
https://doi.org/10.1177/20417314221083414

Journal of Tissue Engineering
Volume 13: 1 –14 

© The Author(s) 2022
Article reuse guidelines: 

sagepub.com/journals-permissions
DOI: 10.1177/20417314221083414

journals.sagepub.com/home/tej

Creative Commons Non Commercial CC BY-NC: This article is distributed under the terms of the Creative Commons 
Attribution-NonCommercial 4.0 License (https://creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use, 

reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open 
Access pages (https://us.sagepub.com/en-us/nam/open-access-at-sage).

Introduction

Olfactory dysfunction, estimated to affect 3%–20% of the 
population, significantly affects the health and quality of 
life of the afflicted individual,1,2 and increases the likeli-
hood of mortality among individuals up to four times.3 
This is mainly related to the body’s weakened defense 
(immune) system and the inability to sense dangerous sig-
nals (e.g. fires, hazardous chemical vapors, gas leaks, and 
decayed food).4–6 The principal causes of olfactory dys-
function are sinonasal diseases, viral infections, head inju-
ries, and neurodegenerative diseases.

The olfactory system has several unique characteristics. 
One notable feature is that the cells (mainly olfactory sen-
sory neurons (OSNs)) are always exposed to various harmful 
substances while in direct contact with external air that enters 
the nasal cavity7; as such, the OSNs are easily damaged. 
More importantly, OSNs can also regenerate throughout the 
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lifetime of a person8; this fact allows the possibility of regen-
erative approaches to treat olfactory dysfunction. While 
treatment varies depending on the etiology of the olfactory 
dysfunction, medications such as oral/intranasal steroids, 
surgery, and olfactory training are clinically used. However, 
as the success of these various treatment modalities is not 
guaranteed, it is currently challenging to treat patients with 
olfactory dysfunctions. Recent efforts in the field have 
yielded promising outcomes in the treatment of anosmia 
using stem cell therapies.

Thus, we are motivated to highlight recent studies 
that endeavored to regenerate the dysfunctional olfac-
tory system. For this, we first introduce the anatomical 
characteristics of the olfactory pathway, then detail the 
various pathological factors related to olfactory dysfunc-
tion and current clinical options, and then finally discuss 
the recent emerging therapeutic approaches, particularly 
with respect to nanoparticle-based delivery systems and 
stem cells. We also added the availability of the combi-
natory approach of nanoparticles with stem cells to 
potentiate regenerative functions. This review offers 
insights into the development of future therapeutic 
approaches to restore and regenerate the dysfunctional 
olfactory system.

Anatomy of the olfactory system and 
the dysfunctions: A brief overview

Figure 1 shows the anatomical structure of the olfactory 
pathway. The olfactory nerve is the first of the 12 cranial 
nerves and specifically carries olfactory sensory informa-
tion (sense of smell). The olfactory epithelium (OE), a 
mucosal membrane that lines the roof and sides of the 
nasal cavity, contains the olfactory receptor cells. When an 
odorant passes through the nasal vestibule and contacts the 
OE, the perception of smell begins. The OE consists of the 

pseudostratified columellar neuroepithelium and basal 
cells which reside in the deep layers of the OE, and func-
tion as stem cells with multipotency.9 These basal cells can 
give rise to new olfactory sensory neurons.10

Olfactory neurons reside superficially to basal cells. 
Each olfactory neuron expresses a single olfactory 
receptor. One odor is capable of activating multiple 
receptor types to varying degrees. The binding of an 
odorant to olfactory receptors results in signal transmis-
sion via the olfactory nerves to the olfactory bulb. 
Efferent neurons of the olfactory bulb form the olfac-
tory tract. The axons from the olfactory bulb cells pro-
ject information to the thalamus, hypothalamus, and 
dorsolateral frontal cortex, which ultimately results in 
the sense of smell.11

