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a b s t r a c t

The primary aim of this research was to investigate potential differences of breast tumor morphologies 
across African American and Caucasian racial groups by utilizing machine learning (ML) and artificial in-
telligence (AI) methods. While breast cancer disparities can partially be attributed to social determinants of 
health, tumor biology also contributes to survival outcomes. The rate of breast tumor growth is largely 
dependent on the extracellular matrix (ECM). Current research suggests the cellular components of the ECM 
may vary among racial and ethnic populations, and this may contribute to the incidence of cancer in African 
Americans. We utilized a supervised AI method to evaluate morphological differences between African 
American and Caucasian breast cancer tumors. Images used for analysis were downloaded from the Cancer 
Genome Atlas (TCGA) biorepository stored in the NIH Genomic Data Commons (GDC) data portal. We de-
signed an ML classifier using the AlexNet model provided in PyTorch’s torchvision package. The model was 
pre-trained and adapted via transfer learning resulting in a classification accuracy of 92.1% when using our 
breast cancer tumor image database split into 80% of training set and 20% of testing set. We interpreted the 
results of the AlexNet and ResNet50 models using LIME and saliency mapping as the explainers. Based on 
the images from our bi-racial testing set, this study confirmed significant variations of tumor and ECM 
regions in the different racial groups evaluated. Based on these findings, further analysis and character-
ization may provide new insight into disparities associated with the incidence of breast cancer.
Published by Elsevier B.V. on behalf of Research Network of Computational and Structural Biotechnology. 
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc- 

nd/4.0/).

1. Introduction

Approximately one in eight women in the United States will 
develop breast cancer in their lifetime, and this disease is the second 
leading cause of death among women [1]. Reports of incidence and 
mortality vary amongst different racial groups [2] where women of 
African American descent are disproportionately affected by breast 
cancer compared to their Caucasian counterparts. Although Cauca-
sian women have a higher incidence rate overall, African American 
women have a 42% higher mortality rate than the comparable rate 
for Caucasian women [3]. African American women have higher 
incidence rates than Caucasian women before the age of 40 and are 

most frequently diagnosed with the most aggressive subtype, triple 
negative breast cancer. Extrinsic factors, including environment, 
lifestyle and socioeconomic status when combined with intrinsic 
factors such as germline genetics cannot be clearly delineated as the 
specific cause of cancer incidence [4]. Approximately 30% of breast 
cancer cases are associated with modifiable risk factors including the 
lack of physical activity, excess body weight, and alcohol consump-
tion indicating some breast cancers may be preventable [5]. How-
ever, there is emerging evidence of ethnic differences in breast 
cancer indicating research should have a multifaceted approach 
targeting extrinsic and intrinsic causes of racial disparities in breast 
cancer [4].

The extracellular matrix (ECM), also known as the stroma or 
tumor microenvironment, is comprised of several different cell types 
such as immune cells, epithelial and endothelial cells, mesenchymal 
stem cells, cancer associated fibroblasts, inflammatory cells and 
pericytes [6]. Tumor growth rate is largely dependent on interactions 
between the cancer cells in the tumor and the ECM. 
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Communications between the ECM and cancer can drive tumor 
proliferation and cell migration leading to invasion and metastasis 
[7–9]. Additionally, the composition of the ECM changes significantly 
during breast cancer promoting metastatic spread [10], and the ECM 
can modify the effects of cancer treatments reducing response to 
chemotherapy [11]. Therefore, the ECM components are significant 
biological players in breast cancer development due to biochemical 
and mechanical cues promoting progression and metastasis [12].

Although socio-economic factors contribute to the racial dis-
parities in breast cancer, emerging evidence suggests the ECM is 
partially responsible due to the different cellular components that 
vary among racial and ethnic populations [11, 13, 14]. The ECM in 
African American breast cancer populations is distinctly different 
from Caucasian populations due to higher vessel density, elevated 
cytokines and increased macrophage recruitment, resulting in 
poorer clinical outcomes [15]. African American patients also have 
higher levels of pro-inflammatory cytokines that support cell pro-
liferation and invasion [16]. Elevated tumor associated macrophages 
in African American patients promote cancer cell growth and in-
crease angiogenesis. A previous study reported microvessel density 
of African American tumors was higher than Caucasian patients, 
resulting in increased angiogenesis and macrophage recruit-
ment [17].

