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Colorectal cancer (CRC) is a common malignancy with 1. 8 million cases in 2018.

Autophagy helps to maintain an adequate cancer microenvironment in order to provide

nutritional supplement under adverse conditions such as starvation and hypoxia.

Additionally, most of the cases of CRC are unresponsive to chemotherapy, representing

a significant challenge for cancer therapy. Recently, autophagy induced by therapy

has been shown as a unique mechanism of resistance to anticancer drugs. In this

regard, long non-coding RNAs (lncRNAs) analysis are important for cancer detection,

progression, diagnosis, therapy response, and prognostic values. With increasing

development of quantitative detection techniques, lncRNAs derived from patients’

non-invasive samples (i.e., blood, stools, and urine) has become into a novel approach

in precision oncology. Tumorspecific GAS5, HOTAIR, H19, and MALAT are novels

CRC related lncRNAs detected in patients. Nonetheless, the effect and mechanism

of lncRNAs in cancer autophagy and chemoresistance have not been extensively

characterized. Chemoresistance and autophagy are relevant for cancer treatment and

lncRNAs play a pivotal role in resistance acquisition for several drugs. LncRNAs such as

HAGLROS, KCNQ1OT1, and H19 are examples of lncRNAs related to chemoresistance

leaded by autophagy. Finally, clinical implications of lncRNAs in CRC are relevant, since

they have been associated with tumor differentiation, tumor size, histological grade,

histological types, Dukes staging, degree of differentiation, lymph node metastasis,

distant metastasis, recurrent free survival, and overall survival (OS).
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INTRODUCTION

Cancer is one of the most deathly illness worldwide with an estimated 9.6 million deaths in 2018
(1). One of the most common is colorectal cancer (CRC) with 1.8 million cases and 862,000
deaths only during the last year (1). Development of CRC involves different genetic and epigenetic
changes. Most cases are sporadic and show a slow development through the time, advancing from
adenoma to carcinoma (2). Even though there are important progress in treatment and molecular
mechanisms involved in CRC, the OS rate still remains relatively low (3, 4).
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Chemotherapy has been widely used for cancer treatment,
for instance, the fluoropyrimidine 5-fluorouracil (5-FU) is
a first selection anticancer drugs for CRC treatment (5).
Besides, new drugs such as cetuximab and panitumumab
have been incorporated into clinical practice (6). Nevertheless,
drug resistance acquisition is one of the main issues in
effective chemotherapy (7). This due to different factors as
Pharmacokinetic Resistance, that includes since absorption until,
distribution, metabolism, and the excretion of drugs. In addition,
the evolutionary resistance, a process that occurs in the tumor
where the cells acquire the ability to survive chemotherapy, this
through expression of different proteins, such as P-glycoprotein
1 (P-gp) also known as, multidrug resistance protein 1 (MDR1).
Besides the physics of the tumor site is involved in chemotherapy
resistance such as, number and morphology of vessels and
blood viscosity, are important factors involved (8). Drug
ineffectiveness could be the result from tumor-host interactions
and a clear understanding of such an interaction will open new
opportunities not only for the discovery of new drugs but also
for new therapeutic strategies to overcome the development and
evolution of resistance to cancer chemotherapy.

Autophagy is an important cellular response to stress
or starvation and starts when organelles and proteins are
sequestered in vesicles and delivered to lysosomes for
degradation (9). New research revealed that autophagy has
different functions in the development, maintenance, and
tumor progression (10) and recently, autophagy induced by
therapy has been shown as a new mechanism of resistance to
chemotherapeutic drugs (11). Through carcinogenic process of
CRC, autophagy could promote tumor survival or cancer cell
death, and it depends on the tumor type, stage, and the metabolic
setting (12).

Non-coding RNAs (ncRNAs) represent 99% of total
transcribed RNAs in the human genome, being the principal
components of the human transcriptome (13). Recently, ncRNAs
have shown to play key roles in important biological processes by
interfering with gene expression in several cancer types (14, 15).

The best characterized of the “expanding universe” of ncRNAs
are the∼22 nucleotide microRNAs (miRNAs) and the long non-
coding RNAs (lncRNAs). The lncRNAs are classified as >200
nucleotides in length and are involved in a wide variety of
molecular genetics and cellular processes in many aspects of
gene regulation, including imprinting, epigenetic modulation,
transcription, mRNA splicing, and tracking between the nucleus
and cytoplasm (15–18). Moreover, lncRNAs are involved in
variety biological processes such as, proliferation, differentiation,
apoptosis, invasion, and metastasis.

Recently, lncRNAs have been implicated in tumor-drug
resistance and autophagy in different types of cancer including
CRC (16, 19–22). Therefore, the aim of this review is to compile
the current knowledge about lncRNAs and their implication
on chemoresistance and autophagy in CRC. To this end, we
searched on PubMed, PMC, Web of Science, Google scholar,
and EMBASE up to July 2019 for pertinent articles using the
keywords as follows: (lncRNA or long non-coding RNA) and
(CRC or colorectal cancer) and (autophagy or autophagia) and
(chemoresistance or drug resistance). The titles and abstracts

were screened, and we acquired the relevant full-text manuscripts
for perusal.

