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Abstract

Cross-species comparison has emerged as a powerful paradigm for predicting cis-regulatory modules (CRMs) and
understanding their evolution. The comparison requires reliable sequence alignment, which remains a challenging task for
less conserved noncoding sequences. Furthermore, the existing models of DNA sequence evolution generally do not
explicitly treat the special properties of CRM sequences. To address these limitations, we propose a model of CRM evolution
that captures different modes of evolution of functional transcription factor binding sites (TFBSs) and the background
sequences. A particularly novel aspect of our work is a probabilistic model of gains and losses of TFBSs, a process being
recognized as an important part of regulatory sequence evolution. We present a computational framework that uses this
model to solve the problems of CRM alignment and prediction. Our alignment method is similar to existing methods of
statistical alignment but uses the conserved binding sites to improve alignment. Our CRM prediction method deals with the
inherent uncertainties of binding site annotations and sequence alignment in a probabilistic framework. In simulated as well
as real data, we demonstrate that our program is able to improve both alignment and prediction of CRM sequences over
several state-of-the-art methods. Finally, we used alignments produced by our program to study binding site conservation
in genome-wide binding data of key transcription factors in the Drosophila blastoderm, with two intriguing results: (i) the
factor-bound sequences are under strong evolutionary constraints even if their neighboring genes are not expressed in the
blastoderm and (ii) binding sites in distal bound sequences (relative to transcription start sites) tend to be more conserved
than those in proximal regions. Our approach is implemented as software, EMMA (Evolutionary Model-based cis-regulatory
Module Analysis), ready to be applied in a broad biological context.
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Introduction

The spatial-temporal expression pattern of a gene is controlled

by its regulatory sequences, sometimes called a cis-regulatory

module (CRM). A CRM contains a number of transcription factor

binding sites (TFBSs), which read the expression level of the

cognate transcription factors (TFs) and drive the appropriate

expression pattern through the combinatorial interactions among

TFs, their co-factors and the basal transcriptional machinery [1].

Cross-species comparison plays a central role in various problems

involving cis-regulatory sequences, including computational pre-

diction of CRM sequences [2–4], discovery of novel sequence

motifs [5,6] and exploration of the principles of regulatory

sequence evolution [7]. For these different types of analysis, the

standard procedure almost always starts with an alignment of these

sequences, followed by an analysis of the conservation pattern of

sequences as suited for the specific task.

The first major limitation of this two-step procedure arises from

errors in alignment. It has been shown that alignment procedure

may seriously affect the results of comparative genomic analysis

such as reconstruction of phylogenetic trees and inference of

positive selection [8]. Most alignment tools are not customized to

regulatory sequences, and thus cannot take advantage of their

specific structural and evolutionary properties. A second

shortcoming of many current methods for regulatory sequence

comparison is their heuristic nature. It is difficult to assess the

significance of the results if appropriate statistical models have not

been specified and used. While there are indeed a number of

successful programs based on sound statistical models of DNA

sequence evolution [9,10], few of them incorporate the CRM

structure. Finally, it is commonly assumed that a TFBS is

conserved across all species being studied [5,11]. However, there

is strong evidence that functional noncoding sequences in general,

and TFBSs in particular, are not always conserved in an alignable

sequence even in relatively close species [12,13]. This process of

TFBS change has been recognized as an important source of

evolution of phenotypes [14].

Several approaches have been proposed to address one or more

of the problems discussed above. The programs Stubb [3],

EvoPromoter [15] and PhylCRM [16] predict CRMs as

significant clusters of TFBSs, which are detected by comparing

orthologous sequences using an evolutionary model of binding

sites. However, all methods require a fixed alignment as input and

do not model the binding site gains and losses. The programs

CONREAL [17], EEL [18] and SimAnn [19] align putative CRM

sequences with the explicit goal of aligning the sites matching

known TF profiles. None of these methods use rigorous statistical

or evolutionary models, and they all assume the complete
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conservation of TFBSs. Moses et al. [13] deal with alignment

uncertainty in their analysis of binding site turnover, but this is

done as a post-hoc analysis rather than being integrated with the

inference step. Our recent work, Morph [20], tries to solve all the

above problems in a single framework with a pair-HMM model.

However, the Morph model does not accurately capture the

evolutionary dynamics of CRMs. Lineage specific TFBSs are

treated not as gain or loss events in evolutionary time, but merely

as HMM ‘‘emissions’’ from one sequence, and not the other.

Another recent work, SAPF [21], aims to combine probabilistic

model-based alignment with ‘‘phylogenetic footprinting’’, which

refers to the identification of evolutionarily constrained sequences

based on their lower substitution rates. However, TFBSs are not

explicitly represented in the SAPF model, and the program is not

designed to predict targets of specific transcription factor(s). Our

goal is not to detect constrained sequences per se, but the target

sequences of specific transcription factors, whose binding motifs

are known a priori.

Our philosophy of doing cross-species sequence analysis is:

firstly, the method should be based on an explicit model of

sequence evolution, as expressed in [10] – ‘‘the study of biological

sequence data should not be divorced from the process that

created it’’; secondly, the problem should be solved in a single,

integrative framework, instead of being split into multiple steps.

Specifically, this means that to predict a CRM, one should take

into account the uncertainty of alignment and TFBS annotation

by summing over them from a combined statistical model. The

above philosophy has been adopted previously in the area of

statistical alignment [10,22,23], where stochastic models are used

to describe the evolution of indels and the alignment task is often

integrated with the ultimate goals, most notably, the reconstruc-

tion of phylogenetic tree [24]. Models that describe one or more

aspect of regulatory sequence evolution have been proposed

recently [25–31], but none of these methods offers a complete

evolutionary model of CRM sequences that can be directly used

for bioinformatic tasks such as CRM alignment and prediction.

We propose an expressive and biologically realistic model of CRM

evolution where (i) stochastic models of substitution and indels are

used to characterize the evolution of background sequences (non-

TFBS sequences inside a CRM); (ii) TFBSs evolve according to a

population genetic model developed previously; (iii) functional

switching between a non-TFBS and TFBS can occur in a manner

dependent on the binding energy of the evolving site. We

implement an efficient inference machinery and apply it to the

tasks of CRM alignment and prediction.

We used alignments produced by our program to analyze the

regulatory sequences involved in early development of Drosphila

melanogaster. We took advantage of the recent genome-wide binding

data on key TFs involved in blastoderm-stage gene regulation

(obtained using ChIP-chip technology [32]), and tested two

important hypothesis. First, we investigated previously published

claims that there is a high level of non-functional binding in such

genome-wide TF binding studies [33,34]. The prime candidates of

such non-functional binding sites are those that are not adjacent to

genes expressed in blastoderm. If the claim is true, we expect that

these sites will be less conserved than binding sites adjacent to

appropriately expressed genes. We found statistical evidence to the

contrary, opening up the possibility of functional binding at a

larger scale than previously thought. Second, the positions of

CRMs relative to the coding sequences, may have a large impact

on their functions. For example, computationally predicted CRM

sequences enriched with TFBSs are much more likely to drive

expression of reporter genes if they are located close to

transcription start site (TSS) [2]. Wray has suggested an interesting

hypothesis that the CRMs near TSS are likely ‘‘control modules’’,

while those distal ones may be ‘‘booster modules’’ that are less

essential [35]. We tested this hypothesis by comparing the

conservation level of TFBSs in proximal bound regions and in

distal ones. We find no support for this hypothesis, and in fact

distal bound regions seem to have a greater conservation of

binding sites than proximal regions, contrary to expectation.

