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Abstract

Introduction Heterochromatin protein 1 (HP1) associates with
chromatin by binding to histone H3 and contributes to gene
silencing. There are three isoforms of HP1 in mammals: HP1a,
B, and y. Studies have shown that the level of HP1a is reduced
in invasive human breast cancer cell lines such as MDA-MB-231
and HS578T compared with non-invasive cell lines such as
MCF7 and T47D. It is hypothesized that reduced HP1a
expression may lead to impaired epigenetic silencing of genes
that are important in the acquisition of an invasive phenotype.
We set out to determine whether reduced expression of HP1a
in invasive breast cancer cell lines occurs at the level of
transcription.

Methods We used transient transfection assays to investigate
the mechanism of differential transcriptional activity of the
human HP1a gene promoter in different cell lines. Mutational
analysis of putative transcription factor binding sites in an HP1o
gene reporter construct was performed to identify transcription
factors responsible for the differential activity. SIRNA-mediated
knockdown and chromatin immunoprecipitation experiments

were performed to determine the role of a specific transcription
factor in regulating the HP1a gene.

Results The transcription factor yin yang 1 (YY1) was found to
play a role in differential transcriptional activity of the HP1a
gene. Examination of the YY1 protein and mRNA levels revealed
that both were reduced in the invasive cell line HS578T
compared with MCF7 cells. YY1 knockdown in MCF7 cells
resulted in a decreased level of HP1ao mRNA, indicating that
YY1 positively regulates HP1a expression. Chromatin
immunoprecipitation experiments verified YY1 occupancy at the
HP1a gene promoter in MCF7 cells but not HS578T cells.
Overexpression of YY1 in HS578T cells decreased cell
migration in a manner independent of HP1a overexpression.

Conclusions Our data suggests that a reduction of YY1
expression in breast cancer cells could contribute to the
acquisition of an invasive phenotype through increased cell
migration as well as by reduced expression of HP1a..

Introduction

Heterochromatin protein 1 (HP1) was first identified in Dro-
sophila as a non-histone component of chromatin [1]. Muta-
tions in the HP1 gene resulted in suppression of position-
effect variegation, a result that implicated HP1 in chromatin
structure and gene expression [2]. Mutation of the gene
encoding HP1 in Drosophila resulted in larval lethality [3].
Examination of HP1 mutant embryos revealed defects in chro-
mosome segregation and telomere maintenance [4,5]. There-
fore, HP1 is thought to play an essential role in
heterochromatin-dependent processes in Drosophila. HP1

can also be found in certain euchromatic loci, implying its role
in euchromatic regions [6,7].

HP1 homologues have been identified in a variety of organ-
isms including yeast, nematodes, insects, chickens, frogs, and
mammals [8]. There are three HP1 isoforms in mammals:
HP1a, B and y [9,10]. Each HP1 isoform has a different chro-
mosomal distribution. HP1a is located mainly in heterochro-
matic regions, HP1f is found in both heterochromatic and
euchromatic regions, and HP1y is located almost exclusively in
euchromatic regions [11-13]. The localization of HP1 isoforms
to different regions of chromatin implies that each isoform

BSA: bovine serum albumin; CD: chromodomain; ChIP: chromatin immunoprecipitation; CSD: chromoshadow domain; DMEM: Dulbecco's Modified
Eagle Medium; HNRPAT1: heterogeneous nuclear ribonucleoprotein A1; HP1: heterochromatin protein 1; NRF-1: nuclear respiratory factor-1; PBS:
phosphate-buffered saline; RT-PCR: reverse transcription polymerase chain reaction; YY1: ying yang 1.
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plays a unique role in chromatin structure and transcriptional
regulation.

AllHP1 family members share a similar structure: an amino-ter-
minal chromodomain (CD), a variable hinge region and a car-
boxy-terminal chromoshadow domain (CSD) [8]. HP1
associates with chromatin primarily through the CD, which
binds to the histone-fold domain of histone H3 [13,14]. This
interaction is stimulated by methylation of the H3 histone tail
on lysine 9 [15,16]. It has therefore been suggested that the
repressive effect of H3K9 methylation is mediated, in part, by
HP1. HP1a can also interact with histone H1 [13,17,18]. In
addition, RNA may play a role in targeting HP1a. to pericentric
heterochromatin by interacting with the hinge region [19]. An
interaction between HP1a and the histone variant H2A.Z may
contribute to the compaction of heterochromatic domains
[20]. However, the mechanism by which different isoforms of
HP1 occupy distinct regions of chromatin remains unclear.

Although HP1 associates with chromatin via the CD, the CSD
of HP1 can mediate interactions with a number of different
proteins [21]. The CSD can bind HP1 itself, allowing HP1 to
hetero- and homo-dimerize [13]. This interaction is thought to
contribute to the compaction of heterochromatic domains. The
CSD can also bind the histone methyltransferase SUV39H1,
an interaction that may facilitate spreading of heterochromatin
to adjacent loci [22,23]. The CSD mediates the interaction
between HP1 and the co-repressor KAP-1 (TIF1B, KRIP1),
which can result in mitotically-heritable gene silencing [24,25].
Interaction between HP1o and y and the TFIID subunit TAF4
(TAF,130) is also mediated by the CSD and may be responsi-
ble for dissociation of TAF4 from promoter regions upon HP1
binding [26,27]. The ability of the CSD to associate with such
a functionally diverse group of proteins suggests that HP1
exerts its effects on gene expression through a variety of
mechanisms.