LONG NON-CODING RNAS

Biogenesis, Classification, and Function
LncRNAs include different types of RNA polymerase II (Pol II)-
transcribed molecules with sizes over 200 nt in length. It has
been reported an estimated abundance of 5,400 to more than
10,000 lncRNAs transcripts in humans (23, 24). All mammalian
lncRNAs share a few structural, functional, or mechanistic
characteristics among them. They often harbor a poly-A tail and
can be spliced, similar to mRNAs (25). Besides, they regulate gene
expression at transcriptional and post-transcriptional levels in
multiple biological processes and cellular contexts (26–28).

Spurlock et al., classified LncRNAs based on their structural
origin context (Figure 1). Overlapping when a protein-coding
genes is included in the intron of a lncRNA (29, 30), divergent
when the lncRNA and neighboring protein coding gene are
transcribed on opposite strands (31), intronic when the whole
sequence of the lncRNA belongs to the intron of a protein-coding
gene (32), intergenic when a lncRNA sequence belongs to two
genes as a distinct unit (33), and sense (34) or antisense (35) when
the lncRNA is located between one or more exons of another
transcript on the same sense or antisense strand (36–38). Lastly,
enhancer RNAs can be transcribed in one or two senses, 1D-
eRNAs and 2D-eRNAs, respectively, at genomic transcriptional
enhancers, frequently very close to protein-coding genes (39).

It has been shown that lncRNAs functions depend on their
subcellular location (26). There is evidence in human cell lines
using single molecule RNA fluorescence in situ-hybridization
that revealed a wide range of subcellular localization patterns,
including nucleus, cytoplasm and both (40). Nevertheless, it
is most common to catalog lncRNAs based on similar action
mechanisms (25) (Figure 2).

Some lncRNAs have a very important role in nuclear structure,
since they help to the structure of nuclear speckles, paraspeckles,
and interchromatin granules (41). Another nuclear lncRNAs are
able to regulate gene expression by epigenetic mechanisms and
recruiting chromatin-modification factors in order to switch-on
or switch-off different loci (42). Besides, there are other types of
stable lncRNAs, such as competing endogenous RNAs (ceRNAs)
and circular RNAs, which are accumulated in the cell acting as
decoys or sponges for miRNAs modulating gene expression (43).

LncRNAs also has an important role in transcription
since they help in assembling transcriptional activators and
repressors for modulating the activation of transcription (44).
Besides, lncRNAs are able to modulate gene expression post-
transcriptionally by interfering with RNA-binding proteins to
impact splicing and translation and bymodulating the translation
and stability of partially complementary mRNAs (45, 46). In
addition, some lncRNAs function post-transductionally in order
to regulate protein turnover to enhance ubiquitination (47).

Detection Methods
The lncRNAs importance in cancer characteristics such as
progression, autophagy, and chemotherapy resistance has been
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FIGURE 1 | LncRNA classification on their structural origin context [modified image from Spurlock et al. (29)]. (A) Enhancer RNAs can be transcribed in one or two

senses 1D-eRNAs and 2D-eRNAs, respectively, at genomic transcriptional enhancers, frequently in close proximity to protein-coding genes; (B) Divergent when the

lincRNA and nearby protein coding gene are transcribed on opposite strands; (C) overlapping when a protein-coding genes is included in the intron of a lncRNA;

(D) Intronic when the whole sequence of the lncRNA belongs to the intron of a protein-coding gene; Ea. Sense or (E) antisense if the lncRNA is located between one

or more exons of another transcript on the same sense or antisense strand; (F) intergenic when a lncRNA sequence belongs to two genes as a distinct unit.

established thanks to more advanced detection technologies.
The main two methods for lncRNAs detection are microarrays
and RNA sequencing (RNA-seq), Microarrays contain probe
sequences that match with lncRNAs (48). Whereas, RNA-
seq provides comprehensive coverage of whole transcriptomes
compared to microarrays. Due to unbiased genome-wide
screening, it is possible to exclude ribosomal RNAs (rRNAs) from
total RNA to enhance it, including protein-coding genes and
lncRNAs. Besides, it is possible to enrich mRNAs using oligo-dT
beads with poly A tails, giving as a result the detection of protein-
coding genes and lncRNAs with poly A tails that are nearly 60%
of total lncRNAs (49, 50).

Since lncRNAs has been described as biomarkers in several
types of cancer, non-invasive detection methods have been
developed (Table 1) for early diagnostic, evolution, and poor
prognosis of cancer (62). Thus, there are several carcinomas that
can be detected by specific serum circulating lncRNAs (Table 1)
(63). Moreover, lncRNAs are detectable in urine and may serve
as biomarker predictor in T-cell mediated kidney transplant
rejection as well as bladder cancer tumor-stage (64, 65). In
addition, US Food and Drug administration (FDA) has recently

approved PCA3 lncRNA as a biomarker for prostate cancer in
urine (66, 67) showing better sensitivity and specificity than
Prostate-specific antigen (PSA) blood test (68). Whole saliva also
represents a source for cancer biomarkers by lncRNAs detection,
given this, saliva contains certain lncRNAs that can be used as
biomarkers for oral squamous cell carcinoma diagnosis such as
HOTAIR, which presence in saliva samples is correlated with
high levels in metastatic tissues (69).