Results

Evolutionary Model of cis-Regulatory Modules
In this section, we present the details of our model, which first

captures the salient properties of a CRM’s content and then lays

out the evolutionary forces acting upon its different components.

The model prescribes the joint likelihood of a set of orthologous

CRMs that are related by a given phylogenetic tree.

We begin with a model of CRM composition and assume that

the ancestral CRM is generated from this model. We use a

generalized HMM of zero order, similar to the ones used in

[3,15,36]. The binding specificities (motifs) of K TFs are

represented by K position weight matrices (PWMs), and the

nucleotide frequencies of the background sequence are denoted by

p. At each step, the background state or the k-th motif is sampled

with probability w0 and wk,1ƒkƒK , respectively. If the k-th
motif is chosen, the actual site is sampled from the k-th PWM;

otherwise, a single nucleotide is sampled from p. The HMM

transition probability, wk, can be interpreted as the average

number of binding sites of this motif per nucleotide at equilibrium,

or simply binding site density.

Our evolutionary model of the background sequences is

adapted from the models developed earlier for ‘‘statistical

alignment’’ [9,22,37]. Substitutions are described by the standard

HKY model [38], with equilibrium distribution p and transition-

transversion bias b. Insertions and deletions follow Poisson

processes with rates l and m respectively. The length of an indel

follows the geometric distribution with the probability of extension

r. Following this model, the joint probability of the sequences x

Author Summary

Comparison of noncoding DNA sequences across species
has the potential to significantly improve our understand-
ing of gene regulation and our ability to annotate
regulatory regions of the genome. This potential is evident
from recent publications analyzing 12 Drosophila genomes
for regulatory annotation. However, because noncoding
sequences are much less structured than coding sequenc-
es, their interspecies comparison presents technical
challenges, such as ambiguity about how to align them
and how to predict transcription factor binding sites,
which are the fundamental units that make up regulatory
sequences. This article describes how to build an
integrated probabilistic framework that performs align-
ment and binding site prediction simultaneously, in the
process improving the accuracy of both tasks. It defines a
stochastic model for the evolution of entire ‘‘cis-regulatory
modules,’’ with its highlight being a novel theoretical
treatment of the commonly observed loss and gain of
binding sites during evolution. This new evolutionary
model forms the backbone of newly developed software
for the prediction of new cis-regulatory modules, align-
ment of known modules to elucidate general principles of
cis-regulatory evolution, or both. The new software is
demonstrated to provide benefits in performance of these
two crucial genomics tasks.

Evolution of cis-Regulatory Modules
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and y in the example below, under a two-species phylogenetic tree

with branch lengths t1 and t2, is approximately (# stands for any

nucleotide):

x: ####---#

y: #--#####

P x,yjt1,t2ð Þ~ 1{lt{mtð Þ3 lt1zmt2ð Þ 1{rð Þr2 mt1zlt2ð Þ

1{rð Þr
ð1Þ

where t~t1zt2. The terms 1{lt{mtð Þ, lt1zmt2ð Þ and

mt1zlt2ð Þ are the probabilities of not seeing an indel event in t,
of seeing a gap in the second sequence and of seeing a gap in the

first sequence, respectively. The derivation of these probabilities

can be found in Text S1.

We use the population genetics-based Halpern-Bruno (HB)

model for TFBS evolution [39,40]. This model captures the fact

that the evolutionary constraints at different positions of a TFBS

may be different: less degenerate positions in the PWM generally

have lower substitution rates. Let Q0 be the substitution rate

matrix of the background sequences, and h be the PWM of the

motif being evolved, the rate of substitution of a nucleotide a to b
at position i is:

Qi a,bð Þ~Q0 a,bð Þlog
hi bð ÞQ0 b,að Þ
hi að ÞQ0 a,bð Þ

�
1{

hi að ÞQ0 a,bð Þ
hi bð ÞQ0 b,að Þ

� �
ð2Þ

The transition probability of a to b in time t is thus the a,bð Þ entry

of the matrix Pi tð Þ~eQit. Since HB model is time reversible, the

joint probability: Pi a,b t1,t2jð Þ is simply hi að ÞPi a?bjt1zt2ð Þ.
Gain and loss of TFBSs are commonly observed across a large

evolutionary spectrum: e.g. fungi [41], insects [13] and vertebrates

[12]. There are two different scenarios in which these events may

occur. In the first scenario, the expression pattern of the target

gene is under adaptive change, which ‘‘demands’’ a change in the

composition of the controlling CRM, causing binding site gains

and losses. In the second scenario, the expression of the gene is

under stabilizing selection, but the selection on individual TFBSs

may be weak, and as a result, a TFBS may be lost during evolution

due to random drift. New TFBSs may also be created in the

background sequences simply by mutations and random drift, due

to the fact that TFBSs are often short and degenerate. The two

processes may be linked to each other: the loss of one TFBS could

make gain of a TFBS in the background more beneficial so as to

compensate for the loss; likewise the gain of a new site could make

existing sites redundant, thus relax the constraints and speed up

the loss process.

The main difference between the two scenarios is: in the former,

the changes of TFBSs are driven by external selection forces while

in the latter, the changes are mainly dominated by the stochastic

forces of mutation and random drift, with selection being weak. In

our model, we adopt the second scenario as it is a more

‘‘parsimonious’’ explanation of TFBS gain and loss, and is more

consistent with our current knowledge about the Drosophila early

developmental CRMs [7,42], which are among the most well-

characterized available today.

Our specific model formulates the ideas discussed above. We

follow the usual definition of binding energy of a TFBS, for example

[28]. We assume that there is a threshold for the binding energy of a

site, E0, above which a site is not functional. We use Y and Y0 to

denote the evolutionary models of a TFBS and non-TFBS

respectively. Our basic idea for modeling gain and loss is: switching

of a site between TFBS and non-TFBS states is a switch between the

models that govern the evolution of this site. Under the model Y,

mutations that change the energy of a site above E0 may occasionally

be fixed due to random drift. After that point, natural selection will

not be able to perceive this site (switch to Y0). Likewise, under the

model Y0, a background site could occasionally reach E0 by

mutation and random drift. This site will then be visible to its

cognate TF and will be subjected to natural selection (switch to Y).