Artificial intelligence (AI) and machine learning (ML) techniques 
are becoming more prevalent for breast cancer detection, preven-
tion, and drug therapies. Artificial neural networks were first as-
sessed in histopathological image analysis in 2012 to extract textural 
and morphological features. Convolutional neural networks are most 
effective for early detection resulting in more successful treatments 
[18]. Effective methodologies have been developed to detect other 
diseases, such as diabetes and leukemia [19]. Classification algo-
rithms from hybrid natural inspired computing produced precise 
and accurate results. Deep learning techniques have also been ap-
plied to breast cancer with different image modalities, such as ul-
trasound and mammography [20]. While the human eye cannot 
distinguish such differences in Whole Slide Images (WSI), we in-
volved state-of-the-art techniques for an explainable AI model to 
investigate such differences further.

Considering the varying cellular components in the ECM across 
ethnic groups, further investigation may provide insight into the 

origins of breast cancer disparities. Here, we propose the use of AI 
models to evaluate morphological patterns of breast cancer tissue. It 
is plausible the ECM may be one of the contributing factors to the 
increased incidence of breast cancer occurring in African Americans.

2. Methods

2.1. Dataset acquisition

Human cancer tissue images used for this analysis were based 
upon data generated by The Cancer Genome Atlas (TGCA) Research 
Network: https://www.cancer.gov/tcga. Whole slide breast cancer 
images were downloaded from the TCGA repository [21], and bios-
pecimen files were selected for primary site, program, gender, race, 
and ethnicity. The date of patient recruitment and date of tissue 
collection prior to submission to the TCGA is unknown; however, 
whole slide images used for this study were downloaded in January 
2021. These image files were not controlled data, and identifiable 
information of individual participants was not available for access. 
Cases selected were females who identified as white/Caucasian or 
black/African American with the breast as the selected primary site 
of cancer. To maintain consistency and avoid too many variables 
across samples, an additional case filter of AJCC pathologic stage IIA 
was selected to analyze tumors that were localized rather than in-
cluding regional or distant metastases. The final data set consisted of 
100 white/Caucasian and 100 black/African American whole slide 
images (WSI). Images were imported into HistomicsUI [22] and 
cropped to minimize the amount of white space in the image (Fig. 1). 
To reduce biases, all images were cropped to 1100 × 2011 pixels.

2.2. Deep learning analysis pipeline

The first objective of our analysis pipeline was to investigate 
whether a neural network could identify breast tumors originating 
from Caucasian and African American subjects. We utilized a su-
pervised approach by training a neural network to identify the racial 
group of the subjects in our dataset, solely based on cropped images 
displaying the tumor and ECM of each subject. We tested several 
different models for the analysis pipeline using the Torchvision 
package from PyTorch [23] and training using the cropped image 

Fig. 1. LIME explainer model process from a) input H&E image, b) black box model for probabilities, c) locally weighted regression, d) explainer image with regions of interest 
highlighted in green, and e) equation for the LIME image explainer.
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files in our dataset. The models tested for this study included 
AlexNet, ResNet, Inception/GoogLeNet, and SqueezeNet. 

• AlexNet - The AlexNet model is a convolutional neural network 
architecture developed by Krizhevsky et al. [24] to classify 
images. This model was designed to work with images containing 
three color channels and eleven convolutional layers over sixty- 
two million trainable parameters.

• ResNet - The ResNet model and its variants [25] achieved results 
superior to those of AlexNet on ImageNet data. For this current 
study, the focus included ResNet18 and ResNet50 variations for 
this work which established a baseline to explore how the in-
crease in size between the variants of the ResNet model would 
impact results.

• Inception and GoogLeNet - The first inception model was proposed 
by in 2015 [26] and was presented as the new state-of-the-art in 
image classification, as it achieved improved results at the Im-
ageNet ILSVRC14 challenge. The specific iteration used in the 
ILSVRDC14 challenge was known as GoogLeNet, which achieved 
superior accuracy while maintaining much smaller memory re-
quirements.

• SqueezeNet - The SqueezeNet model [27] was developed to in-
crease performance similar to AlexNet with fewer parameters. 
This model design was to create a more computationally efficient 
method to run on smaller devices.

• ResNet50 with Attention Layers - An attention layer was added to 
the ResNet50 model and metrics were collected under the same 
training parameters as the model without attention. The atten-
tion layer served to help the model memorize where important 
features occur over time.

