24, uℓ2k ∈

R
18×18,uℓ3m ∈ R

2×2, and uℓ4i ∈ R
N×N , represents singular value

matrices that are also orthogonal matrices. xijkm is considered to

be standardized as
∑

i xijkm = 0 and
∑

i x
2
ijkm

= N.

Mathematically, Equation (1) aims to decompose the
dependence of xijkm upon i, j, k,m into a series of products
among uℓ1j, uℓ2k, uℓ3m, and uℓ4i, each of which is supposed to
represent the dependence on i, j, k,m. As it is unlikely that a
single product of uℓ1j, uℓ2k, uℓ3m, and uℓ4i can reproduce xijkm,
we need to consider various combinations of uℓ1j, uℓ2k, uℓ3m,
and uℓ4i, where those associated with distinct ℓ1, ℓ2, ℓ3, ℓ4 are
supposed to be associated with distinct dependence on i, j, k,m.
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FIGURE 1 | Schematic of the analysis performed in this study.

Then, the products of uℓ1j, uℓ2k, uℓ3m, and uℓ4i, must be summed
up with the weight of G to reproduce xijkm. Biologically, we
cannot expect that uℓ1j, uℓ2k, uℓ3m, and uℓ4i can represent the
biological aspect because Equation (1) is simply a mathematical
hypothesis; therefore, their association with a biological aspect
after performing TD needs to be validated.

To understand how gene expression profiles are altered by
drug treatment in a tissue-group-wide manner, we first need to
investigate uℓ1j, uℓ2k, and uℓ3m. After identifying which ℓ1, ℓ2,
and ℓ3 are biologically interesting, we select ℓ4 associated with
G(ℓ1, ℓ2, ℓ3, ℓ4) that have the largest absolute values with fixed ℓ1,
ℓ2, and ℓ3, because uℓ4i associated with such ℓ4 is supposed to
represent the weight of gene i that is expressed in association with
j, k,m dependence represented by the selected uℓ1j, uℓ2k, uℓ3m.

Using the identified uℓ4i, the P-value, Pi, is attributed to gene i
as

Pi = Pχ2

[

>

(

uℓ4i

σℓ4

)2
]

(2)

where Pχ2 [> x] is the cumulative probability of χ2 distribution
and σℓ4 is the standard deviation. Here, we assume that uℓ4i

obeys a Gaussian distribution with zeromean because
∑

i xijkm =

0. Pi is corrected via the BH criterion (Burgos et al., 2014)
and I, a set of genes i associated with adjusted P-values

less than 0.01, is selected. For a more detailed explanation
of TD-based unsupervised FE, see the recently published
monograph (Taguchi, 2020).

t-Test and Wilcoxon Test Applied to Sets of
Genes Classified Based on Tissue Groups
and Drugs Groups
In order to determine whether the selected set of genes, I, are
expressed distinctly between the two assigned tissue groups, J,
{xijkm|i ∈ I, j ∈ J}, and J, {xijkm|i ∈ I, j ∈ J}, we applied a two-
way t test and Wilcoxon test and computed the P-values. Similar
analyses were done with two drug groups, K, {xijkm|i ∈ I, k ∈ K},

and K, {xijkm|i ∈ I, k ∈ K}.

Enrichment Analysis
The selected genes (gene symbols) were uploaded to
Enrichr (Kuleshov et al., 2016) and Metascape (Zhou et al.,
2019) in order to validate the various biological functions of the
selected genes.

RESULTS

Figure 2 summarizes the results obtained in this study.
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FIGURE 2 | Summary of the results obtained in this study.

Drug Treatment Specificity
After obtaining the TD, Equation (1), we first investigated uℓ2k

attributed to the kth drug. Although the number of drugs
tested is as many as 15, the total number of drug treatments
was considered to be 18 due to the testing of three additional
conditions. Usually, the first singular value vectors represent
uniform values (i.e., components that are not distinct between
samples) (Taguchi, 2020). In this case, u1k does not represent
any dependence on drug treatment. This is reasonable because
the expression of most genes is unlikely to be affected by
drug treatment. We thus considered the second and third
singular value vectors, u2k and u3k, attributed to drug treatments
(Figure 3). In contrast to expectations, the drug treatments were
quite universal. Most of the drug treatments [other than (2),
(9), (15), and (17)] were separated from the control treatments
[(2), (9), (15), and (17)] along one direction (red arrow) whereas
the diversity among drug treatments was spread perpendicular
(blue arrow) to that direction, only among drug treatments. This
suggests that the gene expression profiles are altered similarly,
independently of the drug treatment.