We note that indel events may happen inside TFBSs, albeit with a

much lower rate than in background sequences, and we denote by r
the relative rate of intra-TFBS indels. Interaction between gain and

loss events as explained above is not explicitly modeled, to avoid

creating dependencies that make the computational task much more

difficult.

We illustrate our model of TFBS loss in Figure 1: starting with a

functional site x, a substitution or indel event disrupts this site at time

t’; the background model then governs the evolution of this site,

which eventually becomes sequence y. Let z and z’ be the sequences

preceding and following the loss event respectively, then:

P x?yjtð Þ~
X
z,z’ð Þ

ðt

0

P x?zjY,t’ð ÞQ z,z’ð ÞP z’?yjY0,t{t’ð Þdt’ ð3Þ

where Q is the instantaneous rate of substitution (given by Eq. 2) or

indel (given by the product of r and the background indel rate) under

the model Y, the evolutionary model of TFBSs; and z,z’ð Þ must

satisfy the energy constraint: E zð ÞƒE0 and E z’ð ÞwE0, and the

neighborhood constraint: they differ by a single mutation event. The

probability of TFBS gain can be calculate in a similar way. Joint

probability under a two-species phylogenetic tree can be found in

Text S1 and Figure S1. For computational efficiency, we make the

parsimony assumption: suppose z is an intermediate site between x
and y, then the symbol at any position of z is either the symbol of x or

of y at that position. We also note that, even though we rely on a

threshold for determining when binding site gain or loss happens,

this parameter is not directly used for classifying a site as functional

or not. Instead, the annotation of a site depends upon an

examination of the site and its orthologous sequences, and their

probability under different histories: background, conserved or

lineage-specific.

Statistical Inference
We solve the following computational problems: given two

orthologous sequences (that are roughly alignable so that they

could be identified in the first place) and a set of TF motifs, (1)

align the two sequences and annotate the TFBSs; (2) predict if the

sequence is a CRM targeted by the given motifs. We use dynamic

programming to simultaneously find the optimal alignment and

TFBS annotation. For the second task, we use a likelihood-ratio

test of two models: the CRM evolutionary model and the

Figure 1. A model of TFBS loss. Shaded and white box represent
functional TFBS and non-functional site respectively. The dashed arrow
between z and z’ indicates the instantaneous substitution or indel
event that disrupts the site.
doi:10.1371/journal.pcbi.1000299.g001

Evolution of cis-Regulatory Modules
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background evolutionary model where no motif is used.

Computation under each model is also done by dynamic

programming, summing over all possible alignment paths and

annotations of TFBSs. The details of the algorithms can be found

in Materials and Methods. We allow all parameters to be learned

automatically from the data while allowing certain parameters to

be specified by users (Text S1). Our computational framework is

implemented as a program called EMMA (Evolutionary Model-

based cis-regulatory Module Analysis).

Comparison of Alignment Methods Using Simulated
Data

Simulation of sequence evolution is a useful strategy for

assessing computational methods, as the true evolutionary history

is often unknown for real data. In addition, simulation is an

important way to understand how various factors, such as

divergence time or the presence of TFBSs, affect the performance

of a computational procedure, since such questions are generally

difficult to answer analytically. We developed a simulation

program that can generate orthologous CRM sequences according

to our evolutionary model. The binding site densities, branch

lengths, indel rates, etc., are all user-specified parameters. Our

simulator captures a richer biology of regulatory evolution than

many other sequence simulators [43,44] and can be used as a

general tool for the study of cis-regulatory evolution.

We first used simulation to study alignment methods, similar to

what was done previously by Pollard et al. [44] and Huang et al.

[45]. We implemented several versions of EMMA so that we could

study the effect of each of its features. We denote by EMMA0 the

version that uses only the background model, but not the motifs

(thus EMMA0 is equivalent to the traditional Needleman-Wunsch

alignment with affine gap penalty); EMMA1 is the version that

considers only conserved TFBSs; and EMMA2 models both

conserved and lineage-specific TFBSs. In addition, we tested a

widely-used general-purpose alignment tool, Lagan [46], and our

recently developed program for aligning regulatory sequences,

Morph [20]. Morph uses a pair-HMM to model the alignment of

two sequence, where the HMM contains several motif states to

encode the presence of TFBSs in one or both sequences. We note

that Morph does not model binding site turnover, so a non-

conserved site will be aligned with gaps, instead of its true

orthologous sequence. All programs were run under the default

settings. The alignment performance was measured using specificity

and sensitivity, as in [20]. In addition, we defined a measure called

‘‘TFBS conservation sensitivity’’ as the percentage of all positions in

conserved TFBSs that are correctly aligned. For CRMs, this is

clearly a more relevant measure of alignment quality [44].

The specificities and sensitivities of all programs are similar (see

Tables S2 and Table S3 in Text S1) because different programs

differ mostly in treating TFBSs, which occupy a small fraction of

the total sequence length. The results with the TFBS conservation

measure are shown in Figure 2. EMMA0 and Lagan have similar

performance with all three measures. This suggests that the values

of alignment parameters have relatively small effect on the

alignment quality. At moderate to high divergences, both EMMA1

and EMMA2 significantly outperform EMMA0 and Lagan in

terms of TFBS conservation sensitivity (e.g. EMMA1 is better than

Lagan by 12% and 13% respectively at divergence 0.7 and 0.8)

and are slightly better with the other two measures, suggesting that

modeling conserved TFBSs is beneficial to alignment of divergent

sequences. Modeling lineage-specific TFBSs does not seem to help

alignment, as EMMA1 is slightly better than EMMA2 at high

divergence levels. This somewhat counter-intuitive observation

may be explained by the fact that in pairwise comparison, lineage-

specific TFBSs will not help alignment by serving as ‘‘anchors’’; on

the other hand, a truly-conserved TFBS may occasionally be

treated as two lineage-specific sites in EMMA2. Morph is superior

to Lagan and EMMA0 in terms of aligning conserved TFBSs, but

not as good as EMMA1 and EMMA2. In addition, the higher

TFBS conservation of Morph is achieved at the cost of

significantly lower overall alignment sensitivity (more than 6%

lower than all other programs at divergence greater than 0.5, see

Tables S2 and S3 in Text S1).

Pollard and colleagues also studied the problem of how

alignment affects binding site detection, through simulation

[44,47]. Their recent program, CisEvolver [44], is similar to our

simulator in that both treat sequences as a mixture of background

and TFBSs, and both use the Halpern-Bruno model for binding

site evolution. The main differences include: CisEvolver uses

empirical indel frequencies to parameterize the evolution of indels

while we use a simpler geometric distribution; and CisEvolver does

not incorporate the possible gain and loss of functional sites.