It has been reported that HP1a expression is reduced in inva-
sive human breast cancer cell lines such as HS578T and
MDA-MB-231 compared with non-invasive breast cancer cell
lines such as MCF7 and T47D [28]. Over-expression of HP1a.
in the invasive cell line MDA-MB-231 reduced its in vitro inva-
sive potential [29]. Reducing the expression of HP1a in MCF7
cells increased their invasive potential without affecting their
rate of growth [30]. This data suggests that HP1a acts as a
metastasis suppressor in breast cancer cells. In addition,
reduction of HP1a expression has been observed in meta-
static colon cancer cell lines compared with non-metastatic
cell lines, in desmoplastic vs. classic meduloblastoma, and in
papillary thyroid carcinoma compared with normal thyroid tis-
sue [31-33].

HP1a is one of many proteins that have been identified as
metastasis suppressors. These proteins have roles in diverse
cellular functions including cell adhesion and migration as well
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as cell signaling [34]. The role of HP1a in epigenetic gene
silencing makes it a unique metastasis suppressor. A
decrease in HP1a expression could disrupt the epigenetic
program of the cell, altering gene expression at a global level.
Therefore, it has been hypothesized that decreased expres-
sion of HP1a in breast cancer cells leads to deficient epige-
netic silencing of genes that promote a metastatic phenotype.
We set out to determine the mechanism by which HP1a
expression is reduced in highly invasive breast cancer cells.

To address this question we used the MCF7 and HS578T
breast cancer cell lines as models of non-invasive and invasive
breast cancer, respectively. To study the transcriptional activ-
ity of the HP1a. gene promoter in these cell lines we sub-
cloned the human HP1a gene promoter region into a luci-
ferase reporter construct. Using the Transcription Element
Search Software (TESS) database, we identified several
highly conserved transcription factor binding motifs in the
HP1 o promoter region [35]. We then used site-directed muta-
genesis to assess the importance of each motif in the tran-
scriptional activity of the HP1a gene promoter in each cell line.
Our study suggests that the transcription factor yin yang 1
(YY1) may be involved in the differential expression of HP1a
in MCF7 and HS578T cells. In addition, we demonstrate that
YY1 overexpression suppresses HS578T cell migration in
vitro. We conclude that decreased YY1 expression may con-
tribute to the invasive phenotype of metastatic breast cancer
cells.

Materials and methods

Cell culture

Cell lines were obtained from American Type Culture Collec-
tion (ATCC) and maintained in Dulbecco's Modified Eagle
Medium (DMEM; Invitrogen, Carlsbad, CA, USA) supple-
mented with 10% fetal bovine serum (Gemini Bio-Products,
West Sacramento, CA, USA) and 1% penicillin/streptomycin/
glutamine mixture (Invitrogen, Carlsbad, CA, USA). Culture
medium for the HS578T cell line was supplemented with 0.01
mg/ml bovine insulin (Invitrogen, Carlsbad, CA, USA).

Analysis of the HP1u gene promoter region

The University of California Santa Cruz (UCSC) genome
browser [36] was used to determine which nucleotides in the
HP1a promoter region are conserved between human,
mouse, rat and chimpanzee. The sequence of the HP1a gene
promoter region was entered into the TESS database to iden-
tify transcription factor binding motifs [35]. Motifs with high
similarity to a consensus binding site and high sequence con-
servation between species were noted.

Construction of reporter constructs

Portions of the HP1a gene promoter region were PCR-ampli-
fied from a BAC clone [GenBank:AC078778] containing a
portion of human chromosome 12. The PCR-amplified frag-
ments were sequenced and ligated into the pGL3 luciferase
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reporter vector (Promega, Madison, WI, USA) digested with
Hindlll and Xhol. Primer sequences are available upon
request.

Site-directed mutagenesis

The QuikChange Site-Directed Mutagenesis kit (Stratagene,
La Jolla, CA, USA) was used according to the manufacturer's
instructions. Mutations in transcription factor binding sites
were as follows: site YY1.1 was changed from AAATGG to
AAGCTT, site YY1.2 was changed from AAAATGGCG to
AAAGCTTCG, the E-box site was changed from CACGTG to
CGATCG, and site NRF-1.3 was changed from TGCGCAG-
GCGCA to TGCGCATATGCA. In each case, nucleotides
reported to be critical for factor binding were changed. The
YY1.2 mutation abolished YY1 binding (see text), and the
NRF-1.3 mutation abolished NRF-1 binding as determined by
electrophoretic mobility shift assay (EMSA) (data not shown).

Real time RT-PCR

RT-PCR was performed using the Roche LightCycler instru-
ment. Reactions were carried out in LightCycler capillaries (20
ul) (Roche, Indianapolis, IN, USA) and contained SYBR.
Green Taq ReadyMix (Sigma, St. Louis, MO, USA), Enhanced
avian reverse transcriptase (Sigma, St. Louis, MO, USA) (2
units/reaction), and 250 nM forward and reverse primers.
Reactions contained 400 ng of template RNA with the excep-
tion of the 28S-specific reactions, which contained 5 ng of
template RNA. Reverse transcription was performed at 61°C
followed by a 95°C denaturation step. The annealing temper-
ature for all reactions was 60°C.