Tissue-Specificity
We further studied the relationship of universal drug treatments
with individual tissues. For this, we next investigated uℓ1j

attributed to 24 tissues. We then found that several uℓ1j are

expressed in a tissue-group wide manner (Figure 4). The tissue-
wide expression pattern identified by singular value vectors
is described as follows; As u1j does not express any tissue
specificities, it is unlikely to exhibit tissue specificity; as u2j has
larger absolute values for the brain, eye, pituitary, and testis,
it is likely to represent neuronal tissue specificities; as u3j has
larger absolute values only for the parotid, we did not consider
it further; as u4j exhibits larger absolute values for the heart and
SkMuscle, we considered that it exhibits muscle specificities; As
u5j and u6j exhibit larger absolute values for the pancreas and
stomach, we considered that it exhibits gastric tissue specificities.
It is thus obvious that the combination of tissue specificity is quite
reasonable biologically.

Aiming to specify singular value vectors attributed to genes,
uℓ4i, for gene selection, we then checked which of G(ℓ1, 2, 1, ℓ4)
and G(ℓ1, 3, 1, ℓ4) have larger absolute values, as u1m always
exhibits the same values between two replicates (Table 1).

For ℓ1 = 2, which is supposed to be attributed to neuron-
specific tissues (u2j), Gs with ℓ4 = 2 have larger absolute values.
Thus, u2i was employed for neuron-specific gene selection. For
ℓ1 = 4, which is supposed to be attributed to muscle-specific
tissues (u4j), Gs with ℓ4 = 4 have larger absolute values. Thus,
u4i was employed for muscle-specific gene selection. For ℓ1 = 5,
which is supposed to be attributed to gastrointestinal-specific
tissues (u5j), Gs with ℓ4 = 5 have larger absolute values. Thus,
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FIGURE 3 | Scatter plot between u2k and u3k attributed to drug treatment. Red and blue arrows represent distinct controls and drug treatments, and diversity among

drug treatments, respectively. (1) Alendronate, (2) APAP, (3) Aripiprazole, (4) Asenapine, (5) Cisplatin, (6) Clozapine, (7) Dox, (8) EMPA, (9) FivePercentSucrose,

(10) Lenalidomide, (11) Lurasidone, (12) Olanzapine, (13) Repatha, (14) Risedronate, (15) Sofosbuvir, (16) Teriparatide, (17) WT.No.treated,

(18) 5percentCMC0.25percentTween80.

FIGURE 4 | Singular value vectors, uℓ1 j , attributed to tissues. u1j : no tissue specificity. u2j : Brain Eye, Pituitary, and Testis, thus mostly neuron-specific. u3j :

Parotid-specific, u4j : Heart and SkMuscle, thus muscle-specific, u5j and u6j : stomach and pancreas, thus, gastrointestinal-specific.
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TABLE 1 | G(ℓ1, 2, 1, ℓ4) and G(ℓ1, 3, 1, ℓ4) for ℓ1 = 2, 4, 5, 6.

ℓ1 2 4

ℓ4 G(2, 2, 1, ℓ4) G(2, 3, 1, ℓ4) G(4, 2, 1, ℓ4) G(4, 3, 1, ℓ4)

1 131.248442 19.7819438 −98.4349019 −13.498228

2 −173.243689 −23.9915660 −4.8528076 1.113899

3 −11.859736 −3.2551088 −0.1595594 −1.116396

4 13.669561 2.4373120 −81.3734282 36.838277

5 26.610843 −0.3136913 −22.2440356 9.820737

6 −1.275395 4.5339065 −1.3753621 −5.318282

7 −18.306263 15.9791077 21.3673134 −11.230437

8 20.891762 26.5918473 3.9733331 −7.152480

9 21.836494 16.1461476 9.2972447 2.232529

10 11.717415 −12.8960548 1.4137802 −7.748038

ℓ1 5 6

ℓ4 G(5, 2, 1, ℓ4) G(5, 3, 1, ℓ4) G(6, 2, 1, ℓ4) G(6, 3, 1, ℓ4)