Clinically, olfactory dysfunction results from many 
underlying diseases such as sinonasal diseases, post-infec-
tious disorders, and post-traumatic disorders.12–14 Other 
etiologies such as congenital, idiopathic, toxic, or neurode-
generative disease-associated problems are related, but 
less prevalent; however, they must not be ruled out. 
Depending on the site of olfactory nerve injury, olfactory 
dysfunction is categorized as follows: (i) direct damage to 
the olfactory nerve epithelium or subepithelial tissue, and 
(ii) degeneration and damage to the olfactory nerve axons 
or olfactory bulb.15

Table 1 summarizes the common etiology of olfactory 
dysfunction. Most etiologies are attributed to common 
conductive or traumatic processes (such as, sinonasal dis-
ease and head trauma) and common sensorineural pro-
cesses (such as, upper respiratory infection and age-related 
loss), and congenital disorders.16 Regardless of the spe-
cific etiology, neurogenic exhaustion is likely a common 
feature of many acquired anosmia in which the normal 
replacement of damaged or senescent OSNs from progeni-
tor basal cells is overwhelmed.17

Figure 1. Anatomy of the olfactory system, and the tissue structure and cells comprising of.
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Current clinical treatments and 
therapeutic molecules and their 
limitations

Clinical treatment options

For patients with chronic rhinosinusitis, functional endo-
scopic sinus surgery was shown to improve some of the 
olfactory functions, ameliorating ventilation, and decreasing 
inflammation in the olfactory cleft area18; a spontaneous 
recovery in 32%–66% of the patients was observed in post-
URI anosmia.19 On the other hand, post-traumatic olfactory 
disorders showed a much lower recovery rate, due to scar-
ring in the cribriform plate area, accompanied by shearing 
injuries and intracranial lesions.20 Olfactory training is also 
recommended to gain some olfactory functions in post-trau-
matic anosmia/hyposmia21 and in chronic rhinosinusitis.22,23 
Exposure to certain odors may modulate the regenerative 
capacity of olfactory receptor neurons.24,25 In this study, 
patients with post infection anosmia showed brain remode-
ling during functional magnetic resonance imaging follow-
ing 12 weeks of olfactory training.26 Patients with hyposmia, 
who have neurodegenerative disorders like Parkinson’s dis-
ease, may also benefit from olfactory training.27

Clinical therapies based on oral or systemic steroids 
have often been proven to be effective for sinonasal disor-
ders, although the duration and dose of steroids remain to 
be optimized.28,29 Topical steroids have also been shown to 
be effective in allergic rhinitis combined with antihista-
mines.30,31 In a double-blind, randomized, placebo-con-
trolled study, the effect of fluticasone nasal spray on 
patients with olfactory dysfunction was evaluated. Eighty-
three percent of the patients had improved smell after sys-
temic treatment, with no difference observed in the topical 
versus placebo groups.32 Although the administration of 
steroids was proven to be effective in many animal mod-
els,33,34 studies in humans showed variable outcomes and 
often had limited efficacy.35,36 In patients with post-trau-
matic olfactory dysfunction, the treatment effect of ster-
oids was known to occur only in 12%–16% of the 
patients.37 More importantly, the side effects of steroids 
such as osteonecrosis and iatrogenic Cushing syndrome 
(adrenal insufficiency) have been raised as significant con-
siderations.38,39 Other side effects of steroids include cata-
racts, gastritis, hyperglycemia, hypertension, delayed 
wound healing, and bacterial/fungal/viral infection.

Other medications such as statins and vitamins have 
been used in clinical settings, in addition to steroids. A 

Table 1. Etiologies of olfactory dysfunctions.