LNCRNAS IN COLORECTAL CANCER

LncRNAs play key roles regulating gene expression during cell
development and differentiation, regulating or maintaining
cellular homeostasis (70, 71). Abnormal expression of
lncRNAs has been reported in numerous cancer types such
as; hematopoietic, urologic, lung, liver, breast, ovarian, and
colorectal (72–79). Alterations of these molecules are studied
in CRC in order to obtain clinical biomarkers for diagnostic,
prognostic, and therapeutic applications (80, 81). Multiple
lncRNAs have been related with CRC as important clinical and
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FIGURE 2 | Classification of LncRNAs based on their functions. LncRNAs participate in transcription, epigenetic regulation, nuclear organization, and alternative

splicing at nuclear level. In cytoplasm, LncRNAs have functions as enhancers of mRNA translation, scaffolds of protein complex, miRNA sponges, generators of endo

siRNA, and protectors of mRNA.

TABLE 1 | Circulating lncRNAs detected in serum in different types of cancer.

LncRNA Associated

cancer

References

RP11-04K16.1, LOC_012542,

PVT1

Cervical

cancer

(51, 52)

SNHG1, RMRP Lung (53)

H19 Multiple

myeloma

(54)

PCA3, BCAR4, CRNDE-h,

LNCV6_116109, LNCV6_98390,

LNCV6_38772, LNCV_108266,

LNCV6_84003, LNCV6_98602,

u50535

Colorectal (55–58)

H19, lncUEGC1 Gastric (59, 60)

LINC00161 Hepatocellular

carcinoma

(61)

mechanistic molecules (Table 2) and there are some lncRNA that
are strongly associated to CRC and presented below.

In this regard, the growth arrest-specific transcript 5 (GAS5),
is located at 1q25, with a length of 630 nt (95). GAS5 is
upregulated during growth arrest induced by the absence of
growth factors or serum starvation. It has been shown that GAS5
binds to the DNA-binding domain of the glucocorticoid receptor
(GR) and acts as a decoy glucocorticoid response element

(GRE), therefore it can compete with DNA GREs for binding
to the GR (95). This lncRNA is able to inhibit cell proliferation
and promote apoptosis, by acting as tumor suppressor (96).
Nowadays, researches demonstrate that GAS5 is downregulated
in several cancer cells such as, breast cancer, prostate cancer, and
renal carcinoma (97–99).

In human CRC tumor tissues, Gas5 has been found
downregulated and it is correlated with tumor size, TNM staging,
lymph node metastasis, low histological grade and less OS (100–
104). Besides, overexpression of GAS5 shows that could inhibit
cell proliferation in vitro and in vivo (102), prevent migration
and invasion (100, 105), and promotes apoptosis (100, 101, 103)
through inhibition of mRNA expression of Akt and Erk and
protein expression of p-Akt and p-Erk, giving as a result A pho-
Casp9 protein expression and inhibition of pho-Casp3 protein
expression (100). Another mechanism of GAS5 to inhibit the
apoptosis could be through the GAS5/miR-182-5p/FOXO3a axis,
since GAS5 acts as ceRNA of miR-18-5p, which regulates a
pro-apoptotic transcription factor named FOXO3a, and target

directly the PI3K-AKT signaling pathway (101).
In the case of HOTAIR (Homeobox Transcript Antisense

Intergenic RNA), a 2.2 kb lncRNA, is transcribed from the

mammalian HOXC gene cluster located in 12q13.13 (106). It

participates in epigenetic regulation of gene transcription and

interacts on its 5′ end with Polycomb repressive complex 2 in

order to remodel chromatin and guarantee silencing of HOX
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TABLE 2 | Important lncRNAs involved in CRC.

lncRNA Status of

expression

Participation in CRC References

XLOC_010588 Upregulated Associated with metastasis, poor prognosis, invasion, migration, and the progression of CRC

via EMT pathway

(82)

FTX Upregulated Tumor diameter, TNM stage, the lymph node, and distant metastasis and poor prognosis of

patients with CRC. In vitro, promotes CRC cell proliferation, migration, invasion, and interacts

with miR-215 and vimentin

(83)

BLACAT1 Upregulated Proliferation, both in vitro and in vivo, and have a role in G1/G0 arrest by binding to EZH2 (84)

lnc-CRCMSL Downregulated Overexpression restricts tumor growth and metastasis in vivo and in vitro and the silencing

accelerates CRC cell proliferation and migration. Also, mediates suppression EMT process by

HMGB2

(85)

DANCR Upregulated Promotes proliferation and metastasis in CRC. DANCR promotes HSP27 expression and its

mediation of proliferation/metastasis via miR-577 sponging. In vivo, DANCR promotes CRC

tumor growth and liver metastasis

(86)

lnc-DILC Upregulated Inhibits the growth and metastasis of CRC cells. Knockdown, facilitates the proliferation and

metastasis of CRC cells. Lnc-DILC is a CRC suppressor by inactivating IL-6/STAT3 signaling