Western blotting

Concentrations of protein samples were quantified using
Bradford reagent (BioRad, Hercules, CA, USA). Samples
were run on gels containing 8 or 10% acrylamide (National
Diagnostics, Atlanta, GA, USA) and then transferred to nitro-
cellulose membranes, which were blocked with tris-buffered
saline with Tween (TBST) containing 5% milk. The mem-
branes were probed with antibodies against HP1a (Millipore
#07-346, Billerica, MA, USA), YY1 (Santa Cruz Biotechnol-
ogy sc-7341X, Santa Cruz, CA, USA), hnRPA1 (Abcam
ab5832, Cambridge, MA, USA), or B-tubulin (Covance TU27
MMS410P, Princeton, NJ, USA). Signal was detected using
horseradish peroxidase-conjugated secondary antibody and
developed using the BioRad Immun-Star reagents (Hercules,
CA, USA).

Luciferase and -galactosidase assays

Cells were plated in 35 mm culture dishes (105 cells/dish). On
the following day cells were transfected with plasmid DNA
(0.5 g total) using 1.5 pl TransIT-LT1 reagent (Mirus, Madi-
son, WI, USA) per plate. Each plate was transfected with 0.25
ng of luciferase reporter plasmid and 0.25 ng of the CMV-f3-
galactosidase plasmid. The final concentration of plasmid
DNA was 0.5 ng/pl. After 6 to 8 hours cells were washed with
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phosphate-buffered saline (PBS) and re-fed. The next day
plates were washed with PBS and cells were harvested using
0.4 ml Triton/Gly-Gly lysis buffer (25 mM Gly-Gly, pH 7.8; 15
mM MgSO,; 4 mM ethylene glycol tetraacetic acid (EGTA);
1% Triton X-100; 1 mM dithiothreitol (DTT)). Luciferase
assays were performed by adding 50 pl of cell lysate to 300 pl
of luciferase reaction solution (27 mM Gly-Gly, pH 7.8; 16 mM
MgSO,; 0.1 mg/ml BSA; 1 mM DTT; 1 mM ATP). The sample
was put in a luminometer (EG&G Berthold Lumat LB 9507,
Oak Ridge, TN, USA), which injected 100 pl of 1 mM D-luci-
ferin into each sample and measured the light emission for 10
seconds. B-galactosidase assays were carried out by adding
50 ul of cell lysate to 500 ul of Lac-Z reaction buffer (100 mM
sodium phosphate, pH 6.95; 10 mM KCI; 1 mM MgSO,;
0.21% B-mercaptoethanol), followed by addition of 100 ul of
o-nitrophenyl-B-D-galactopyranoside (ONPG) (4 mg/ml). The
reactions were stopped by addition of 1 M Na,COg and quan-
tified by measuring the absorbance at 420 nm. Transfection
and reporter assays were performed at least three times and
the result of a representative experiment is shown.

siRNA knockdown experiments

MCF?7 cells were plated in 60 mm dishes (105 cells/dish). The
following day the cells were transfected with siRNA using Oli-
gofectamine reagent (Invitrogen, Carlsbad, CA, USA). siRNA
oligos were diluted to 500 nM with Opti-MEM (Invitrogen,
Carlsbad, CA, USA). Oligofectamine reagent (2.8 pl/plate)
was diluted approximately 1:100 in Opti-MEM and allowed to
stand at room temperature for five minutes. siRNA and Opti-
MEM dilutions were then mixed at a 1:1 ratio and allowed to
stand at room temperature for 20 minutes before adding to
plates of cells. The final concentration of siRNA in each plate
was 50 nM. The following day the plates were washed with
PBS and re-fed with DMEM containing 10% fetal bovine
serum. Five days after transfection RNA and protein were iso-
lated using TRI Reagent (Sigma, St. Louis, MO, USA) accord-
ing to the manufacturer's instructions. siRNA oligos were
purchased from Dharmacon and were specific for luciferase
(sense strand 5'-CUUACGCUGAGUACUUCGA-3') or YY1
(oligo 59: sense strand 5-AAGAUGAUGCUCCAAGAAC-3';
oligo OT: sense strand 5'-CAUAAAGGCUGCACAAAGA-3').

Electrophoretic mobility shift assay

Probes were prepared by end-labeling each oligo (wild type
probe: 5'-GCGCAAAACTCGCCATTTTACTACACG-3' and
its complementary sequence; YY1 mutant probe: 5'-GCG-
CAAAACTCGAAGCTTTACTACACG-3' and its complemen-
tary sequence) with y-32P ATP using T4 polynucleotide kinase
(Promega, Madison, WI, USA). Radiolabeled probes were
purified using Quick Spin Columns (Roche, Indianapolis, IN,
USA). A 6% TBE (tris, boric acid, edta)-polyacrylamide gel
was poured and allowed to polymerize overnight. Nuclear
extract (25 ug) was incubated on ice for 15 minutes in EMSA
buffer (6 mM Tris, pH 8.0; 6 mM MgCl,; 150 mM NaCl; 1 mM
DTT) containing 10 pg/ml BSA, 10 pug/ml poly (dI-dC), 50 ng/
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ml salmon sperm DNA (Invitrogen, Carlsbad, CA, USA). One
ug of antibody against AcKOH3 (Upstate #06-599) or YY1
(Santa Cruz sc-7341X) was then added to the appropriate
samples, and all samples were incubated at room temperature
for 30 minutes. One pl of the appropriate radiolabeled probe
was then added and the samples (10 pl total volume) were
incubated at room temperature for 30 minutes. Samples were
run on a 6% polyacrylamide gel (pre-run for 30 minutes) at
80V for approximately 1.5 hours. The gel was dried and
exposed to film.