Sinonasal conditions
Upper respiratory infection (especially viral), allergic rhinitis, chronic rhinosinusitis, nasal polyps
Head trauma
Damage to cribriform plate, shearing forces, intracranial damage, facial trauma
Neurodegenerative disorders
Parkinson disease, parkinsonism, Alzheimer disease, mild cognitive impairment, multiple sclerosis
Medications
Chemotherapy, angiotension-converting enzyme inhibitors, angiotensin receptor blockers, dihydropyridine calcium channel 
blockers, diuretics, intranasal zinc, antimicrobials (macrolides, terbinafine, fluoroquinolones, protease inhibitors, griseofulvin, 
penicillins, tetracyclines, nitromidazoles, antiarrhythmics, antithyroid agents, antidepressants, anticonvulsants, lipid-lowering agents)
Toxins or intoxicants
Alcohol, cocaine, ammonia, hairdressing chemicals, gasoline, formaldehyde, paint solvents, welding agents, benzene, sulfuric acids, 
cadmium, acrylates, iron, lead, chromium
Chronic medical conditions
Renal of hepatic failure, diabetes mellitus, cancer, human immunodeficiency virus
Structural or mechanical conditions
Ischemic stroke, subarachnoid or intracranial hemorrhage, brain or sinonasal tumor
Nutritional deficiencies
Malnutrition, pernicious anemia, deficiencies in vitamin A/B6/B12, niacin, zinc or copper
Postsurgical state
Nasal surgery (septal or sinus), total laryngectomy, pharyngectomy, tonsillectomy
Post-radiation (especially to head and neck area)
Congenital conditions
Kallmann syndrome
Phychiatric conditions
Anorexia nervosa, major depressive disorder, bipolar disorder, schiznophrenia
Endocrine conditions
Pregnancy, hypothyroidism, Addison disease, Cushing syndrome
Autoimmune/inflammatory conditions
Sjögren syndrome, systemic lupus erythematosus, sarcoidosis, herpes encephalitis
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recent study has revealed that vitamin A plays a role in the 
regeneration of olfactory receptor neurons.40 In post-trau-
matic and post-infectious anosmic patients, topical treat-
ment with vitamin A increased the olfactory function in 
37% of anosmic patients, while 23% improvement was 
shown in the control group.40

Candidates of therapeutic molecules studied in 
vivo

Some of the candidate small molecules and proteins, albeit 
not clinically proven, have been tested in dysfunctional 
olfactory in vivo models.

Statin, a β-hydroxy β-methylglutaryl-CoA (HMG-
CoA) reductase inhibitor with putative neuroprotective 
properties, has shown effects on the nervous system.41 
Kim et al.42 showed that the statin treatment group had an 
increased expression of olfactory marker protein (OMP) 
and thickness of OE, compared to the control group. 
Furthermore, a significantly higher pass rate in a food-
finding test was shown in the treatment group compared to 
that in the control group.42

Valproic acid (VPA), a histone deacetylase (HDAC) 
inhibitor, has shown some neuro-regenerative properties in 
rodents with spinal cord injury.43 Ogawa et al.44 investi-
gated the effects of VPA on olfactory sensory neuron 
regeneration. In a mice model of OE degeneration induced 
by methimazole injection, daily administration of VPA 
increased epithelial thickness, the proliferation of OMP 
positive cells, and the expression of growth-associated 
protein-43 (GAP43), which is a nervous tissue-specific 
cytoplasmic protein in the OE, suggesting that VPA stimu-
lates proliferation and differentiation of olfactory precur-
sor cells, which in turn promotes regeneration of the 
olfactory system.44

Treatment with growth factors is also a potential tool to 
improve olfactory dysfunction by restoring homeostasis 
and normal neurogenesis, as growth factors stimulate cel-
lular growth, proliferation, and regeneration.45 In young 
and aged mice, intranasal administration of basic fibro-
blast growth factor (bFGF) significantly increased the pro-
liferation of GAP43-positive cells, although there was no 
significant change in the number of OMP positive cells 
and mature olfactory receptor neurons.46 Nota et al.47 
examined the effect of bFGF on the injured OE of mice. In 
a murine anosmia model, intranasal treatment with bFGF 
and hydrogel increased the thickness of the OE and the 
number of mature OSNs expressing OMP.47 With hydro-
gel, sustained release of bFGF could be achieved.