1 97.897860 −42.9481806 72.181307 27.3218396

2 9.267391 4.5503920 3.780984 6.3881436

3 −3.744432 0.2003586 2.340165 −0.2130656

4 1.648558 3.4031386 −9.812308 2.8751439

5 93.027741 −56.9322793 6.435061 8.5776220

6 −57.463765 23.2247109 −19.332916 34.1868710

7 28.276681 −26.9479131 30.604535 −18.8319412

8 12.884351 −13.8270607 1.798188 −10.6484624

9 −5.865058 1.0216563 9.581512 0.3507831

10 15.683762 3.7893181 −14.429706 −4.7985105

Values in bold correspond to those of ℓ4s used for gene selection with uℓ4 i .

TABLE 2 | Statistical tests for distinct expression between the specified tissues and other tissues, and between drug treatments and controls.

P-values by statistical tests

Tissues Drug treatment

ℓ1 Tissue

specificity

# of

Genes

Specified

tissues

t-test Wilcoxon

test

t-test

2 Neuron 18 Brain, Eye,

Pituitary,

Testis

2.14× 10−24 9.65× 10−49 0.22

4 Muscle 51 Heart,

SkMuscle

1.99× 10−55 2.67× 10−77 0.04

5 Gastrointestinal 97 Pancreas,

Stomach

8.48× 10−11 2.73× 10−40 8.13× 10−22

6 128 6.67× 10−8 8.69× 10−90 8.69× 10−90

u5i was employed for muscle-specific gene selection. For ℓ1 =

6, which is also supposed to be attributed to gastrointestinal-
specific tissues (u6j), Gs with ℓ4 = 6, 7 have larger absolute
values. Then, u6i and u7i were employed for muscle-specific
gene selection.

After computing the adjusted P-values, Pi, attributed to the
genes (see methods), the genes associated with adjusted Pi
<0.01 were selected (Table 2). The lists of selected genes can be

found in supporting information (Additional File 1). Figure 5
shows a Venn diagram of the selected genes. As expected,
two sets of genes, Gas1 and Gas2, which are supposed to be
gastrointestinal-specific, are quite common. Other than these,
the selected genes are quite distinct from one another. Thus,
TD-based unsupervised FE successfully identified the genes
whose expression was affected by the drugs in a tissue group-
specific manner.
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Confirmation of Differential Expression
In order to check whether the selected genes are expressed
distinctly between the specified tissues and other tissues, as well as
between drug treatments and controls, we first applied statistical

FIGURE 5 | Venn diagram of genes selected by TD-based unsupervised FE.

Neuron: genes associated with u2j , which is supposed to be neuron-specific.

Muscle: genes associated with u4j , which is supposed to be muscle-specific.

Gas1 and Gas2: genes associated with u5j and u6j , respectively, which are

supposed to be gastrointestinal-specific.

tests to the selected genes (Table 2). The data clearly showed that
for all cases, gene expression was distinct between the specified
tissues and other tissues as well as between drug treatments and

FIGURE 7 | PPI network provided by Metascape. Red: Gas1, Blue: Gas2,

Green: Muscle, Purple: Neuron.

FIGURE 6 | Heatmap of enrichment analysis provided by Metascape.
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TABLE 3 | Enrichment analysis for “Disease Perturbations from GEO up” and “Disease Perturbations from GEO down” by Enrichr.