Chromatin immunoprecipitation assay

The chromatin immunoprecipitation (ChlP) assay was carried
out as previously described [37] with the exception of the son-
ication step. The chromatin was sonicated in a dry ice/ethanol
bath for 10 minutes at amplitude of 40% to generate DNA
fragments between 150 and 350 bp in length. Samples
included either 2 ng normal mouse IgG, 0.2 pl nuclear respi-
ratory factor-1 (NRF-1) antibody [38] or 4 pg YY1 antibody
(Santa Cruz sc-1703). PCR was performed using 5 pl of the
ChlP-enriched DNA in a 25 pl reaction. The reaction was car-
ried out for 34 cycles with an annealing temperature of 60°C.
PCR products were stained with SYBR Green | nucleic acid
gel stain (Invitrogen, Carlsbad, CA, USA) and run on a 2%
low-melt agarose gel. The gel was visualized using a Typhoon
scanner (GE Healthcare, Piscataway, NJ, USA) and the inten-
sity of each band was quantified using ImageQuant software
(Molecular Dynamics, Sunnyvale, CA, USA). Primer
sequences are available on request.

Cell invasion/migration assays

HS578T cells were split 1:6 and transfected the next day with
6 ug of either an empty vector (CMV-empty) or a YY1 overex-
pression vector (0CDNA3 HA-YY1) using TransIT-LT1 rea-
gent (Mirus, Madison, WI, USA). After 72 hours the cells were
treated with Versene-EDTA (Cambrex Bio Science, East
Rutherford, NJ, USA) and were resuspended in migration
buffer (DMEM without phenol red (Mediatech, Manassas, VA,
USA), 1% BSA, 1 uM MgCl,, 0.2 uM MnCl,). Migration tran-
swells (Corning, Lowell, MA, USA) and matrigel invasion
chambers (BD Biosciences, Franklin Lakes, NJ, USA) were
prepared according to the manufacturer's protocols. 10° cells
were used for each migration assay and 5 x 104 cells for each
invasion assay. Twenty-four hours later the migration and inva-
sion chambers were cleaned with cotton-tip applicators and
stained for 15 minutes in crystal violet solution (diluted 1:5 in
dH,O from a stock of 2 mg/ml in methanol). The membranes
were destained in dH,0O and allowed to dry overnight. The
stain was eluted from the migration membranes using 10%
acetic acid, and the eluate was read at OD 600 nm in a Versa-
max microplate reader (Molecular Devices, Sunnyvale, CA,
USA). The invasion membranes were removed, and mounted
on slides using Permount (Fisher Scientific, Pittsburgh, PA,
USA). The cells in 8 to 10 high-power fields (200x magnifica-
tion) were counted and averaged for each membrane.
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Results
Differential transcriptional activity at the HP10 gene

promoter in MCF7 and HS578T cells

We cloned the upstream sequence of the human gene encod-
ing HP1a, which shares a 603 bp intergenic region with the
gene encoding heterogeneous nuclear ribonucleoprotein A1
(HNRPAT; Figure 1a). We used the UCSC genome browser
[36] to look for areas of sequence conservation between spe-
cies in the region between the HP1a and HNRPA1 gene tran-
scriptional start sites. Part of the sequence of the intergenic
region is depicted in Figure 1b. Nucleotides that are con-
served between human, mouse, rat, and chimpanzee are indi-
cated in red. Note the high degree of sequence conservation
in the intergenic region. Next, we used the TESS database to
identify potential transcription factor binding sites in this
region (Figure 1b) [35]. The HP1a gene promoter has been
shown to be a target of E2F1 and E2F4 as well as NRF-1
[37,39]. It is therefore not surprising that we identified a highly
conserved E2F binding motif, as well as three highly con-
served NRF-1 binding motifs. We also noted the presence of
an E-box site, which has been suggested to be involved in dif-
ferential expression of HP1a between MCF7 and MDA-MB-
231 cells [40], and two highly conserved YY1 binding motifs.
We performed quantitative RT-PCR analysis to determine rel-
ative mRNA levels of HP1a and HNRPA1 in MCF7 and
HS578T cells. In agreement with previously published data
[28,29], expression of HP1a mRNA and protein is lower in
HS578T and MDA-MB-231 cells than in MCF7 cells (Figures
1¢, d; data not shown). In contrast, we found that the expres-
sion of HNRPA1 mRNA and protein does not differ between
these two cell lines (Figures 1c, d).

The relative difference in HP1o mRNA level between non-inva-
sive and invasive breast cancer cell lines can be attributed to
a difference in transcriptional activity or a difference in mMRNA
stability. To test if it is due to a difference in mMRNA stability, we
determined the mRNA half-life in MCF7 and MDA-MB-231
cells using actinomycin D treatment followed by quantitative
RT-PCR. We found that the half-life of HP1o mRNA is approx-
imately 12.5 hours in both cell lines (data not shown). There-
fore, as a whole, our data suggest that there is a difference in
transcriptional activity at the HP1a gene promoter between
different cell lines.