This study utilized a pre-trained model that was derived from a 
large image dataset [28] due to the limited sample size. The pre- 
trained model utilized in these experiments was initially trained on 
a subset of the ImageNet data set, which does not contain any 
images of tissue samples or other items pertaining to this study. 
Models were trained using transfer learning [29] which is capable of 
adapting the model parameters to the new dataset, decreasing the 
time required to train the model to the task, and increasing accuracy.

2.3. Model interpretation using LIME and saliency maps

Local interpretable model-agnostic explanation (LIME) is an in-
terpretation method used to explain individual prediction of black 
box machine learning models [30] as shown in Fig. 1. LIME generated 
a disconcerted dataset around the instance to explain and treat 
corresponding outputs of the black-box model as a label. LIME then 
trained an explainable model with the generated dataset. LIME was 
implemented into an image domain to find super-pixels or segments 
of significance that affect the prediction of the deep image classifier. 
Pixels of significance were highlighted green if they positively con-
tributed to the image classification or red if they negatively impacted 
the image classification. Fig. 1a illustrates the original input image, 
and Fig. 1b shows three representative black box image segments 
from the original image which highlights selected segments with 
other parts of the images masked out in black. All segmented images 
are scored indicating the probability of the segment belonging to 
either African American or Caucasian racial groups. Fig. 1c is an il-
lustration of locally weighted regressions of the segments from 
Fig. 1b where segments with higher weights are regarded as more 
important. As a result, Fig. 1d highlights positively important seg-
ments in green and negatively important segments in red. The 
equation in Fig. 1e is explained by ξ(x) as the explanation of data 
instance x. The image to explain is x, as shown in Fig. 1a. The locally 
weighted regression model is g in Fig. 1c that was used to explain the 
deep learning model as f. The family of all possible explanations is g. 

The proximity measure of data instance x, or the locality of x is πx. 
For this project, this is depicted by the image segments with other 
parts masked out as shown in Fig. 1b. Ω(g) is the complexity of our 
locally weighted regression model g. The fidelity function L mea-
sures the distance between the predictions from regression model g 
and deep learning model f given the locality of x, πx. By minimizing L 
+ Ω, LIME ensures the fidelity and simplicity of locally weighted 
regression model g.

Saliency maps [31] are local explanation models designed at the 
pixel level to measure the spatial support of a particular class in each 
image. These maps are derived using the gradients of the model 
output over the model input, which identifies areas relevant for 
classification. Saliency maps were created for each histology image 
for an additional explanation of areas of significance for image 
classification. These maps alone were not useful in visualizing the 
model predictions; therefore, saliency output was split into thresh-
olds in an attempt to identify pixels of significance at various levels 
of impact. A colormap of tiers of impact was created with modified 
opacity and overlaid onto the original image, which allowed for 
areas of greater significance to be highlighted and identified from 
the model prediction output. The original images were hematoxylin 
and eosin (H&E) stained, indicating tissues in shades of pink and 
purple hues. The saliency map tiers overlayed blue and orange/red 
pixels, with orange/red being the tier of highest significance, based 
on the identified pixels level of impact for image classification.

2.4. Analysis of model interpretations

Semantic segmentations were applied to all images for inter-
pretation of the labeled regions identified by LIME or saliency maps. 
Each pixel of interest was labeled with a corresponding class to ca-
tegorize the regions of interest. The data set of breast cancer tissue 
images was analyzed using semantic segmentations through appli-
cation of the U-Net model [32]. This model was trained using the 
Breast Cancer Semantic Segmentation data [33] containing over 
20,000 segmentation annotations of tissue regions from breast 
cancer images. These annotations contained regions corresponding 
to tissue regions of interest, including tumor, ECM, and lymphatics.

The hypothesis test statistic (t-statistic) was applied to AI models 
with the null hypothesis stating the African American and Caucasian 
cancer images were similar in the tumor and ECM regions. LIME 
regions were analyzed based on the areas that contributed the most 
to machine learning algorithms. The top five, ten, 20, 30, and 100 
contributing regions were compared across both racial groups in the 
tumor and ECM. Saliency map results were analyzed as threshold 
levels referring to the intervals that provided the highest values and 
the most significant in defining racial groups. Pixel values above the 
threshold were included in computations, where the threshold value 
changed based on the top five, 20, or 30 segments containing sig-
nificant pixels.