Platelet-rich plasma (PRP) is a small amount of blood 
from a subject that is separated into its components via 
centrifugation. It is a biocompatible physiological material 
and contains many growth factors, including platelet-
derived growth factor (PDGF), transforming growth 
factor-β (TGF-β), epidermal growth factor (EGF), 

vascular endothelial growth factor (VEGF), insulin-like 
growth factor (IGF), and numerous neurotrophic factors 
such as the neurotrophin-3, angiopoietin-1 (Ang1), and 
glial cell line-derived neurotrophic factor (GDNF).48–52 A 
recent study demonstrated the effectiveness of PRP on 
anosmia in a mouse model, showing that PRP treatment 
induced significant functional and histological improve-
ments.53 However, this study had some limitations; the 
authors only investigated the histopathological findings 
with hematoxylin and eosin staining.

These studies in in vivo anosmia models revealed some 
of the important roles that small molecules and proteins 
play in various biological pathways in restoring the func-
tions of OE, highlighting their potential use as candidate 
molecules for the treatment of olfactory dysfunction in the 
future. Despite their therapeutic effectiveness, the poten-
tial dose-dependent human toxicity and side effects of 
small molecules and proteins, particularly when adminis-
tered systematically, must be resolved, which might be 
alleviated by utilizing adequate delivery systems.

Nanoparticle-based intranasal drug 
delivery system

Nanoparticles have been extensively studied as drug deliv-
ery systems in diverse fields, including for the treatment of 
tumors, neurodegenerative disorders, and cardiovascular 
diseases.54,55 Nanoparticles have recently been studied for 
applications in olfactory disorders. Like in the other areas, 
the treatment of olfactory system disorders requires the 
nanoparticles to satisfy several prerequisites: biocompati-
bility and the capacity to load large amounts of cargo mol-
ecules and subsequently release them in a controllable 
manner. Furthermore, the nanoparticles are tailored to 
exert specific functions; for example, surface modification 
is required to target cells or cellular components, which 
depends on the administration route (oral, intravenous, or 
intranasal delivery), and the composition needs to be prop-
erly chosen (polymers, inorganics, or composites) to allow 
controlled drug release profiles (diffusion, swelling, ero-
sion, or degradation). Sometimes, the nanoparticles are 
equipped with more advanced properties such as stimuli-
responsiveness and imaging/diagnostic capacity. Authors 
are guided to refer to some of the key reviews in this nano-
particle development area.56–58 Among other delivery 
routes, intranasal delivery has been the most widely stud-
ied route for the use of nanoparticles in the treatment of 
olfactory system disorders.

Overcoming mucus clearance and the 
therapeutic efficacy in vitro and in vivo

Above all, the mucus layer is considered a unique charac-
teristic of the olfactory system; thus, “mucociliary clear-
ance” has remained a major physiological barrier that the 
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nanoparticles with drugs need to overcome in the olfactory 
pathway.59 This protection mechanism of the respiratory 
system operates efficiently and rapidly eliminates noxious 
substances (particles and microorganisms) trapped in the 
10–15 μm thick mucus layer. As such, this system greatly 
limits the residence time of therapeutic substances admin-
istered into the nasal cavity.

Two strategies made with nanoparticles are used to 
address the mucociliary clearance issue: (i) mucoadhesive 
and (ii) mucus-penetrating, as depicted schematically in 
Figure 2. The mucus layer has different physicochemical 
properties depending on the organ. The nasal mucus is 
slightly acidic (pH 5.5–6.5) and is negatively charged 
because of the presence of high amount of mucins.60,61 
Therefore, mucoadhesive nanoparticles are often devel-
oped to have a positively-charged surface to maximize 
nanoparticle adhesion to the nasal mucus based on their 
electrostatic attraction with mucins. Moreover, the surface 
can be tailored to be hydrophobic to enable hydrophobic 
interaction with mucin hydrophobic domains.62 For this 
reason, chitosan has been widely studied as a mucoadhe-
sive nanoparticle for intranasal drug delivery. It is not only 
biocompatible, biodegradable, mucoadhesive, and posi-
tively charged in the slightly acidic pH of nasal mucus, but 
is also an efficient permeation enhancer that can transiently 