Disease perturbations from GEO up

Term Overlap P-value Adjusted P-value

Neuron-specific genes

Amyotrophic lateral sclerosis DOID-332 mouse GSE3343 sample 685 5/138 1.16× 10−7 9.72× 10−5

Retinitis Pigmentosa C0035334 mouse GSE128 sample 33 5/338 9.57× 10−6 4.01× 10−2

Muscle specific

Polycystic Ovary Syndrome C0032460 human GSE6798 sample 292 21/306 2.87× 10−25 2.41× 10−22

Polycystic ovary syndrome DOID-11612 human GSE8157 sample 880 21/325 1.03× 10−24 4.32× 10−22

Insulin Resistance DOID-9352 human GSE36297 sample 581 20/290 4.52× 10−24 1.26× 10−21

Neurogenic Muscular Atrophy C0270948 rat GSE2566 sample 396 18/208 1.98× 10−23 4.15× 10−21

Nemaline myopathy DOID-3191 mouse GSE3384 sample 976 15/150 1.65× 10−20 2.77× 10−18

Psoriasis DOID-8893 mouse GSE27628 sample 822 18/346 2.06× 10−19 2.88× 10−17

Nemaline Myopathy C0206157 mouse GSE3384 sample 160 16/276 5.20× 10−18 6.24× 10−16

Muscular Dystrophy C0026850 mouse GSE2507 sample 405 16/278 5.84× 10−18 6.13× 10−16

Cystic fibrosis DOID-1485 mouse GSE3100 sample 1057 17/344 5.91× 10−18 5.51× 10−16

COPD - Chronic obstructive pulmonary disease C0024117 human GSE475 sample 343 16/289 1.09× 10−17 9.11× 10−16

Disease perturbations from GEO down

Term Overlap P-value Adjusted P-value

Gas1 genes

Pancreatitis DOID-4989 mouse GSE3644 sample 513 36/238 9.21× 10−45 7.73× 10−42

Skin squamous cell carcinoma DOID-3151 human GSE2503 sample 627 37/373 5.24× 10−39 2.20× 10−36

Pancreatic ductal adenocarcinoma DOID-3498 mouse GSE53659 sample 699 26/101 1.24× 10−38 3.48× 10−36

Pancreatic invasive intraductal papillary-mucinous carcinoma DOID-8150 human

GSE19650 sample 610

31/248 1.21× 10−35 2.54× 10−33

Cystic fibrosis DOID-1485 mouse GSE769 sample 1058 32/288 3.92× 10−35 6.58× 10−33

Acute pancreatitis C0001339 mouse GSE3644 sample 376 28/188 2.33× 10−34 3.26× 10−32

Cystic Fibrosis C0010674 mouse GSE769 sample 428 31/275 3.34× 10−34 4.00× 10−32

Chronic phase chronic myelogenous leukemia DOID-8552 human GSE5550 sample 456 30/270 7.05× 10−33 7.40× 10−31

Invasive ductal carcinoma DOID-3008 human GSE21422 sample 606 31/304 8.09× 10−33 7.54× 10−31

Eczema C0013595 human GSE6012 sample 268 26/163 1.06× 10−32 8.87× 10−31

Gas2 genes

Skin squamous cell carcinoma DOID-3151 human GSE2503 sample 627 51/373 9.37× 10−55 7.86× 10−52

Pancreatitis DOID-4989 mouse GSE3644 sample 513 45/238 1.14× 10−54 4.77× 10−52

Systemic lupus erythematosus DOID-9074 human GSE10325 sample 691 43/210 9.36× 10−54 2.62× 10−51

Systemic lupus erythematosus (SLE) DOID-9074 human GSE36700 sample 512 47/294 1.50× 10−53 3.15× 10−51

Invasive ductal carcinoma DOID-3008 human GSE21422 sample 606 44/304 5.90× 10−48 9.90× 10−46

Eczema C0013595 human GSE6012 sample 268 37/163 7.47× 10−48 1.04× 10−45

Malignant Melanoma C0025202 human GSE3189 sample 117 41/250 6.75× 10−47 8.09× 10−45

Chronic phase chronic myelogenous leukemia DOID-8552 human GSE5550 sample 456 41/270 1.91× 10−45 2.00× 10−43

Sickle Cell Anemia C0002895 human GSE9877 sample 109 37/197 1.61× 10−44 1.50× 10−42

Actinic keratosis C0022602 human GSE2503 sample 350 46/429 4.69× 10−44 3.94× 10−42

Diseases in bold correspond to those related to specific tissues. Up to the top 10 ranked terms are shown.

controls. Thus, TD-based unsupervised FE allowed us to select
the genes whose expression is coincident with uℓ2ks in Figure 3

and uℓ1js in Figure 4.