3. Results

3.1. Neural network model selection

The pre-trained models used in this study were provided in the 
torchvision package. Training operations used 100 epochs and batch 
sizes of 16, and following each training epoch, the accuracy of the 
training set was calculated. If the accuracy after an epoch was im-
proved, the model was saved at the checkpoint. At the end of the 
model training, the version of the model with the best training ac-
curacy was selected and loaded as the final model.

Results obtained from cropped images in our reference dataset 
with multiple neural networks following direct training are shown 
in Table 1. The models were pre-trained on ImageNet and adapted to 
the reference dataset using transfer learning. The F1 score is a 

A. Stone, C. Kalahiki, L. Li et al. Computational and Structural Biotechnology Journal 21 (2023) 3459–3465

3461



harmonic mean of precision and recall. The equation below defines 
calculation for the F1 score where P is the precision and R is the 
recall.

P R
P R

2 ( )
( )+

The NMI score, or normalized mutual information score, is de-
fined below where Y = class labels, C = cluster labels, H = entropy, and 
I(Y;C) refers to mutual information between Y and C.

NMI Y C
I Y C

H Y H C
( , )

2 ( ; )
[ ( ) ( )]

=
+

Based on transfer learning, AlexNet was the most robust model 
with 92% accuracy, F1 score of 90% and the highest NMI score of 0.66. 
ResNet50 was the second model selected with 92% accuracy, 91% F1 
score and NMI of 0.59. This information indicated that neural net-
works could identify differences in tumor tissues not visible by the 
human eye, and the features contained in the cropped images are 
distinguishable between Caucasian and African American subjects.

3.2. Model interpretation with LIME and semantic segmentation

LIME generated a sequence of super-pixel regions that were 
ranked based on their contribution to the model’s output. Positive 
regions were those that correctly classified the racial group of the 
subject and were highlighted by green areas. If regions were in-
correctly classified, the model highlighted the input with bright red 
areas. All images in our dataset contributed to positive identification, 
but not all images had regions of incorrect classifications. As in-
dicated in Fig. 2, positive LIME segments were detected in the ECM, 
tumor tissue, and areas of overlap where the ECM and tumor in-
tersected. Our analysis focused on characterizing positive green re-
gions by quantifying the amount of tumor or ECM present in tissue 
samples across African American and Caucasian groups (Table 2). 
The percentage of LIME segments inside ECM regions was calculated 
by dividing the area of LIME segments that overlayed only with ECM 
regions by the total area of LIME segments. Similarly, the percentage 
of LIME segments inside tumor regions was calculated by dividing 
the area of LIME segments that overlayed only with tumor regions by 
the total area. Regions that contributed to the LIME model were 

ranked as the top five, ten, 20, 30, and 100 areas of interest to 
evaluate if the ECM and tumor values changed when applying ad-
ditional selected segments for analysis. This data was further in-
vestigated in Table 3, indicating there was no statistical difference in 
the tumor areas. However, there was a statistically significant dif-
ference in the ECM for the top ten, 20, 30 and 100 regions evaluated.

3.3. Model interpretation with saliency maps and semantic 
segmentation

Saliency maps generated a pixel-based quantification of the im-
portance of each pixel toward the model’s outcome. This type of 
analysis is unique compared to the output generated by LIME as the 
ranking is local to each pixel, and the ranking is obtained from 
quantitative values. Therefore, a scalar value is defined for each pixel 
to quantify its importance.

We first defined different threshold levels, then categorized all 
pixels with a saliency value above each threshold as either tumor or 
ECM regions. Saliency maps for each image were saved for nor-
malization to create binary mapping at pixel level values above or 
below chosen threshold values. Utilizing a segmentation model, 
pixels above threshold were multiplied by integers corresponding to 
segment labels resulting in a matrix with each pixel segment type 
defined. We were then able to aggregate this information and de-
termine what segment types were most important to an image’s 
racial group classification. Images evaluated for saliency mapping 
were based on biopsy tissue samples, as shown in Fig. 3a. A small 
region has been selected to show greater detail (Fig. 3b), highlighting 
tissue where pixels are mapped, and in Fig. 3c, how pixels are 
mapped to assigned regions of interest. Saliency map results were 
analyzed based on varying threshold levels set at five, ten, 20, 30, or 
100 intervals that had the highest pixel value. These analyses defined 
which pixels were included in the computation where threshold 
varied based on the five different levels.