Nevertheless, to test the robustness of our conclusions, we

generated the test data using CisEvolver and repeated the

comparisons described above. The results are in broad agreement

with our previous results (see Figure S2, and Tables S4 and S5 in

Text S1), suggesting that EMMA is robust to the treatment of

indels and that our gain and loss model will perform well even if

there are actually no or few gain or loss events (i.e., it will not

introduce such events artificially). The PSPE program [45] is also

capable of simulating the evolution of CRMs. It goes beyond

modeling the gain and loss of individual binding sites, and captures

features not available in either our simulator or CisEvolver; for

example, it allows ‘‘global’’ fitness constraints such as ‘‘the total

number of sites in a CRM must fall in some range’’. However, its

semantics of sequence alignment is different from the conventional

notion of alignment (i.e., nucleotide-level orthology), making its

benchmarks unsuitable for studying our program’s performance.

Furthermore, these alignment benchmarks were obtained under

the assumption that each TF had one and only one site in a CRM,

an assumption that is overly stringent given that many factors are

known for homotypic clustering [48]. Also, the key idea of the

PSPE model is ‘‘replacement turnover’’, where one site loss exactly

matches a gain in another site and vice versa, but it is not clear if

this is a general evolutionary process. One recent study did not

find that such change is important in explaining the observed

patterns of binding site turnover [13]. Based on these consider-

ations, we chose not to test EMMA on the benchmark data of

PSPE.

Comparison of CRM Prediction Methods Using Simulated
Data

We investigated the problem of predicting CRM sequences

given a set of motifs, again using simulated sequences. We

implemented another program called EMMA-ANN, which scores

a sequence by its conserved TFBSs using a fixed, non-motif

alignment (we used EMMA0 alignment). The only difference

between EMMA-ANN and EMMA1 is that a fixed alignment is

used in the former, so the comparison between the two should

suggest how important it is to treat alignment uncertainty. In

addition to the EMMA family programs and Morph, we tested the

program Stubb [3], which scores a sequence by its binding site

cluster while favoring the conserved sites. Similar to EMMA-

ANN, Stubb is also based on a fixed alignment. Here, a site that

matches the PWM, but does not fall inside an aligned region, is

allowed to contribute to CRM scoring; in contrast, only conserved

sites are allowed to make contributions in EMMA-ANN. Thus in

terms of identifying binding sites, Stubb is likely to be more

Evolution of cis-Regulatory Modules
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sensitive but less accurate, a feature that has implications on CRM

prediction. We generated a positive set of sequences simulated

under the CRM evolutionary model, and a negative set under the

background model. A program is tested by its ability to

discriminate positive and negative sequences: all the sequences

will be scored by the program; as the score threshold varies, the

specificity and sensitivity will be computed. The overall perfor-

mance of the program is measured by the area under curve (AUC)

of the ROC curve, i.e., the plot of sensitivity vs (1 - specificity).

The results are shown in Figure 3. The first observation is that

high accuracy of prediction can be achieved even at relatively

large divergence. Our explanation is that at higher divergence,

conserved TFBSs will be more significant, i.e., less likely to be

explained by the chance conservation of neutral sequences. The

implication is that CRM prediction is sensitive to the correct

alignment of conserved TFBSs, but not to the overall alignment

quality. Comparisons between EMMA1 and EMMA-ANN

suggest that simultaneous alignment and CRM scoring consis-

tently improve prediction at almost all levels of divergence

examined. The effect of modeling lineage-specific TFBSs, as seen

from the comparison between EMMA1 and EMMA2, is

somewhat mixed: at lower divergence (,0.3), it reduces the

performance by 5–8%; at higher divergence, it improves by 3–8%.

The intuition is: TFBS gain and loss will become common and

thus important for the algorithms only at relatively high level of

divergence. EMMA2 is consistently better than both Stubb and

Morph which are based on phenomenological models (e.g. at

divergence 0.8, AUC of EMMA2 is 0.95, while AUCs of Stubb

and Morph are 0.87 and 0.82 respectively), suggesting the

importance of correct models. Morph unexpectedly shows poorer

performance than all other methods including Stubb. The

underlying model of Morph is quite different from the evolution-

ary model used here, and it is likely that Morph will interpret any

weak match to a PWM, even if not conserved, as a TFBS (often a

spurious site), thus inflating the scores of all sequences and making

discrimination between the two sets more difficult. Overall, the

best performance is obtained by EMMA2 at moderate to high

divergence levels. This, combined with the fact that in practice the

divergence level for pairwise comparison often lies in this range

(e.g. human-mouse divergence is estimated to be 0.6–0.8 [49]),

justifies the use of our full model, EMMA2, for practical tasks of

CRM prediction. We also repeated the same comparisons using

data simulated under CisEvolver, and obtained similar conclusions

(data not shown).

In summary, we made several findings through simulation that

are relevant to choosing and developing the computational tools

for CRM prediction. Generally, one should use relatively

divergent sequences, as long as they are alignable. The

performance depends on the alignment of TFBSs, but less on

the overall alignment quality, or the exact alignment parameters

such as gap penalties. When the binding site turnover events are

common, it is important to model the lineage specific binding sites.

Finally, because of the inherent uncertainty of alignment,

simultaneous inference and alignment taking advantage of the

special properties of the sequences will help both tasks. All these

observations support our efforts in building a comprehensive

model of CRM evolution and using it as a basis for related

inference tasks.

EMMA Improves Detection of TFBSs in Fly
Developmental CRMs

To test if our model truly brings benefits in real-world

applications over existing programs, we start with the task of

alignment, and compare our program EMMA (its full version,

EMMA2) with Lagan and Morph. We study the set of blastoderm

CRMs from the RedFly database [44] in D. melanogaster and D.

Figure 2. TFBS conservation sensitivity from various alignment programs using simulated data.
doi:10.1371/journal.pcbi.1000299.g002

Evolution of cis-Regulatory Modules
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pseudoobscura. Since it is not possible to know the true alignments of

the real data, we follow the earlier approach [50] of evaluating an

alignment by how often a TFBS appears to be conserved in this

alignment: a correct alignment should contain more conserved

TFBSs on average than an incorrect alignment. We call a TFBS

conserved in an alignment if it appears as a gapless block, and both

orthologous sites have binding energy above some threshold

(p-value 0.002, where p-value is defined through a standard

likelihood ratio score [13,51]).

In our first experiment, we use the known TFBSs [52] of seven

motifs important in the blastoderm stage of development. Among

the total of 188 known sites in 65 CRMs, 80 are conserved in the

Lagan alignment, while 91 and 103 are conserved in EMMA and

Morph alignments, respectively. We further manually examined

some sequences on which the alignment programs disagree and

show one such example in Figure 4. Three patterns of possible

mis-alignment are revealed in Lagan alignment. For the first Hb

site, the orthologous site is shifted by two nucleotides likely because

the Hb motif has a repeat structure (AAAA in its consensus

sequence). For two Bcd sites in the middle row, the nucleotides at

the boundaries are not aligned. In particular for the first one, the

gap in D. melanogaster can be moved by one position without

changing the Lagan score, suggesting that arbitrary resolution of

ambiguous alignments can contribute to small-scale alignment

errors that may be important for binding sites. Finally, the last Bcd

site in D. melanogaster is close to, but does not align to a potentially

orthologous Bcd site in D. pseudoobscura. In EMMA alignment, all

four sites in D. melanogaster are aligned with their functional

orthologs in D. pseudoobscura.