(87)

kcna3 Downregulated Higher TNM grade and the higher occurrence rate of lymphatic metastasis and distant

metastasis, and shorter OS. Overexpression, inhibits proliferation, migration and invasion and

induces cell apoptosis in vitro, and represses CRC tumor growth in vivo. Also, exerts a

tumor-inhibit role in CRC progression through down-regulating YAP1 expression

(88)

Loc554202 Downregulated Associated with advanced TNM and a larger tumor size. The overexpression decreases the cell

proliferation and induces apoptosis in vitro and delay tumorigenesis in vivo. Regulates cell

apoptosis through the activation of specific caspase cleavage cascades

(89)

MAPKAPK5- AS1 Upregulated Greater tumor size and advanced TNM in CRC patients. Knockdown, inhibits proliferation and

causes apoptosis in CRC cells. Also, p21 is a target of MAPKAPK5- AS1

(90)

ZNFX1-AS1 Upregulated Associated with aggressive tumor phenotype and poor prognosis in CRC. Knockdown inhibits

cell proliferation and invasion in vitro, and tumorigenesis and metastasis in vivo. ZNFX1-AS1

works as a ceRNA for miR-144, inhibiting to EZH2

(91)

u50535 Upregulated Activates CCL20 signaling to promote cell proliferation and migration in CRC (58)

DUXAP10 Upregulated Positively correlated with advanced pathological stages, larger tumor sizes, and lymph node

metastasis. Knockdown inhibits cell proliferation, induces cell apoptosis and increase G0/G1

cells. DUXAP10 silencing inhibits tumor growth in vivo, also promotes CRC cell growth and

reduces cell apoptosis through silencing the expression of p21 and PTEN by binding LSD1

(92)

NNT-AS1 Upregulated Correlated with lymph node metastasis, TNM stage, vessel invasion and differentiation, Also, is

an independent predictor of OS and progression free survival. Knockdown, inhibits CRC cell

proliferation, migration and invasion in vitro and suppress tumor growth and metastasis in nude

mice by NNT-AS1-mediated activating of MAPK/Erk signaling pathway and EMT

(93)

91H Upregulated Associated with distant metastasis and poor prognosis in patients with CRC. Also, is an

independent prognostic indicator and of distant metastasis. In vitro, knockdown of 91H inhibits

the proliferation, migration, and invasiveness of CRC cells

(94)

genes during embryonic development. On 3′ end HOTAIR
interacts with histone demethylase (107). Evidence shows that
HOTAIR exhibits an oncogenic role in renal, breast, gastric, lung,
and ovarian cancer (108–112).

HOTAIR is overexpressed at high levels in CRC (113–116)
and some studies show that HOTAIR is only overexpressed in
right (proximal) CRCs samples (117). This overregulation has
been associated to lymph node and tumor node metastasis,
distant metastases, Duke’s staging, histological types, the
degree of differentiation (113), and unfavorable prognosis
(114, 118). In vitro, the inhibition of its expression shows
decreased proliferation, invasion, and migration, as well as low
cyclin E and CDK2 expression, increased apoptosis and p21
expression (113). Besides, HOTAIR promotes tumorigenesis
and aggressiveness (114). This lncRNA directly harbors miR-
326 binding sites and regulates FUT6 expression, a specific
fucosyl transferase. The HOTAIR/miR-326/FUT6 axis modifies

α1, 3-fucosylation of CD44, which triggers PI3K/AKT/mTOR
pathwaymediating CRCmalignancy (114). In addition, HOTAIR
knockdown and miR-203a-3p upregulation in CRC cell lines
produces inhibited Wnt/β-catenin signaling, cell proliferation,
and reduced chemoresistance (116).

The H19 gene is located on 11p15 and plays pivotal roles in
embryonal development and growth regulation (119, 120). The
H19 gene encodes for a processed 2.7 kb RNA (121). H19 is
highly expressed from the onset of embryogenesis to fetal life
in vital organs such as the fetal adrenal, liver, and placenta but
is downregulated postnatal stages (122). Recent evidence shows
that H19 is upregulated in several cancers as, esophageal cancer,
hepatocellular carcinoma, ovarian cancer, bladder cancer, and
breast cancer (123–127).

It has been demonstrated that H19 is upregulated in
CRC tissues compared with adjacent noncancerous tissues
(9, 128, 129). Data from The Cancer Genome Atlas (TCGA)
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shows that H19 is the lncRNA with the most substantial
correlation to CRC patient survival (130), serving as an
independent predictor for OS and disease-free survival (DFS)
(9, 131). Besides, this lncRNA has been related with poor
prognosis (132).