The results shown in Table 4 quantified the number of pixels in 
the tumor and the ECM across African American and Caucasian 
groups. This data was further investigated in Table 5, indicating there 
were no statistical differences in the tumor areas for the top five, ten 
and 100 thresholds of pixels, but the tumor regions were different 
with the top 20 and 30 threshold limits. The ECM area was 

Table 1 
Accuracy results obtained with different neural networks when classifying tissue 
images based on the racial group of the subject. 

Model Accuracy F1 score NMI score

AlexNet 92% 90% 0.66
ResNet18 84% 80% 0.38
ResNet50 92% 91% 0.59
GoogLeNet 90% 89% 0.53
SqueezeNet 86% 84% 0.41

Fig. 2. Tumor areas are indicated in the lavender and dark blue regions, ECM areas are 
dark orange and red, and LIME segments are highlighted in green.

Table 2 
LIME detected image segments from African American and Caucasian breast cancer 
images. Regions of the tumor and ECM were compared based on varying input regions 
determined by the LIME model ranked as the top 5, 10, 20, 30 and 100 areas of in-
terest. 

LIME regions African American Caucasian

Tumor ECM Tumor ECM

Top 5 33.46% 27.40% 41.62% 33.80%
Top 10 34.47% 24.74% 42.15% 35.27%
Top 20 34.51% 23.50% 41.70% 33.93%
Top 30 35.67% 22.43% 41.05% 33.63%
Top 100 33.77% 20.52% 38.35% 32.36%

Table 3 
T-statistic results between tumor and ECM regions across different racial groups. 
Regions of the tumor and ECM were compared based on varying input regions de-
termined by the LIME model ranked as the top 5, 10, 20, 30 and 100 areas of interest. 

LIME 
regions

Tumor ECM

Statistics p-value Statistics p-value

Top 5 -1.528855022 0.127888354 -1.355692603 0.176733512
Top 10 -1.512714885 0.131938581 -2.351583434 0.019671118
Top 20 -1.479693728 0.140536319 -2.439031638 0.015603469
Top 30 -1.107220064 0.269535351 -2.655137865 0.008569467
Top 100 -0.975779354 0.330364464 -2.891105852 0.004267577
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determined to be significantly different across racial groups using 
saliency mapping for all threshold limits reported.

4. Discussion

Racial disparities comprise one of the most distinct cancer-spe-
cific disparities [34,35]. Breast cancer disparities are most commonly 
associated with social determinants of health, including limited 
screening, increased risk factors and socioeconomic inequalities 

[36]. The racial disparities associated with the incidence of breast 
cancer is a complex issue that indicates multiple factors are poten-
tially responsible for these differences. In addition, self-reported 
race or ethnicity is most often oversimplified and may not always be 
accurate. Emerging evidence suggests inherent biological differences 
in tumor microenvironment of breast cancer patients from different 
racial backgrounds [13]. Gene expression diversity in African 
American patients was observed in advanced stages of breast cancer, 
indicating increased genomic instability when compared to Cauca-
sian patients [37]. The ECM involvement in breast cancer has been 
associated with migration, proliferation, metastasis, and reduced 
outcomes for breast cancer patients [38–41]. The microenvironment, 
also known as the ECM, has recently been addressed as a novel 
target for breast cancer treatment rather than focusing solely on the 
tumor [42]. Available literature has indicated evidence of additional 
factors, including the ECM that may contribute to breast cancer 
disparities [13,43]. Since tumor cells do not thrive in isolation, the 
bi-directional cross-talk between the tumor and the ECM is different 
in African American women due to the differential expression of 
cytokines and chemical messengers [13]. Gene expression analysis 
based on pathways related to chemotaxis and angiogenesis, and 
increased macrophages including tumor associated macrophages, all 
indicate differences in breast tumor biology of African American and 
Caucasian patients [43].

Advances in AI and digitization of pathology slides for diagnosis, 
detection and classification of tumors are becoming a promising 
approach. Computer scientists and pathologists have come together 
to apply AI techniques to improve efficiency of diagnosis. Tissue and 
cell level features can be identified using morphological structures 
which allows the computer program to discriminate between dif-
ferent histological components [44]. Our transfer learning model 
performed at a 92% level of accuracy, indicating our model could 
differentiate between African American and Caucasian breast cancer 
histology WSI. The two layers of the transfer learning model were 

Fig. 3. Saliency maps were derived from each image by normalizing input prior to binary mapping of pixels. Varying threshold levels determined the pixels included for 
classification of racial groups: a) The entire tissue sample was analyzed for saliency mapping calculations; however, a smaller region has been selected by a black box to highlight 
for visualization, b) highlighted area used for saliency mapping where pixels were detected across different racial groups, c) representation of saliency map assigning pixels to 
region of interest.