We next use predicted sites for further evaluation, since the

number of known TFBSs is small. For each of the seven motifs, we

constructed alignments with Lagan, EMMA and Morph, using

only one motif a time. The results were evaluated by the number

of predicted sites (p-value 0.002) that appear conserved in the

alignments. The results are shown in Table 1. Similar to what we

have found above, the number of conserved sites under EMMA is

significantly higher than that under Lagan, for all motifs but Kni

and Tll. The performance of Morph is intermediate between

EMMA and Lagan.

Though our alignment evaluation is not perfect, all the evidence

taken together strongly suggests that by utilizing the knowledge of

binding motifs, EMMA can significantly improve detection of

TFBSs over general purpose tools by overcoming the alignment

problems such as arbitrary gap placement. Morph can also

improve TFBS detection, but because lineage-specific TFBSs have

to be gap-aligned, Morph results do not capture the true

evolutionary history of orthologous sequences.

EMMA Improves Prediction of Regulatory Targets of Fly
TFs

In this experiment, we tested different programs for predicting

regulatory target sequences of a given TF. Each program was

made to score test sequences with a single known PWM. We did

not follow the previous procedure [3,15] of classifying CRM and

non-CRM sequences based on sets of known motifs, because we

believe that our setting will make the task more challenging and

thus make it easier to see the differences of various methods.

Furthermore, this experimental setting is particularly relevant to

the problem of reconstructing transcriptional regulatory networks,

since knowing regulatory relations is often the goal, rather than

knowing whether a sequence is a CRM per se [53]. In addition to

EMMA, Stubb and Morph, we tested Cluster-Buster, a popular

CRM finding program [54]. Cluster-Buster uses a HMM to search

for binding site clusters in a given sequence and may therefore be

used to discover such clusters for individual TFs. Unlike other

methods we are testing, Cluster-Buster does not directly use

Figure 3. AUCs of different programs for CRM classification using simulated data.
doi:10.1371/journal.pcbi.1000299.g003
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information in orthologous sequences. For each of the seven

blastoderm TFs, we constructed a positive set of sequences: those

that contain at least one known binding site of this TF in FlyReg;

and we used a common set of random noncoding sequences as the

negative set. Again, the D. melanogaster-D. pseudoobscura comparison

is used for this experiment. Our evaluation is based on, first, the

same AUC measure used for synthetic data; and second, the

average sensitivity of programs at high specificity levels. The latter

measure is more relevant in practice than AUC because the score

threshold is typically chosen to reduce false positive rate to a

satisfiable level.

EMMA substantially outperforms all other three programs with

the AUC measure (Figure 5A). Averaging over seven TFs, the

improvements of EMMA over Cluster-Buster, Stubb, Morph are

9%, 9% and 17% respectively. Measured by the average sensitivity

corresponding to the specificity levels above 80% (Figure 5B), the

improvements of EMMA are even more convincing: 15%, 21%,

42%, over the three programs respectively. These results support

the key ideas of EMMA: dealing with uncertainty of alignment and

explicit modeling TFBS evolution will greatly assist the prediction of

regulatory sequences. Interestingly, even though Cluster-Buster uses

only sequences in D. melanogaster, it is comparable to or even better in

some cases than Stubb and Morph, which are based on somewhat

similar HMM models and use extra information in the orthologous

sequences. Since unlike Cluster-Buster, neither Stubb nor Morph

applies a threshold for determining a TFBS, it is likely that they are

more sensitive to false positive sites. The problem seems particular

serious for Morph because Morph allows a site to be emitted from

only one sequence and thus may be overly tolerant to lineage-

specific sites matching a PWM (also likely false positive sites). We

also note that the experimental setting in this paper is different from

the one in [20], where multiple motifs are used simultaneously to

classify a sequence. In that setting where there is more motif

information and the relative importance of conservation may be

reduced, the ability of Morph to score non-conserved weak sites

may become an advantage.

Figure 4. D. melanogaster-D. pseudoobscura alignment of part of the CRM, ‘‘hb anterior activator’’. Shown in the D. melanogaster
sequence (top) are the FlyReg sites of Bcd and Hb, and shown in the D.pseudoobscura sequence are the predicted sites in this region. (A) Lagan; (B)
EMMA.
doi:10.1371/journal.pcbi.1000299.g004

Table 1. Number of predicted TFBSs in blastoderm CRMs that
are conserved in different alignments.

TF Bcd Cad Gt Hb Kni Kr Tll

Total 319 412 432 664 293 313 257

Lagan 140 132 102 192 68 100 111

EMMA 166 152 117 244 70 126 115

Morph 154 140 111 220 69 112 112

The ‘‘Total’’ row shows the total number of predicted TFBSs in D. melanogaster.
doi:10.1371/journal.pcbi.1000299.t001
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One common procedure to enhance the performance of a

program running on single-species data, such as Cluster-Buster, is

to filter out the sequences that are not very conserved before

running the program. We combined this conservation filtering

(percent identity greater than 70%, other values of threshold gave

similar or worse results) with Cluster-Buster. However, the new

results are only slightly better than the original Cluster-Buster, and

still lag far behind EMMA (data not shown). This can be probably

explained by the fact that a large fraction of Drosophila genome is

under constraint [55,56,57], thus simple conservation measure is

not very discriminative of CRM sequences. To test if our results

are robust to PWMs, we also repeated the same experiment with

PWMs of the same TFs obtained from bacterial one-hybrid

experiments [58] and found similar trends (Figure S3).

Binding Site Conservation in Sequences Bound by Key
Transcription Factors in the Drosophila Blastoderm

In this experiment, we used EMMA to study the evolutionary

pattern of TFBSs in sequences involved in gene regulation in

blastoderm-stage development of Drosophila melanogaster. Such

Figure 5. Performances of different programs for predicting regulatory targets of seven blastoderm TFs using D. melanogaster-D.
pseudoobscura comparison. CBust: Cluster-Buster. (A) AUC of the ROC curve; (B) the average sensitivity at the specificity level above 80%.
doi:10.1371/journal.pcbi.1000299.g005
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analysis depends on the accurate alignment of TFBSs, a task that