A YY1 site in the HP1a promoter region is involved in
differential transcriptional activity between MCF7 and
HS578T cells

To determine the level of transcriptional activity at the HP1a
gene promoter we sub-cloned the promoter region into a luci-
ferase reporter construct. We made several luciferase con-
structs, one containing the entire bidirectional promoter region
(CbxD98) and others containing truncations of the promoter at
the 5' end (CbxU283 and CbxU146; Figures 1b and 2a). We
also explored the possibility that sequence downstream of the
start site may be involved in differential expression and found
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Figure 1
(a) | 603 bp intergenic region |
HNRPA1 ]YQ‘ HP1a
1
CbxD98 1
E-box NRF-1 E2F
(b)
-315 GTCGCTTGGCAAAGCATGATTAACACTATGTAFTAGACAAGCAGCCAGGAGGTA
CbxU283
-261 ACAATTTTTTTGCAATGAACTCTTGTTGACCGCACGTGTAGTAAAATGGCGAGT
E-box YY1
207 TTTGCGCAGGCGCATTAAGAAGTTCCACCTGCCTCTGAGAACACGTGAAATGGC
NRF-1 YY1
-153 GGGCAGG{%GTAGGCAGTGAACCTACGGCGCCTGCGTGTTGGCGGGAGTTTGTCC
CbxU146
-99 TAGCTTTGCGCATGCGTAGTGGGCGGAGAAAAAAGGTCCGGTCCCAGGATTGGT
NRF-1 HFr’la
-45 TGCGCAGGCGCAGGGAAGGATCCGTTTTGGCGGGCGGTTGGCGTTGCGCAGAAG
NRF-1 E2F +
(c) )
14
=12 B MCF7 _NICF7 8578 HP1a
: EHS578T T : — -
E 1
Zos [ [ iNRPA
_02-‘ 0.6 — _
304 — - YY1
o
[ -
0
HP 1o HNRPA1 YY1

HP1a expression is down-regulated in the invasive cell line HS578T compared with the non-invasive cell line MCF7. (a) A schematic of the human
HP1a gene promoter region. The positions of transcription factor binding motifs as well as the 5' end of the CbxD98 luciferase reporter construct
are noted. (b) The sequence of the proximal HP1a. gene promoter region. Nucleotides in red are conserved (identical) between human, mouse, rat
and chimpanzee. Transcription factor binding motifs are underlined. The 5' ends of the CbxU283 and CbxU146 luciferase reporter constructs are
noted. (¢) mRNA expression of HP1a, heterogeneous nuclear ribonucleoprotein A1 (HNRPA1), and ying yang 1 (YY1) in MCF7 and HS578T cells.

Quantitative RT-PCR results were normalized to the level of 288S riboso
YY1 in MCF7 and HS578T cells.

mal RNA. (d) Western blots showing protein levels of HP1a,, HNRPA1, and

the sequence to have no effect on promoter activity (data not
shown). Because it is difficult to directly compare luciferase
activity levels between two cell lines, we decided instead to
observe differences in the trend of luciferase activity of differ-
ent constructs in each cell line. Therefore, the luciferase activ-
ity of each construct in Figure 2a is represented as a
percentage of the activity of the CbxD98 construct. Truncating
a portion of the promoter between -594 and -283 resulted in
increased luciferase activity in both cell lines (compare
CbxD98 and CbxU283 in Figure 2a). Truncation of the

sequence between -283 and -146 caused a reduction in luci-
ferase activity. Interestingly, this reduction in luciferase activity
was more pronounced in MCF7 cells than in HS578T cells
(compare CbxU283 and CbxU146 in Figure 2a). The results
suggest that the region between -283 and -146 may be impor-
tant for higher expression of HP1a in MCF7 cells as observed
in Figure 1c.

To determine which binding motifs in the region between -283
and -146 may be important for differential promoter activity, we
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Figure 2

(@)

CbxD98

50 100 150 200 250
Percent of CBXD98 activity (RLU)

(b) 283 I T T T T T
WT OMCF7
CbxU283 (wild-type) +98 W HS578T
M1
YY1.1 mutated
M2
YY1.2 mutated
M3

YY1.1&YY1.2 mutated
M4 —
E-box mutated

M5
NRF-1 mutated
M6
NRF-1&YY1.2 mutated

-146
CbxU146

25 50 75 100 125 150
Percent of CBXU283 activity (RLU)

Mutation of a YY1 site in an HP1a. gene promoter reporter construct
has a more pronounced effect in MCF7 cells than in HS578T cells. (a)
Reporter constructs representing the HP1a promoter region. Three
HP1a constructs with the same 3' end and different truncations of the
5' end were transfected into MCF7 and HS578T cells. The luciferase
activity of each construct is represented as a percentage of the activity
of the CbxD98 construct. RLU = relative luciferase units. (b) Mutational
analysis of the CbxU283 construct. The luciferase activity of each con-
struct is represented as a percentage of the activity of the wild type
construct. Only mutation of site ying yang 1 (YY1).2 consistently
resulted in a differential effect in MCF7 and HS578T cells. P value was
calculated using a two-sample unequal variance student t-test. * P =
0.002.

introduced mutations into four putative transcription factor
binding sites in the region in the CbxU283 construct (Figure
1b). These binding sites included an NRF-1 site, two YY1
sites, and one E-box site. In Figure 2b, the luciferase activity of
each mutant construct is displayed as a percentage of the
activity of the wild-type CbxU283 construct. Each mutation
had an effect on the promoter activity that was comparable in
both cell lines; however, the only mutation that consistently
had a differential effect between the two cell lines was the
mutation in the YY1.2 site (the distal YY1 site, construct M2).
The YY1.2 mutation caused a more pronounced reduction in
promoter activity in MCF7 cells than in HS578T cells similar to
what was observed for CbxU146 (Figure 2b). These results
suggest that YY1 may play a role in the differential expression
of HP1a between MCF7 and HS578T cells.
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YY1 is a positive regulator of HP1a expression