Besides, miR-200a binds H19 and inhibits its expression,
thus decreasing proliferation of CRC cells, also H19 regulates
the expression and activity of β-catenin by competitive binding
to miR-200a (128). In addition, depletion of H19 inhibits cell
viability and induces growth arrest whereas overexpression of
H19 upregulates a series of cell-cycle genes. Moreover, H19 binds
to eIF4A3 resulting in an abnormal cell-cycle-regulatory genes
expression (131).

H19 promotes invasion and metastasis in CRC through
activation of RAS-MAPK signaling pathway (133) and its
overexpression in MTX-resistant colorectal cell line HT-29 prove
that is involved in Metrotexate (MTX) resistance via activating
Wnt/β-catenin signaling (134). The overexpression of H19 and
miR-675 in CRC implies that both are important factors in the
tumorigenesis of CRC since H19-derived miR-675, targets tumor
suppressor RB (129).

Interestingly, mesenchymal-like cancer cells and primary CRC
tissues show high expression of H19, whereas its stable expression
accelerates tumor growth and enhances epithelial–mesenchymal
transition (EMT) progression. Finally, H19 can function as
ceRNA by antagonizing the functions of miR-138 and miR-200a,
giving as a result the de-repression of Vimentin, ZEB1, and
ZEB2 (135).

Finally, metastasis-associated lung adenocarcinoma transcript
1 (MALAT-1), is on 11q13 and transcribed from the nuclear-
enriched transcript 2 (NEAT2), which has been identified as a
prognostic factor in patients with stage I lung cancer (136, 137).
It has been reported that this lncRNA is expressed in mouse and
normal human tissues (137, 138) and its overexpression have
been demonstrated inmany cancer types including lung, cervical,
liver, bladder and sarcomas of uterus (139–144), and correlated to
metastasis (137).

The MALAT1 levels are up-regulated in human primary CRC
tissues (136), being 2.26 times higher than noncancerous tissues
(145), serving as a negative prognostic marker in stage II/III
CRC patients, since, these patients show a high hazard ratio
(HR) for OS and DFS (145). Moreover, upregulation of MALAT1
has been found in CRC tissues with lymph node metastasis
(136). In vitro, MALAT1 could promote CRC cell proliferation,
invasion, and migration through up-regulating SOX9 and
down-regulating miR-145. On the other hand, cell cycle and
apoptosis can be suppressed by MALAT1/miR-145/SOX9 axis
(146). Furthermore, MALAT1 regulates proliferation, migration,
and promotes tumor growth and metastasis in nude mice
(136), this regulation could be through SFPQ and AKAP-
9 as MALAT1 interact with SFPQ, hence releasing PTBP2
from the SFPQ/PTBP2 complex, facilitating cell proliferation
and migration (147). AKAP-9 is overexpressed in CRC cells
with metastatic potential and human primary CRC tissues
with lymph node metastasis, and its knockdown blocks
CRC cell proliferation, migration, and invasion mediated by
MALAT1 (136).

Angiogenesis and the EMT to promote metastasis in CRC
are enhanced by YAP1-induced MALAT1-miR126-5p axis since
YAP1 forms a complex with β-catenin/TCF4 bound to the
MALAT1 promoter, which can act as a sponge of miR-126-
5p to induce SLUG, VEGFA, and TWIST expression (148).
miR-20b-5p-mimic and si-MALAT1 give as a result attenuated
microsphere formation and self-renewal capability, reduces
the proportion of CSCs, downregulating the expression of
stemness markers as Oct4, Nanog, Sox2, and Notch1, and
cellular metabolism such as GLUT1, LDHB, HK2, and PKM2
in HCT-116 cells in vitro. Additionally, the administration of
either si-MALAT1 or miR-20b-5p-mimic in a xenograft model
based on BALB/c mice demonstrated that they can suppress
tumorigenicity of HCT-116 cells in vivo (149).

As we reviewed above, HOTAIR, H19, and MALAT are
overexpressed in CRC samples. Interestingly, HOTAIR and
MALAT level expression are related to lymph node and tumor
node metastasis (113, 136). In addition, H19 is considered as
an important independent predictor for OS and DFS (9, 131),
besides, H19 is the most significant lncRNA associated to CRC
(130). Moreover, MALAT1 is one important negative prognostic
marker in II/III CRC patients (145). Conversely, down regulation
of Gas5 has been found in CRC and is associated with poor
prognosis (100–104).

Interestingly, LncRNAs regulate multiples pathways in
CRC as PI3K-AKT signaling pathway, that is regulated by
GAS5, promoting apoptosis via GAS5/miR-182-5p/FOXO3a
axis (101), as well as, PI3K/AKT/mTOR that is managed
through HOTAIR/miR-326/FUT6 axis stimulating CRC (114).
In addition, H19 regulates RAS-MAPK and Wnt/β-catenin
signaling pathways, activating invasion, metastasis, and
chemoresistance mechanism (133, 134). Another important
axis is MALAT1/miR-145/SOX9 that mediates cell cycle and
apoptosis (146).

LNCRNA AS REGULATORS OF
AUTOPHAGY IN CRC

Autophagy is a basal physiological mechanism in normal cells
that assure cellular homeostasis. Besides, autophagy is a very
well-conserved catabolic process where the cell is self-digested
through the removal of proteins or dysfunctional organelles
(150). This process can also be, under specific circumstances
(hypoxia, stress, and nutrient deprivation), a survival mechanism
in which the cell recycles nutrients and energy (151).