Biological Evaluation
Next, we evaluated the selected genes biologically. For this
purpose, we first uploaded the genes to Metascape (Figure 6).
Initially, we noticed that Gas1 and Gas2 largely shared
the enriched terms as expected, even though these two

gene sets were selected using distinct singular values (u5i
and u6i, u7i, respectively). In particular, it is important
to note that two KEGG terms, “mmu04971: Gastric acid
secretion” and “mmu04972: Pancreatic secretion” are shared
by Gas1 and Gas2, which are supposed to be Pancreas- and
Stomach-specific. In contrast, various muscle-related terms
are enriched in the Muscle gene set as expected, whereas
“GO:0002088: lens development in camera-type eye” is
enriched in the neuronal gene set. All of these results suggest
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TABLE 4 | Previously reported drug effects on neuron (brain and eye), muscle and pancreas tissues.

Tissue types

Drugs Neuron Muscle Pancreas or stomach

Alendronate Brain calcification (Oliveira and

Oliveira, 2016)

Muscle mass (Harada et al., 2015) Pancreatitis (Hung, 2014)

Acetaminophen (APAP) Brain (Ghanem et al., 2016) Skeletal muscle (Trappe et al., 2011) Pancreatitis (Chen et al., 2015)

Aripiprazole Brain activation (Myrick et al., 2010) Muscle spasms (*) Pancreatitis (Kiraly and Gunning,

2008)

Asenapine Cognitive and monoamine

dysfunction Elsworth et al. (2012)

Muscle rigidity(*) —

Cisplatin Prefrontal cortex (Huo et al., 2018) Muscle atrophy (Sakai et al., 2014) Pancreas (Yadav, 2019)

Clozapine Brain (Li et al., 2014) Myotoxicity (Reznik et al., 2000) Pancreatitis (Bergemann et al.,

1999)

Doxycycline Brain (Lucchetti et al., 2018) Smooth Muscle (Bendeck et al.,

2002)

Acute pancreatitis (Rawla and

Raj, 2017)

Empagliflozin Neurovascular unit and

neuroglia (Hayden et al., 2019)

Muscle sympathetic nerve

activity (Jordan et al., 2017)

Pancreatitis (Kishimoto et al.,

2019)

Lenalidomide Memory loss (Rollin-Sillaire et al.,

2013)

Muscle cramp (Reece et al., 2012) Pancreatic cancer (Ullenhag

et al., 2017)

Lurasidone Acute schizophrenia (Yasui-Furukori,

2012)

Muscle (*) —

Olanzapine Brain stem (Anwar et al., 2016) Acute muscle toxicity (Keyal et al.,

2017)

Pancreatitis (Kerr et al., 2007)

Repatha (Evolocumab) — Muscle-related statin

Intolerance (Nissen et al., 2016)

—

Risedronate (actonel) Ocular myasthenia (Raja et al., 2007) Muscle weakness (Badayan and

Cudkowicz, 2009)

Gastrointestinal

cancer (Vinogradova et al., 2013)

Sofosbuvir Ocular surface (Salman, 2016) Myositis (Patel et al., 2015) Pancreatitis (Margapuri and

Jubbal, 2019)

Teriparatide — Muscle cramp (Kakaria et al., 2005) Pancreatitis (*)

*Reported side effects.

that TD-based unsupervised FE selected the biologically
reasonable genes.

Figure 7 shows the protein-protein interaction (PPI) network
provided by Metascape. A high degree of connectivity was
obvious. Thus, TD-based unsupervised FE identified the sets
of genes among which PPI is enriched. Moreover, Gas1 and
Gas2 largely share the PPI network, whereas the neuronal and
muscular gene sets form their own PPI network within which
PPI is enriched. Thus, PPI analysis also indicated that TD-based
unsupervised FE identified biologically reasonable genes.