To determine what role YY1 plays in HP1a expression we per-
formed siRNA knockdown experiments. MCF7 cells were
transfected with siRNAs against YY1 or, as a control, an
siRNA against luciferase. Two different YY1-specific siRNA
oligos (59 and OT) were used to account for possible off-tar-
get effects. Five days after transfection with siRNA, protein
and RNA were collected. Both of the YY1-specific siRNAs
were effective in reducing the level of YY1 protein (Figure 3a).
Quantitiative RT-PCR was used to determine the effect of YY1
knockdown on the expression of several mMRNAs (Figure 3b).
The level of HP1a mRNA was reduced significantly following
YY1 knockdown. In contrast, the level of HNRPA1 mRNA was
unaffected by YY1 knockdown. In addition, the levels of HP1(3
and HP1y mRNAs were relatively unaffected by YY1 knock-
down. The fact that YY1 knockdown had a specific negative
effect on HP1a expression led to the conclusion that YY1 is a
positive regulator of HP1a expression.

Differential expression of YY1 leads to a lower level of

YY1 DNA binding in HS578T cells compared with MCF7
cells

The results of the luciferase experiments indicated that YY1
might play a role in the differential expression of HP1a in
MCF7 and HS578T cells. An examination of the YY1 mRNA

Figure 3

(a) YY1
siRNA: Luc 59 oT

- Yyt
- — ’ B-tubulin

(b)
_ 18
Q16 I dLuc —
D 44 EYY1-59 —
< 12 OYY1-OT
T T
X 1
E o8 T
2 o6
T 04 -
s | x
O -
HP1a HNRPA1 HP1p HP1y

YY1 is a positive regulator of HP1a expression. (a) MCF?7 cells were
transfected with an siRNA targeting luciferase (Luc) or ying yang 1
(YY1; 59, OT), and protein and RNA were extracted five days later.
Western blot shows levels of YY1 and B-tubulin following knockdown
with the indicated siRNA. (b) Relative mRNA levels were determined
using quantitative RT-PCR. Quantitative RT-PCR results were normal-
ized to the level of 28S ribosomal RNA. HNRPA1 = heterogeneous
nuclear ribonucleoprotein A1.




and protein levels showed that they are both reduced in
HS578T cells compared with MCF7 cells (Figure 1c, d). This
is significant, because our knockdown experiment indicated
that YY1 is a positive regulator of HP1a expression. We used
gel shift experiments to determine if a lower level of YY1
expression in HS578T cells resulted in decreased binding of
YY1 to the YY1.2 site in vitro. Labeled probes containing the
wild type or mutant YY1.2 sequence were incubated with
nuclear extract from MCF7 or HS578T cells. The YY1-specific
shift was only visible when we used MCF7 nuclear extract,
indicating that there was not likely to be enough YY1 in the
HS578T extract to produce a visible shift (Figure 4, compare
lanes 2 and 5). The identity of the YY1-shifted species was
confirmed by super-shift with an antibody against YY1 (Figure
4, lane 4 asterisk). Note the presence of a nonspecific band
that was not shifted by the YY1-specific antibody. An unre-
lated antibody (against Ac H3K9) did not produce a super-
shift (Figure 4, lane 3). The shifted band representing the YY1
protein-DNA complex was present only when the wild type
probe was used, indicating that the mutation introduced into
the YY1.2 site effectively disrupted YY1 binding (Figure 4,
compare lanes 2 and 9). When more nuclear extract from
HS578T cells was used, we observed a faint YY1 shift in the
HS578T samples consistent with a low level of YY1 protein in
these cells (data not shown).

Figure 4
Nuclear extract: - _MCF7 HS578T - _MCF7 _HSS578T
Control Ab: + # + +
YY1 Ab: + + + +

9 10 11 12 13 14

Lane:1 2 3 4 5 6 7 8

Super shift —

YY1 shift—

Free probe —

Wild-type probe Mutant probe

The YY1.2 mutation disrupts binding of YY1. Electrophoretic mobility
shift assay was performed with a probe containing the ying yang 1
(YY1).2 sequence. Nuclear extract from MCF7 and HS578T cells (25
ug) was incubated with either a wild type probe or a mutant probe
bearing the YY1.2 mutation. For super-shift experiments, control anti-
body (Ab; against Ac-H3K9) or an antibody to YY1 was added to the
indicated sample. The super-shifted YY1-DNA complex is indicated
with an asterisk. NS = non-specific.
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Differential occupancy of YY1 at the endogenous HP1a
gene promoter region

The gel shift experiment demonstrated that reduced expres-
sion of YY1 in HS578T cells results in reduced binding of YY1
to its DNA binding motif in vitro. Next, we wished to determine
if this phenomenon also occurs at the endogenous HP1a
gene promoter using the ChIP assay. Chromatin prepared
from MCF7 and HS578T cells was immunoprecipitated using
specific antibodies against YY1 or NRF-1. The HP1a gene
promoter was previously identified as an NRF-1 target gene;
thus, it served as a positive control [39]. NRF-1 occupancy
was detected at HP1a gene promoter in both cell lines (Figure
5a). In contrast, YY1 occupancy at the HP1a gene promoter
could only be detected in MCF7 cells. As a positive control for
YY1 occupancy, we amplified a region in the glucocorticoid
receptor gene promoter (located 2.2 kb upstream from the
transcriptional start site), which contains three YY1 consensus
binding motifs [41]. YY1 occupancy was detected at this