There are three forms of autophagy based on its morphology,
macroautophagy in which autophagosomes engulf cytoplasmic
components and interact whit lysosomes for degradation,
microautophagy in which there is a direct lysosomal membrane
invagination to engulf damaged proteins, and chaperone-
mediated autophagy which involves the translocation of soluble
cytosolic proteins by chaperone-dependent selection across the
lysosomal membrane (152–154).

LncRNAs generally modulate autophagy by regulating the
expression of ATG genes which are important effectors in
autophagy process (155, 156). Frequently, LncRNAs behaves
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as competing endogenous RNAs (ceRNAs) for modulating
autophagy-related microRNAs (miRNAs). LncRNAs have a
very important implication in autophagy regulation (155). For
instance, activation of autophagy can be given by NBR2 via
AMPK activation (157) or by repression of PI3K/AKT/mTOR
pathway leaded by Ad5-AlncRNA, and PTENP1, whereas MEG3
and H19 enhances the opposite effect. Another LncRNAs
involved in activation of autophagy are HOTAIRM1, PTENP1,
and MALAT1, which increase the expression of ULK (158–162).
Conversely, RISA suppress autophagy initiation through ULK1
inhibition (163). Additionally, key genes in autophagy such as
ATG and adaptor proteins involved in later steps of autophagy
regulation are affected by H19, MEG3, AK156230, PTENP1, and
MALAT1(141, 158, 161, 164, 165).

It is clear that LncRNAs are non-canonical regulators
and participates in keeping homeostasis in a variety of
pathophysiological processes, but also they can be illness
effectors, since they can interact directly with DNA, RNA,
and proteins. In this regard, it has been demonstrated
that autophagiaparticipates in cancer progression and drug
resistance mechanisms (166). Besides, autophagy may suppress
tumors (167), but also, their induction promotes tumorigenesis
since it provide survival capacity of tumor under adverse
microenvironment (168, 169).

In CRC, little is known about lncRNAs involved in autophagy,
for instance, POU3F3, a lincRNA, is overexpressed in CRC
tissue samples and when is silenced, autophagy is enhanced,
suggesting the involvement of autophagy in the induction of
apoptosis (170). Another lncRNA highly expressed in CRC
is HAGLROS, which is correlated with shorter survival time
of CRC patients and its decreased expression can produce
apoptosis and suppress autophagy in CRC HCT116 cells
by regulation of miR-100/ATG5 axis and PI3K/AKT/mTOR
pathway (171).

UCA1 is also abnormally overexpressed in SW620 and
HT29 CRC cell lines when compared to CCD-18Co. There
is evidence that UCA1 downregulation inhibits the growth,
apoptosis, and autophagy of CRC cell lines in vitro. Besides,
UCA1 directly interacts with miR-185-5p downregulates its
expression. Additionally, UCA1 could reverse this effect of miR-
185-5p on the growth and autophagy, suggesting its involvement
in the derepression of WISP2 expression and the stimulation of
the WISP2/β-catenin signaling pathway (172).

Another lncRNA involved in CRC is KCNQ1OT1
(173), which is also upregulated. It has been demonstrated
that expression patterns of Atg4B, which cleavages LC3
(thus promotes the formation of autophagosome) (174)
is downregulated in CRC HCT116 and SW480 cells in
KCNQ1OT1 knockdown cells. Besides, these cells treated with
oxaliplatin, decrease cell viability, meaning that KCNQ1OT1
induce protective autophagy and chemoresistance. Finally,
overexpression of KCNQ1OT1 is correlated with poor OS of
CRC patients, suggesting that higher levels in patients make
them resistant to chemotherapy treatments (173).

H19 is another upregulated lncRNA in CRC samples and has
been correlated with patient OS suggesting that can predicts 5-
FU chemoresistance. These findings reveal that SIRT1 (which

is modulated by H19/miR-194-5p axis) dependent autophagy
pathway can affect 5-FU resistance in CRC cells (9).

There is no doubt that LncRNAs are key molecules
involved in regulation of autophagy in CRC. Nevertheless, more
research in this field is needed to clarify interactions on regulation
axis in order to understand complex processes in which
autophagy is implicated, such as apoptosis and chemoresistance.

LNCRNA AS REGULATOR OF DRUG
RESISTANCE IN CRC

Malignant CRC tumors develop pharmacological resistance,
which is a complex phenomenon that triggers increase in DNA
repair and loss of apoptosis induction, resulting from several
factors that include individual variation in patients such as
genetic and/or epigenetic differences within the tumors (7, 175,
176). Drug resistance is influenced by abnormal expression or
mutation on efflux proteins, which reduce uptakes of drugs (177).