EMMA has been shown to perform better than general purpose

sequence alignment tools. We took the sequences bound by each

transcription factor (except Gt and Kni, see Materials and

Methods), as per ChIP-chip assays in Li et al. [32]. As a ‘‘negative

control’’, we took the intronic sequences that were not bound by

the corresponding TFs. These control sequences are presumably

neutral or close to neutral [32]. Each ‘‘bound sequence’’ was

associated with its nearest gene. We grouped sequences based on

whether their associated genes are expressed in the blastoderm or

not. (The expression information was obtained from Berkeley

Drosophila Genome Project (BDGP) [59]). The two groups were

compared based on the level of conservation of predicted binding

sites, defined as the percentage of binding sites in D. melanogaster

that are conserved in D. pseudoobscura. We expect that the

sequences in the expressed group are more conserved than those

in the non-expressed group, because binding in the latter group is

much more likely to be non-functional. Contrary to our

expectation, the non-expressed group appears to be have slightly

more binding site conservation than the expressed group

(Figure 6A), though the difference is not significant (data not

shown). Compared with the control sequences, sequences in both

groups have much greater binding site conservation, suggesting

functional constraint. We next compared the bound sequences

that are proximal to TSS (defined as less than 2 kb distant) and

those that are distal (defined as greater than 10 kb). Our

expectation is that the proximal sequences overall are more

functionally important than the distal sequences, as suggested by

others [2,35], and have more conserved binding sites. The results,

however, show the opposite pattern (Figure 6B): binding sites in

distal sequences tend to be more conserved than those in the

proximal ones, and the differences are statistically significant (p
value ,1024 for Bcd, Cad, Hb, and ,0.005 for Kr, by

hypergeometric test).

Discussion

We have proposed an integrative framework for cross-species

analysis of cis-regulatory sequences. At the heart of our approach is

a probabilistic model covering important aspects of CRM

evolution, including substitutions and indels in background

sequences, and constraints and turnover of TFBSs. The dynamic

programming algorithm allows us to efficiently carry out

likelihood-based statistical inference. This framework solves the

problems of the existing approaches discussed earlier. It aligns

regulatory sequences by taking advantage of the tendency of

conservation of TFBSs. The TFBS gain and loss model allows us

to use information present in lineage-specific TFBSs. Most

importantly, when used for predicting CRMs, our method treats

alignment and annotation of TFBSs as random variables,

summing over them and thus minimizing the impact of an

uncertain alignment and TFBS annotation. Our previous

programs Stubb and Morph have similar aims, but as shown in

our experiments, EMMA significantly outperforms both, strongly

suggesting that correct evolutionary modeling is essential to fully

utilize the sequence information.

Our model is related to existing models of regulatory sequence

evolution, but different from them in several key aspects. Our idea

of generation of a new binding site is similar to [27,31], but their

work is limited to simulation studies. Lassig and colleagues [25,28]

have developed population genetic models where a binding site

evolves under a fitness function that depends on the edit distance

(to the consensus site) or the energy of the site. Their models are

the most detailed and perhaps realistic existing models of binding

site evolution; however, they cannot be easily used for computa-

tional inference since likelihood computation under these models is

very expensive (see below). Mustonen and Lassig [28] also

proposed ways to model the gain and loss events of TFBSs, but

their model is different from ours in that these events are caused by

external selection forces, whose rates of occurrences are indepen-

dent of the actual sequences. A similar model of TFBS turnover

has been used to discover lineage-specific TFBSs [30], where the

gain and loss of binding sites are modeled by a two-state Markov

chain, similar to the Jukes-Cantor model of nucleotide evolution.

Again, the rates of change between functional and neutral sites are

external parameters that do not depend on the sequences

themselves. Durrett and Schmidt [26] studied binding site

evolution from the perspective of time needed for a specific word

to appear and be fixed in a population, according to population

genetic models of mutation and drift. Their study assumes neutral

evolution and points out that selective forces will take over if the

specific word thus evolved is close to being a binding site; this is the

view we have adopted in modeling binding site gain. Recently,

Raijman et al. [29] developed a model of CRM evolution, based

on the idea that any mutation that creates a new TFBS or destroys

an existing one is penalized, i.e., fixed with a smaller probability.

Their representation of TFBSs is based on the consensus sequence,

instead of the more realistic PWM. Their treatment of TFBS gain

is also different from ours: the possibility of TFBS gain from

adaptive selection [13] is missing in their model, where all

occurrences of new TFBSs will be selected against. Finally, we

note that none of the above models integrates the binding site

evolution model with the model of insertions and deletions, a

feature that is essential to simultaneous alignment and regulatory

sequence inference.

Our model is also an extension of statistical alignment (reviewed

in [22]) to the analysis of cis-regulatory sequences. Our method

shares key features with statistical alignment: explicit modeling of

indel evolution; and a probabilistic treatment of alignment

uncertainty. Statistical alignment started with the pioneering work

of Thorne et al. on pairwise sequence alignment [10], commonly

named TKF91 model, where insertions and deletions were treated

as single nucleotide events. It was later extended to more realistic

indel models, where the indels were treated as multi-nucleotide

blocks that followed a geometric length distribution, emulating the

commonly used affine gap penalty [23,37,60], or an arbitrary

length distribution estimated empirically [61]. In other work, the

TFK91 model has been applied to multiple alignment, and an

MCMC approach developed to sample alignment from a

phylogenetic tree [62]. To make the evolutionary model more

realistic, some researchers have attempted to capture the

heterogeneity of substitution and indel rates and used it to infer

slowly-evolving DNA sequences [21,23,63]. More recently, the

‘‘transducer’’ model has provided a computational framework for

multiple alignment, using TKF91 and other indel models [64,65].

Our work, especially its alignment functionality, belonging to the

category of statistical alignment; however, it is designed specifically

for the alignment of cis-regulatory modules. Thus the modeling of

substitution and indels, the characteristic feature of statistical

alignment, has to be integrated with a model-based treatment of

binding site evolution.

One main limitation of our model is that under Halpern-Bruno

model, the nucleotides of a TFBS evolve independently while in

reality, the TFBS as a whole should be a unit for natural selection

[28]. Also, our model of TFBS gain and loss does not parameterize

the fitness function of a TFBS, which will be required for correct

modeling based on principles of population genetics[28,39]. So

our model can be viewed only as an approximation. Our model
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choice was based on: (i) avoidance of additional free parameters,

which will be difficult to estimate given only an individual CRM

sequence; (ii) computational complexity, since modeling a TFBS as

a unit is very expensive [28,29]. One consequence of our

simplifications is: any new site created by evolution of background

sequences will be selected afterward. A better model should reflect

the variability of the rate of TFBS gain in different CRM

sequences. Despite these simplifications, we found through

simulation that the gain and loss rates under our model with a

realistic parameter setting agreed broadly with the empirically

estimated values in Drosophila [13,66] (data not shown).