Figure 5
(a) MCF7 chromatin HS578T chromatin
Input 1gG NRF-1 YY1 Input IgG NRF-1 YY1
HP1a promoter [ -— ] | -— |
GR-2.2 kb - - \
HP1a+22kb [ | J
(b)
0.4
035 = OMCF7
03 WHS578T
o025 =
£
€ 02
8
Sois
0.1
0o I I
04
1gG NRF-1 YY1 1gG NRF-1 YY1

HP1a promoter GR -2.2kb
YY1 occupancy at the HP1a gene promoter is higher in MCF7 cells
than in HS578T cells. (a) Chromatin immunoprecipitation (ChIP) assay
was performed using chromatin form MCF7 and HS578T cells. Chro-
matin was immunoprecipitated using the antibodies indicated above
each lane. PCR reactions were specific for the region indicated to the
left of each panel. A region 2.2 kb upstream of the glucocorticoid
receptor (GR) gene transcriptional start site was used as a positive
control for ying yang 1 (YY1) binding. A region 22 kb downstream from
the HP1a start site was used as a negative control. YY1 occupancy at
the HP1a promoter can be observed only in the MCF7 samples. YY1
occupancy at the GR gene upstream regulatory region can be
observed in both cell lines. (b) Quantification of ChIP data from at least
three independent experiments using different chromatin preparations.
NRF-1 = nuclear respiratory factor-1.
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region in both cell lines, indicating that YY1 DNA binding activ-
ity is not entirely absent in HS578T cells (Figure 5a). As a neg-
ative control, we amplified a region 22 kb downstream of the
HP1a gene transcriptional start site. As expected, only back-
ground signal was detected in this region. We quantified the
ChIP data from several experiments and calculated the occu-
pancy of each transcription factor as a percentage of input
(Figure 5b). From our ChlIP experiments we conclude that the
lower level of YY1 in HS578T cells results in reduced occu-
pancy of YY1 at the HP1a gene promoter region. These stud-
ies indicate that the reduced occupancy of YY1 at the HP1a
gene promoter in HS578T cells contributes to lower HP1a
expression.

YY1 overexpression reduces migration/invasion of
HS578T cells in vitro

HP1a has been identified as a suppressor of breast cancer
cell invasion in vitro [29]. We have shown that YY1 is a posi-
tive regulator of HP1a expression. Next, we wanted to know if
YY1 expression correlates with breast cancer cell invasive-
ness. The invasion of metastatic cancer cells in vitro requires
two distinct cellular phenotypes: migration toward a chemoat-
tractant and invasion through a matrigel matrix. These assays
represent a simplified model of the metastatic process in vivo.
We tested the effect of YY1 overexpression on both migration
and invasion of the invasive breast cancer cell line HS578T.
Cells were transiently transfected with either an empty vector
or a YY1 expression construct and then subjected to in vitro
migration and invasion assays. As shown in Figure 6, overex-
pression of YY1 caused about a 50% reduction in the migra-
tion of HS578T cells (Figure 6a). YY1 overexpression also led
to a decrease in invasive potential of these cells (Figure 6b).
The reduction in invasion was similar to the reduction in migra-
tion, indicating that the decreased invasion is due to the
decreased migration. Interestingly, the decrease in migration/
invasion occurred in the absence of detectable increase in
HP1a expression (Figure 6¢). We conclude that YY1 overex-
pression suppresses the migration of HS578T cells in a man-
ner independent of HP1a expression.

Discussion

The development and progression of cancer is due to changes
in gene expression that result in the ability of cancer cells to
proliferate autonomously, resist apoptosis, evade the immune
system, and metastasize to distant sites [42]. In past decades,
much work in the cancer field has focused on identifying
genetic alterations that suppress or promote these pheno-
types. It has become increasingly apparent, however, that dis-
ruption of proper epigenetic mechanisms also contributes
significantly to cancer development [43]. For example, expres-
sion of HP1 in prostate cancer was found to be altered com-
pared with normal prostate tissue [44]. It is therefore not
surprising that HP1 has been linked to cancer progression in
humans [45]. Although the molecular mechanism by which
HP1a suppresses the invasive potential of breast cancer cells
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YY1 overexpression suppresses HS578T cell migration in vitro. (a)
HS578T cells were transiently transfected with either an empty vector
(CMV-empty) or a vector expressing HA-tagged ying yang 1 (YY1;
CMV-YY1). Seventy-two hours later the cells were used in migration
assays using 5% fetal bovine serum as a chemoattractant. Membranes
were stained with crystal violet and the stain was eluted with 10% ace-
tic acid. The eluate was read at ODg. (b) The transfected HS578T
cells were also used for in vitro matrigel invasion assays. Membranes
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200x magnification) were counted for each membrane and averaged.
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is unclear, it is important to understand the mechanism of
reduced HP1a expression in invasive breast cancer cells.

In a previously published study, the DNA sequence of the
HP1a gene in MCF7 and MDA-MB-231 was compared in
order to identify any polymorphisms that may account for dif-
ferential expression [40]. This study found no differences in
the sequence in the HP1a gene between these two cell lines.
In addition, no difference in the pattern of DNA methylation
was found in the HP1a gene promoter region. The investiga-
tors therefore hypothesized, as we did, that the difference in
HP1a expression is attributable to differences in transcription
factor occupancy at the promoter region in different cell lines
[40].