Chemotherapy for CRC depends on the stage of cancer;
however, other factors are important as well. For stage 0 to II,
surgical treatment alone might be successful, nonetheless, for
stage II some oncologists opt for including 5-FU and leucovorin,
oxaliplatin, or capecitabine if chemotherapy is needed (178–180).
Treatment for stages III and IV includes chemo and/or
targeted drugs, commonly include CAPEOX (capecitabine plus
oxaliplatin), FOLFOX (oxaliplatin, 5-FU, and leucovorin), 5-
FU and leucovorin, or capecitabine for stage III and FOLFIRI
(leucovorin, 5-FU, and irinotecan), FOLFOXIRI (leucovorin, 5-
FU, oxaliplatin, and irinotecan) plus some target drugs such as
bevacizumab, ramucirimab, cetuximab, or panitumumab added
for stage IV (181–186).

Regulation of gene expression by different types of non-coding
RNAs such as miRNAs and lncRNAs are involved in acquisition
of drug resistance characteristics after treatment (187). Most
important dysregulated lncRNAs are summarized in Table 3.
For instance, the characteristic acquisition of 5-FU resistance
in CRC has been related with a plethora of lncRNAs miss-
expression. In the case of UCA-1, it plays an important role in
5-FU chemoresponse by exerting a sponge activity to miR-204-
5p, thus, indirectly increases CREB1which have been related with
poor OS (172). Another LncRNA implicated in the development
of 5-FU resistance is GIHCG, since its overexpression is found
in both CRC tissues and cell lines and is related to invasion,
migration, and chemoresistant properties (188). There is also
evidence that downregulation of PVT1, MALAT1, and PCAT-
1 sensitizes CRC cells to 5-FU treatment, inducing early and
late apoptosis by regulation of MDR genes (193, 194, 196). On
the other hand, downregulation of snaR and SLC25A25-AS1
promotes chemoresistance in CRC (198, 199).

Certain aspects of chemoresistance have been related with
lncRNAs regulated by miRNAs, for instance, ENST00000547547
promotes sensitivity to 5-FU in CRC cells by competitive
arresting miR-31/ABCB9 (200) and LINC00152/miR-139-
5p/NOTCH1 axis increases chemoresistance by suppressing
apoptosis (191).
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TABLE 3 | Long non-coding RNAs and their physiological function in colorectal cancer drug resistance.

LncRNA Function References

GIHCG Potential target in 5-FU and Oxaliplatin resistance mechanisms. (188)

MIR100HG Coordinately MIR100HG, miR-100 and miR-125b overexpression drives Cetuximab resistance by targeting

five negative regulators of Wnt signaling which have a potential clinical relevant interaction with EGFR.

(189)

UCA1 UCA1 can decrease the sensitivity of CRC cells to 5-FU by sponging miR-204-5p resulting in attenuating

apoptosis. Moreover, UCA1 expression levels are increased in Cetuximab resistant cells and can be

transferred to sensitive cells through exosomes increasing resistant cells number.

(172, 190)

LINC00152 LIN00152 confers Oxa and 5-FU chemoresistance by sponging miR-193a-3p by ERBB4 modulation and

then inducing the activation of AKT signaling pathway that mediates cell survival and chemoresistance.

miR-193a-3p also targets NOTCH1 regulating CRC growth, metastasis, stemness, and chemoresistance.

(191, 192)

HOTAIR HOTAIR could regulate the progression and Cisplatin and Paclitaxel chemoresistance enhancements in CRC

by targeting miR-203a-3p and the activity of Wnt/β-catenin signaling pathway.

(116)

PCAT-1 PCAT-1 regulates the invasiveness and 5-FU resistance in CRC cells and that PCAT-1 may promote CRC cell

invasion by modulating the expression of c-Myc.

(193)

PVT1 PVT1 is associated with 5-FU resistance in human CRC tissues and cells by inhibiting apoptosis and

upregulating the expression of MRP1, P-gp, mTOR, and Bcl-2

(194)

XIST XIST promotes Doxorubicin resistance through sponging miR-124 which targets SGK1 increasing cell

survival, loss of control in cell cycle, inhibiting apoptosis, and increasing chemoresistance.

(195)

MALAT1 Overexpression of MALAT1 enhances chemoresistance in 5-FU resistant cells through potentiation of

multidrug resistant genes such as MDR1, MRP1, BCRP, and ABC. Moreover, modulates EZH2 pathway in

Oxa resistance

(196, 197)

H19 H19 mediated Methotrexate resistance via activating Wnt/β-catenin signaling, which help to develop H19 as

a promising therapeutic target for MTX resistant CRC. Besides, CAFs promote stemness and Oxa

chemoresistance in CRC by transferring exosomal H19 to CRC sensitive cells through sponging miR-141.

(20, 134)

SLC25A25-AS1 SLC25A25-AS1 has a pivotal role in CRC cells promoting chemo sensitivity to 5-FU and DOX via Erk and p38

pathway modulation. Hence, SLC25A25-AS1 was determined to play a tumor suppressive role in CRC.

(198)

snaR snaR has a negative regulator role in responsible of the development of 5-FU resistance through cell growth

of CRC cells. Nonetheless, snaR detailed roles have not yet been established.