The relationship between TF binding and target gene

expression is an important, but not straightforward, issue. Earlier

studies suggested a high level of non-functional binding in ChIP-

chip experiments. Gao et al. estimated that more than 40% TF

binding are not functional, based on the correlation of binding and

mRNA expression [33]. More recently, Hu et al. found that only a

small percentage of genes whose promoters bind to some TF

changed expression level when that TF was knocked out in yeast

[34]. Our analysis based on binding site conservation provides a

new way of studying binding-expression relationship. We find that

sequences whose associated genes are not expressed, and thus most

likely non-functional, are at least as conserved as the sequences

close to expressed genes. This suggests that the extent of non-

functional binding may be very low, at least when we restrict

ourselves to strong binding events (1% FDR). This immediately

raises the following question: if strong binding sites near non-

expressed genes are indeed functional (as their evolutionary

Figure 6. Conservation of predicted binding sites in regions bound by TFs in the Drosophila blastoderm. (A) Expressed/Unexpressed:
sequences that are associated with genes that are expressed/unexpressed in stage 4–6 according to BDGP; Unbound: randomly chosen intronic
sequences. (B) Proximal: sequences that are less than 2 kb from the TSS of the associated genes; Distal: sequences that are more than 10 kb from the
TSS of the associated genes.
doi:10.1371/journal.pcbi.1000299.g006
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conservation would reveal), what is this function? We speculate

several answers. The function of these sites may be to control

expression of more distant genes. (Recall that we annotated only

the nearest gene as being the target of each site.) Alternatively,

these sites may not directly activate or inactive expression, rather,

they help attract TF molecules to DNA, and thus help direct the

TF molecules to their true target sequences. Another possibility is

that these sites function in regulating the nearby gene in a different

developmental stage (i.e., not in blastoderm).

Very little is known about the difference between proximal and

distal regulatory sequences. It is likely that the two types of

sequences work through different mechanisms (for example, the

distal sequences may need specific mechanisms such as DNA

looping, to communicate with the core promoter sequences of the

target genes [67]) and that they play different functional roles, as

hypothesized by [35]. Our results suggest that binding sites are

more conserved in the distal regions than in proximal regions. One

possible explanation is that the proximal sequences are under

more adaptive selection than distal sequences, perhaps because it

is easier to achieve a different expression pattern by changing the

binding sites in the proximal sequences. This increased adaptive

selection has been demonstrated in Drosophila in 59 UTR sequences

[55]. Another possibility is that because it is more difficult for distal

regulatory sequences to target the promoters, they will be more

sensitive to minor changes of binding sites, and thus will be more

evolutionarily constrained.

We believe that our proposed framework opens up possibilities

for a few major applications. The immediate task is to extend the

current work to comparison of more than two species. In pairwise

comparison, a TFBS is either conserved or not and it is difficult to

distinguish a non-conserved but functional TFBS from a spurious

site. In the case of multi-species comparison, there is a wide

spectrum of partial conservation, which could be effectively used

by a program, as shown in earlier studies [68]. We therefore

anticipate that our improved evolutionary model and methods will

make a crucial difference to the accuracy of multi-species analysis.

Our method takes a set of TF motifs as input; however, which TFs

may cooperate while binding is often unknown. Our framework

itself offers a way of learning such regulatory rules: the probability

of sequences under different TF combinations could suggest how

well a particular combination explains the data. Finally, it is

possible to learn motifs de novo by treating PWMs as unknown

parameters. This approach to motif finding will introduce several

benefits over existing programs, e.g., PhyloGibbs [6], such as

correcting the alignment errors and using information in partially-

conserved TFBSs.

Materials and Methods

Dynamic Programming Algorithm
We use Y0 to denote the background evolutionary model (both

substitutions and indels), and Yk for the evolutionary model for

binding sites of the k-th TF (HB model for substitution and

reduced indel rate r). The joint probability of the orthologous sites

x1 and x2 under a model Y (background or TFBS) is represented

as: P x1,x2jY,t1,t2ð Þ, where t1, t2 are branch lengths of the 2

sequences. In the case of TFBS gain or loss, the probability of a

functional site of k-th TF being present in the first sequence but

not in the second one is denoted by Pk0 x1,x2jt1,t2ð Þ; similarly we

use P0k for the opposite case.

For a pair of sequences S1 and S2, we wish to compute the joint

probability of the two sequences under the CRM evolutionary

model, given the parameters. We define the recurrence variables

for dynamic programming as: L
að Þ

k i,jð Þ, the probability of sub-

sequences S1 1::i½ � and S2 1::j½ � where the last site is either k-th
TFBS (if k§1) or background (if k~0) with the ‘‘state variable’’ a

as explained below and in Figure 7. We then define:

Lk i,jð Þ~
X

a

L
að Þ

k i,jð Þ Vk§0 ð4Þ

L i,jð Þ~
XK

k~0

Lk i,jð Þ ð5Þ

Then the probability of the sequences is L m,nð Þ where m and n
are their respective lengths. In the first case in Figure 7, the last site

of the sequence S1 1::i½ � and S2 1::j½ � is a matched background

column:

L
0ð Þ

0 i,jð Þ~L i{1,j{1ð Þw0 1{lt{mtð ÞP S1 i½ �,S2 j½ � Y0,tjð Þ ð6Þ

where t~t1zt2. In the second case, the last column is a gap in the

second sequence. If the previous column is also a gap, this should

be treated as extension of an existing indel, otherwise as a new

indel:

L
1ð Þ

0 i,jð Þ~ L0 i{1,jð Þ{L
1ð Þ

0 i{1,jð Þ
h i

lt1zmt2ð Þ 1{rð Þ
n

zL
1ð Þ

0 i{1,jð Þr
o

p S1 i½ �ð Þ
ð7Þ

The third case, L
2ð Þ

0 i,jð Þ, is handled similarly. In the fourth case,

the last sites are a conserved pair of TFBSs of the k-th motif,

whose length is lk:

L
0ð Þ

k i,jð Þ~L i{lk,j{lkð ÞP S1 i{lkz1::i½ �,S2 j{lkz1::j½ � Yk,tjð Þð8Þ

In the fifth case, the last site is a k-th TFBS in S1 but a non-site in

S2. Note that in this case, the length of the non-conserved site may

not be lk, since there could be insertion or deletion in non-TFBS.

We will denote it as l’k. We use L
1ð Þ

k i,j; l’kð Þ to denote the

probability that the site in S1 is k-th TFBS, but the site in S2 is

background with length l’k, then:

L
1ð Þ

k i,jð Þ~
X

lk’

L
1ð Þ

k i,j; l’kð Þ ð9Þ

To make the computation tractable, we will limit l’k to the range

of lk{dmax,lkzdmax½ � for some user-specified parameter dmax

Thus, for the new recurrence variable, we have:

L
1ð Þ

k i,j; l0k
� �

~L i{lk,j{l0k
� �

Pk0 S1 i{lkz1::i½ �,ð

S2 j{l0kz1::j
� �

t1,t2j
� ð10Þ

The treatment of the last case is similar. One complication is: if the

orthologous sites have a gap at the beginning, it may be an extension

of an existing indel. In other words, we may have multiplied the

probability of an indel event twice: one during the computation of

TFBS switching (the second term in Eq. 10), and the other during the

computation of the earlier sequences (the first term in Eq. 10). We

correct for this as described in Text S1.

For alignment, we simply need to replace the sum operator in

the algorithm with the max operator, as is standard in
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computations involving HMM. The parameters can be estimated

by the standard maximum-likelihood approach. In practice, we

estimate or fix some parameters, such as transition-transversion

bias in HKY model, through external data. The details can be

found in Text S1.