To eliminate the possibility that our results were specific
to the Metascape data set, we uploaded the genes selected
by TD-based unsupervised FE to Enrichr (Table 3). With this
data set, we observed clear detection of at least one tissue-
related disease for four sets of tissue-specific genes, validating the
Metascape-based results.

DISCUSSION

Although it is unclear why the 15 drugs affected the expression of
many common genes, a detailed investigation can allow further
interpretation. Table 4 shows the drugs’ effects on neuronal,
muscular, and pancreatic tissues. These data suggest that most
drugs simultaneously affect these three groups of tissues.

Our results are in contrast to the study that inspired our
work (Kozawa et al., 2020), in which the authors employed a fully
supervised approach requiring previous knowledge. Although
Kozawa et al. (2020) also aimed to infer the therapeutic and side
effects of drug treatments in humans based on gene expression in
drug-treated tissues, their analysis required previous knowledge
that is not needed for TD-based unsupervised FE. In this sense,
our approach has distinct potential that the original study could
not achieve.

In addition to the above-mentioned biological superiority
of TD-based unsupervised FE, this approach also has some
methodological advantages as follows. First, although we
classified 24 tissues into two groups based on the observation
of singular value vectors attributed to tissues, uℓ1j (Figure 4)
prior to the identification of differentially expressed genes, it
is computationally infeasible for other methods to classify 24
tissues into two groups before starting to seek differentially
expressed genes, as there are no criteria on how to divide
24 tissues into two groups. It is thus practically impossible
to analyze all possible divisions, as they number in the
millions. The same advantage is observed when grouping 18
drug treatments into two. This may be much easier than
classifying tissues, because some of the drug treatments are
obviously controls. Nevertheless, based upon the second and
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third singular value vectors attributed to drug treatments, u2k
and u3k (Figure 3), acetaminophen (APAP) and sofosbuvir
are grouped together with two control treatments. Such a
classification can never be proposed without TD. In this sense,
there is no computationally feasible method that can compete
with our method.

The biological basis for the two groups of drugs seen in
Figure 3 may be questioned. To clarify this point, we uploaded
two groups of drugs to DrugEnrichr (Kuleshov et al., 2020),
which evaluates the coincidence of genes targeted by the
uploaded drugs (Additional File 2). Based on the “Geneshot
Predicted from Co-expression” category in DrugEnrichr, we
found that there are at least as many as 164 genes targeted
by two drugs (APAP and Sofosbuvir) in group1 whereas 213
genes are targeted by at least two drugs among as many
as 13 drugs included in group2 (Alendronate, Aripiprazole,
Asenapine, Cisplatin, Clozapine, Dox, EMPA, Lenalidomide,
Lurasidone, Olanzapine, Repatha, Risedronate, Teriparatide).
This suggests that these two groups of drugs are quite distinct
because there are no common targeted genes between these
164 and 213 genes. Thus, the groups of drugs identified by TD
based unsupervised FE are likely based on the genes that the
drugs target.

In view of the two above-mentioned advantages, TD-
based unsupervised FE might yield completely distinct
outcomes that other supervised methods cannot, and it
therefore represents a worthwhile primary or supplementary
approach to gene-expression-based investigation of
drug effects.

One might wonder if the results were confirmed only by
single experiments. As the results shown in Table 3 indicate
coincidence between the present result and other studies, the
results derived in this study are not dependent on a single
study, but are coincident with numerous studies in the public
domain database.

Moreover, TD-based unsupervised FE is a very useful strategy
for repositioning known drugs. As shown in Figure 3, TD-
based unsupervised FE can determine the effective tissue.
Furthermore, as indicated in Table 3, the genes selected by TD-
based unsupervised FE can indicate the diseases for which the
drugs have potential effectiveness. Therefore, applying TD-based
unsupervised FE to gene expression profiles altered by drug
treatments can be a promising strategy to repurpose known drugs
for new diseases.

CONCLUSIONS

In this paper, we applied TD-based unsupervised FE (Taguchi,
2020) to the gene expression profiles of 24 mouse tissues treated
with 15 drugs. Integrated analysis allowed us to identify the
universal nature of drug treatments in a tissue-group-wide
manner, which is generally impossible to identify using any other
supervised strategy that requires prior information.
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