Table 4 
Saliency Maps detected pixels from African American and Caucasian breast cancer 
images. Regions of the tumor and ECM were compared based on pixel regions above 
threshold determined by the Saliency Maps ranked as the top 5, 10, 20, 30 and 100 
most important pixel areas. 

Saliency Maps African American Caucasian

Tumor ECM Tumor ECM

Top 5 18.47% 26.75% 22.22% 42.48%
Top 10 18.34% 28.38% 23.79% 43.55%
Top 20 18.29% 28.99% 25.65% 47.12%
Top 30 18.95% 31.46% 29.39% 45.10%
Top 100 28.85% 23.39% 32.24% 33.18%

Table 5 
T-statistic results between tumor and ECM regions across different racial groups. 
Regions of the tumor and ECM were compared based on varying input regions de-
termined by Saliency Maps ranked as the top 5, 10, 20, 30 and 100 areas of pixels. 

Saliency Maps Tumor ECM

Statistics P-value Statistics P-value

Top 5 -0.9722766 0.33204228 -2.9253085 0.00382303
Top 10 -1.6299773 0.1046197 -3.2877874 0.00118548
Top 20 -2.6055837 0.00983453 -4.1807729 4.28E-05
Top 30 -2.8097948 0.00543031 -3.645485 0.00033721
Top 100 -1.6543695 0.09956068 -3.5349411 0.00050264
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important for distinguishing areas that may deem morphologically 
different that were unable to be detected with the human eye. Not 
all models work with all datasets, therefore it was necessary to de-
termine the most robust model for our collected WSI database. 
Different neural networks were analyzed using our dataset, and it 
was determined that AlexNet and ResNet50 produced the highest 
accuracy, F1 score and NMI score. Once the models were selected 
this study used two different explainers, and data was compared for 
the top five, ten-, 20-, 30- and 100-LIME regions or five, ten-, 20-, 30- 
and 100-pixel threshold values using saliency mapping. Regions of 
the tumor and ECM were analyzed for both African American and 
Caucasian patients and evaluated for differences in the tumor and 
ECM across racial groups.

For the explainers, the LIME program placed a green selection 
area over the image for local approximation, which indicated 
changes in tissue patterns from the two racial groups. The analyses 
compared the positive LIME regions, which resulted in no significant 
difference in the tumor regions, but statistical differences in the ECM 
based on the top ten, 20, 30 and 100 regions. Saliency mapping 
evaluated global pixel distribution across the tissue, and threshold 
values were determined from the top five, ten, 20, 30 and 100 most 
important pixel areas. There was a significant difference in the 
tumor tissue based on saliency mapping for the top 20, 30 and 100 
thresholds, and all ECM regions were significantly different.

Based on emerging evidence, we hypothesized the ECM would be 
different between racial groups tested, and our results supported 
this hypothesis where the ECM was significant for image classifica-
tion using AI and ML applications. Our model supports current lit-
erature suggesting African American and Caucasian breast cancer 
patients have significant differences in the ECM. This information 
indicates that tissue morphology variations may be one of the con-
tributing intrinsic factors related to breast cancer health disparities 
for African American patients.

Regarding future work, our approach would benefit from a more 
articulated dataset for several reasons. First, a larger WSI dataset 
would allow us to test the generality of the results obtained and 
investigate the robustness of the model used. Second, by adding WSI 
from multiple racial groups, we could expand this analysis with 
significantly larger datasets. Such an investigation would allow us to 
collect additional evidence regarding the differences and similarities 
in ECM across racial groups. This current study was based on breast 
cancer tumors filtered by primary tumor location, sex of patient, race 
and AJCC classification due to limited resources for breast cancer 
tissue collected from African American patients. Future studies will 
benefit from the application of additional filters during the acqui-
sition of tissue samples to include patient age at diagnosis, intake of 
exogenous hormones, menopause status and history of smoking for 
a more robust analysis once improved and expanded datasets are 
available.

Ethics approval and consent to participate
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