Simulating CRM Evolution
For our simulation, we first sampled ancestral sequences from

the CRM model described in the main text and evolved the

sequences in two branches independently for specified lengths of

the two branches. Only the two descendant sequences will be used

for alignment input. We used PWMs of Drosophila TFs from the

webpage maintained by Dan Pollard (http://rana.lbl.gov/,dan/

matrices.html), which are based on footprinted binding sites [52].

For the alignment experiment, we used Bcd, Kr and Hb with

densities equal to 0.008, 0.009 and 0.005 respectively. The motif

thresholds were chosen so that the expected rate of TFBS gain

equals to the expected rate of loss through simulating evolution of

individual TFBS. For the CRM discrimination experiment using

simulated data, we used only Bcd and Hb motifs with lower

densities 0.004 for both. We generated 50 pairs of sequences with

ancestral sequence length equal to 500 bp at each divergence time

for the alignment experiment; and 100 pairs of positive and

negative sequences with the same ancestral sequence length at

each divergence time for the CRM discrimination experiment. A

total of 8 divergence time from 0.1 to 0.8 were sampled. For both

experiments, the other parameters took values estimated from

earlier studies involving Drosophila genomes. The distribution of

nucleotides in the background sequences was 0.3, 0.2, 0.2 and 0.3

for A, C, G, T respectively [13]. And from the same study, the

transition-transversion bias was 2.0. For the ratio of indels vs

substitutions, we used the value (0.225 ) estimated from two close

Drosophila species, sechellia and simulans [61], which was evenly split

between insertions and deletion in simulation. The length of indels

followed geometric distribution with the probability of adding one

more nucleotide equal to 0.87 [56]. The rate of indel within TFBS

relative to the rate within background sequence was 0.25, from

manually inspecting the alignment of eve-stripe 2 CRM in [7].

For the simulation under CisEvolver, we used the same

parameters except that the indel lengths are specified by their

empirical frequencies [61] instead of approximation by the

geometric distribution.

Alignment Experiment in Fly Developmental CRMs
We took 67 D. melanogaster blastoderm CRMs from RedFly

database [69], and extracted their orthologous sequences in D.

pseudoobscura by using the LiftOver tool from UCSC Genome

Browser [70]. Two CRMs without D. pseudoobscura orthologs were

discarded. We used seven TFs important for early development in

our analysis: Bcd, Cad, Gt, Hb, Kr, Kni and Tll and the PWMs of

these TFs were taken from the same source we used for simulation.

Bona fide binding sites were collected from FlyReg [52], after

some preprocessing: the sites in FlyReg frequently contain some

sequence flanking the true binding sites, so we scanned each

FlyReg site with the corresponding PWM and extracted the best

match to be used as the ‘‘known’’ binding site for evaluation

purposes, rather than the original FlyReg site.

In running EMMA, we set the evolutionary parameters

according to the values estimated from earlier studies: divergence

between the two species is about 1.5 measured by synonymous

substitution (http://rana.lbl.gov/,dan/trees.html), since the non-

coding sequences in general are under a high level of constraint

(on average, the intergenic sequences evolve 50–60% more slowly

than neutral ones [57]), we rescale the divergence to be

1.5*(120.6) = 0.6; the indel parameters, the transition-transversion

bias and the equilibrium distribution of nucleotides are all set by

the values used in simulation. All other parameters are either

default or estimated from data by the program itself. Both Stubb

and Morph were run under the default parameters except that the

divergence was set at the same value.

Experiment of Regulatory Target Prediction for
Drosophila TFs

For each of the seven TFs, we took all RedFly CRM sequences

that contain at least one FlyReg site of this TF as the set of positive

sequences. Each positive sequence was expanded or truncated so

that the length was 1000 bp. 500 random sequences of length

1000 bp each were chosen randomly from the D. melanogaster genome

as the negative set. The orthologous sequences in D. pseudoobscura

genome were extracted similarly using the LiftOver tool. EMMA

was run under the same parameter setting as in the alignment

experiment. Stubb was run under the same divergence value, 0.6

and Morph used the automatically estimated value of divergence

(similar performance was obtained if using 0.6 as the divergence).

Cluster-Buster was run under the default setting, as we do not have

extra data for training parameters of Cluster-Buster.

Binding Site Conservation Analysis in ChIP-Chip Data
The genome-wide binding data is taken from [32]. We only

looked at four factors in this experiment: Bcd, Cad, Hb and Kr. Gt

is ignored in this analysis because the PWM of its binding motif is

not very specific, and Kni is also ignored because only 35 peaks are

identified at 1% FDR level. A bound region is defined as a peak

plus 250 bp flanking sequences both upstream and downstream.

For the control sequences, we used an equal number of non-first

introns, randomly chosen from the D. melanogaster genome. The

alignment of the sequences with their orthologs in D. pseudoobscura

were constructed using EMMA. The binding sites in both species

were then predicted following the same procedure we used before

for the experiment of evaluating alignment performance of

EMMA. Similarly, we define a binding site as being conserved if

both orthologous sites have scores greater than the threshold (p
value 0.001). To define expressed and unexpressed group, we used

the annotations in BDGP of the expression patterns of genes

measured by in situ hybridization (http://www.fruitfly.org/

cgi-bin/ex/insitu.pl). A sequence belongs to the expressed group,

if its associated gene is classfied as being expressed in stage 4–6

according to BDGP, and similarly for the unexpressed group

(using the term blastoderm instead of stage 4–6 will give similar

results, but we want to be more conservative when defining the

unexpressed group).

Availability
The EMMA program, an evolution simulator, and the dataset

used in this paper are all available at http://veda.cs.uiuc.edu/

emma/.

Figure 7. The recurrence variables used in dynamic program-
ming. #: any of the four nucleotides; 2: gap; shaded box: TFBS; open
box: non-TFBS.
doi:10.1371/journal.pcbi.1000299.g007
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Supporting Information

Figure S1 A pair of orthologous sites that are functional in one

species, but not the other. Two possible histories that could lead to

this pattern are shown. Shaded and white box represent functional

TFBS and non-functional site respectively.

Found at: doi:10.1371/journal.pcbi.1000299.s001 (0.02 MB PDF)

Figure S2 TFBS conservation sensitivity from various alignment

programs using simulated data from CisEvolver.

Found at: doi:10.1371/journal.pcbi.1000299.s002 (0.02 MB PDF)

Figure S3 Performances of different programs for predicting

regulatory targets of seven blastoderm TFs using B1H PWMs.

CBust: Cluster-Buster. (A) AUC of the ROC curve; (B) the average

sensitivity at the specificity level above 80%.

Found at: doi:10.1371/journal.pcbi.1000299.s003 (0.02 MB PDF)

Text S1 Methods and additional results

Found at: doi:10.1371/journal.pcbi.1000299.s004 (0.07 MB PDF)
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