In the previous study, as in our study, luciferase reporter
assays were used to determine how HP1a expression is dif-
ferentially regulated at the level of transcription. One of the
sequence motifs that was identified by this group was an E-
box site (noted in Figure 1b). Mutation of this E-box site in the
HP1a gene promoter construct resulted in a reduction in dif-
ferential transcriptional activity between MCF7 and MDA-MB-
231 cells [40]. In agreement with their data, we found that
mutation of the same E-box site in our CbxU283 construct
caused a small increase in promoter activity in MCF7 cells
(Figure 2b, M4). However, we did not find that mutation of the
E-box site had a differential effect on promoter activity of the
CbxU283 construct between MCF7 cells and MDA-MB-231
cells (data not shown) or HS578T cells (Figure 2b).

Instead, we identified transcription factor binding motifs that
were not identified in the previous study, including binding
motifs for NRF-1 and YY1. Although our mutagenic analysis
was not exhaustive, our data suggests that NRF-1 and YY1 are
both important positive regulators in the expression of HP1a.
Mutating both the distal NRF-1 and YY1 sites (NRF-1.3 and
YY1.2) resulted in a drastic reduction in promoter activity (Fig-
ure 2b, M6). This result is supported by previously reported
NRF-1 knockdown experiments [39], and by the YY1 knock-
down data in this study (Figure 3b). YY1 has been implicated
in the expression of many genes with numerous functions [48].
However, this is the first report to show that YY1 regulates
HP1a expression. The role of YY1 as a positive regulator of
HP1a expression implicates YY1 as an important gene in
maintaining the cellular epigenetic program.

Our mutagenic analysis of the HP1o gene promoter region
also revealed a possible role for YY1 in differential expression
between MCF7 and HS578T cells. We found that the level of
YY1 RNA and protein is higher in MCF7 cells than in HS578T
cells (Figure 1c, d). Our ChIP data show that YY1 occupancy
at the HP1a promoter region is much lower in HS578T cells
than in MCF7 cells (Figure 5). Taken together, our data sug-
gests that this difference in YY1 occupancy contributes to the
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difference in HP1a expression between the MCF7 and
HS578T cell lines.

YY1 is a member of the GLI-Kruppel family of zinc-finger tran-
scription factors [47]. YY1 is known to be essential for devel-
opment because knockout of YY1 in mice results in peri-
implantation lethality [48]. YY1 can act as an activator or
repressor of transcription depending on its interaction with
other factors [49,50]. Multiple studies have implicated YY1 in
the development and progression of cancer [51,52]. Some of
the most compelling data implicating YY1 in tumorigenesis are
regarding its role in apoptosis. YY1 negatively regulates p53
by facilitating its interaction with Mdm2 (and its human ortho-
logue, Hdm?2), leading to p53 ubiquitination [53,54]. This
mechanism is thought to increase the cell's resistance to
apoptosis in response to genotoxic stress [54]. In addition,
depletion of YY1 can sensitize cells to apoptotic stimuli
through p53-independent pathways [46]. The fact that YY1
expression can render a cell resistant to apoptosis may explain
why levels of YY1 are increased in certain types of cancer
such as osteosarcoma, non-melanoma skin cancer, and acute
myeloid leukemia [65-57].

Our data suggest that YY1 acts as a suppressor of migration
in breast cancer cells. This is not the first report to implicate
YY1 in invasion and metastasis. YY1 has been implicated in
the metastatic progression of lung cancer cells due to its reg-
ulation of the putative metastasis suppressor HLJ1 [58]. YY1
has also been implicated in the negative regulation of the
chemokine receptor CXCR4 [59], which has been implicated
in the ability of breast cancer cells to metastasize to bone [60].
In addition, our results indicate that decreased YY1 expression
can result in decreased expression of HP1a, which could con-
tribute to the development of an invasive phenotype.

By definition, metastasis suppressor genes affect the meta-
static process without affecting tumorigenesis [34]. As men-
tioned previously, YY1 has been proposed to play a number of
roles in the process of tumorigenesis, and can therefore not be
regarded as a pure metastasis suppressor. YY1 may play a
role at several different points in cancer development and pro-
gression. High levels of YY1 may be advantageous to trans-
formed cells during the early stages of cancer development,
principally by reducing the tendency toward apoptosis. How-
ever, reduced expression of YY1 may be advantageous to
metastasizing cells. Interestingly, high levels of YY1 are
observed in high-grade prostate cancer, but prostate tumors
with areas of low YY1 expression show a high rate of recur-
rence [61]. It is possible that decreased expression of YY1
allows sub-populations of cells within these tumors to become
more highly invasive. By exploring the role of YY1 in migration
and invasion, our study adds another layer to the complex role
that YY1 may play in the development of metastatic disease.
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Conclusions

Studies have shown that the level of HP1a is reduced in inva-
sive breast cancer cell lines such as MDA-MB-231 and
HS578T compared with non-invasive cell lines. We found
transcription factor YY1 to positively regulate HP1a gene
expression through promoter analysis, siRNA-mediated knock-
down and ChIP assays. Significantly, YY1 expression was
detected to be lower in the invasive breast cancer cell line,
implicating its role in the reduction of HP1o expression and
possibly in the acquisition of an invasive phenotype.
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