(199)

ENST00000547547 ENST00000547547 reduced the chemoresistance of 5-FU via competitive sponging to miR-31 which targets

ABCB9 involved in chemotherapy induced apoptosis. This suggests that lncRNA ENST00000547547 may

be a positive prognostic factor for 5-FU-based chemotherapy.

(200)

TUG1 TUG1 mediates MTX resistance in colorectal cancer via sponging miR-186 that targets CPEB2 increasing its

protein levels that play an important role in tumorigenesis and chemoresistance.

(201)

PVT1 PVT1 is a significant regulator in tumorigenesis and cisplatin resistance of CRC by inhibiting apoptotic

pathways in CRC and may serve as a promising target for CRC therapy.

(202)

MEG3 MEG3 promotes chemosensitivity to Oxa by inducing cytotoxicity in CRC cells promoting apoptosis. In

addition, MEG3 sponges miR-141 that targets PDCD4.

(203, 204)

5-FU, 5-fluorouracil, Oxa, oxaliplatin. CAFs, cancer associated fibroblasts, DOX, doxorubicin.

In the case of oxaliplatin CRC treatment, several lncRNAs
such as GIHCG (172), LIN00152 (192), MALAT1 (197), H19
(20), and MEG3 (203, 204) promote apoptosis by inducing
cytotoxicity by different mechanisms, mainly by axis with
miRNAs targeting important genes in cell death behavior.
Nevertheless, cisplatin CRC resistance is mainly mediated by
HOTAIR and PVT1 through inhibition of apoptotic pathways,
modulation of expression levels of miR-203a-3p and the activity
of Wnt/β-catenin signaling pathway, respectively (116, 202).

Interestingly, H19 also exert drug resistance modulation in
Methotrexate treatment via Wnt/β-catenin signaling pathway

(134). Regarding to TUG1, the resistance is given by CPBE2

gene modulation after arresting of miR-186 (201). Finally,

Doxorubicin resistance is manly influenced by the XIST/miR-
124/SGK1 axis which promotes chemoresistance in CRC

cells (195).
Evaluating lncRNAs expression profiles is very important

since it can be used to identify novel biomarkers for CRC

resistance and use them as a therapeutically potential targets
based on their biological behavior, improving in this way, the
efficacy of chemotherapy in CRC patients.

CLINICAL RELEVANCE ON LNCRNA IN
AUTOPHAGY AND DRUG RESISTANCE IN
COLORECTAL CANCER

Clinical implications of lncRNAs in CRC are relevant as there
is evidence of its participation and correlation with staging and
survival. In this regard, GAS5 down-regulation is common in
CRC tissues being associated with distant metastasis, tumor
differentiation, tumor size and advanced TNM staging (100), low
histological grade (102), later tumor-node-metastasis stage and
less OS (103).

Clinical relevance of H19 has been related with poor recurrent
free survival (RFS) (9) tumor differentiation and advanced
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TNM stage, and is an independent predictor for OS and DFS.
Moreover, previous studies using HOTAIR have determined that
its overexpression is related to lymph node and, tumor node
metastasis, distant metastases, Duke’s staging, histological types,
degree of differentiation (113) and poor clinical prognosis (114).
Some studies show that it is upregulated in right CRCs biopsies
(117). In addition, high levels of HOTAIR in tumors and blood
are associated with higher mortality of patients (118).

MALAT1, patients have shownworse prognosis in tumors that
appearance overexpression of this lncRNA in human primary
CRC (145). In addition, MALAT1 have being related with lymph
node metastasis in CRC patients (136).

Regarding to autophagy and chemoresistance in CRC,
HAGLROS, a lncRNA related to autophagy, is correlated with
shorter survival time (153). KCNQ1OT1, has also prove that
induce protective autophagy and chemoresistance and its high
expression is associated with poor OS of colon cancer patients,
suggesting that patients with overexpression of KCNQ1OT1
might be resistant to chemotherapy treatments (173). Finally,
H19 has been correlated with patient OS suggesting being a
potential biomarker for predicting 5-FU resistance that could be
modulated by H19/miR-194-5p axis (157).

CONCLUDING REMARKS

Recently lncRNAs analysis is important for cancer detection,
progression, diagnosis, therapy response, and prognostic
values. With increasing development of quantitative detection
techniques, lncRNAs derived from patients’ non-invasive
samples (i.e., blood, stools, and urine) has become into a novel
approach in precision oncology.

Tumorspecific GAS5, HOTAIR, H19, and MALAT
are novels CRC related lncRNAs detected in patients.
Nonetheless, the effect and mechanism of lncRNAs in
cancer autophagy and chemoresistance have not been
extensively characterized.

Chemoresistance and autophagy are top issues for cancer
treatment and lncRNAs play a pivotal role in resistance
acquisition for several drugs. LncRNAs such as HAGLROS,
KCNQ1OT1, and H19 are examples of lncRNA related
to chemoresistance leaded by autophagy. Nevertheless,
identifying the network interactions of lncRNAs can
provide an insight in their mechanisms of action, adding
clinical significance and hence, improve detection, diagnosis,
and treatment.
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