open the tight junctions between epithelial cells in mucosal 
tissues.63–65

Several studies have reported mucoadhesive nanocarriers 
based on chitosan derivatives (Figure 3(a)). Trimethyl chi-
tosan (TMC), for example, is a water-soluble, permanently 
positively charged chitosan derivative that has been used  
to encapsulate the analgesic neurotransmitter leucine- 
enkephalin (Leu-Enk). Trimethyl chitosan nanoparticles 
could increase the permeability of the peptide across porcine 
nasal mucosa 35 times, leading to a significant increase in the 
antinociceptive effect.66 Liposomes coated with a chitosan 
derivative have also been proposed for nasal delivery. 
Liposomes loaded with ghrelin were prepared by the lipid 
film-rehydration-extrusion technique, followed by coating 
with N-([2-hydroxy-3-trimethylammonium] propyl) chitosan 
chloride (HTCC). The chitosan-coated liposomes bound 
mucin more efficiently than the uncoated anionic liposomes 
and improved permeation.67 Clementino et al.68,69 developed 
hybrid chitosan–lipid nanocapsules for drug (statin) delivery. 
The nanocapsules with sizes of 200 nm and that were posi-
tively charged, were administered intranasally to rats and 
showed a higher intake rate than free-standing drugs. Another 
study developed a mucin-controlled drug release system from 
mucoadhesive phenylboronic acid-rich nanoparticles 
(PBNPs) that specifically adhered to mucin (Figure 3(b)).70

Figure 2. (a) Schematic illustrating the mucoadhesive and mucus-penetrating strategy with developed nanoparticles. Mucoadhesive 
nanoparticles (b) are good at catching the surface of mucous membrane whereas the mucus-penetrating nanoparticles (c) transport 
more effectively through the mucus layer.
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On the other hand, the mucus-penetrating nanoparticles 
had their surface modified to reduce mucoadhesion (Figure 
3(c)). Mucus is a dense molecular network with a mesh 
spacing (20–500 nm) that prevents the diffusion of larger 
particles through it.71,72 Thus, the use of sufficiently small 
nanoparticles coated with proper polymers that minimize 
interactions with mucins, may increase their penetration 
through the mucus layer. Polyethylene glycol (PEG) is often 
used to coat the surfaces of polymeric nanoparticles. For 
example, the presence of PEG on the surface of PLA nano-
particles at high density was shown to enhance nanoparticle 
transportation within the nasal mucosa when administered 
intranasally to rats.73 Furthermore, nanoparticles of 100 and 
200 nm coated with low MW PEG were also shown to pene-
trate the mucus of individuals suffering from chronic rhi-
nosinusitis effectively.74 The unique characteristics of 
nanoparticles, such as, the small size (<200 nm) and nega-
tively charged surface (ζ potential between −15 and 
−30 mV), makes them favorable for drug delivery across the 
nasal mucosa (and even to brain transport), and superior to 
naked drug delivery. When poly (lactic-co-glycolic acid) 

(PLGA)/PEG nanostructured particles loaded with resvera-
trol (RSV) were used to treat a mouse nasal polyp model, 
polyp formation was inhibited, and epithelial integrity was 
increased.75 The lipid was also combined with PEG to coat 
the PLGA nanoparticles as an effective mucus-penetrating 
nanocarrier of the drug. Although the work was actually 
aimed at nose-to-brain delivery, the highlighted point was 
that the dose fraction accumulated in the liver and spleen 
was significantly reduced, confirming a higher safety of the 
nasal treatment via a mucus-penetrating approach.76

Another approach for designing mucus-penetrating 
nanoparticles is in conjugation with a mucolytic agent to 
disrupt the mucus barrier (Figure 3(d)). N-acetyl-L-
cysteine (NAC), a potent mucolytic agent, remarkably 
enhanced nasal absorption of large molecular weight com-
pounds, in combination with nonionic surfactants.77 NAC 
can disrupt the mucus structure by substituting the free 
thiol (sulfhydryl) group for the disulfide bonds connecting 
with mucin proteins, resulting in its clinical use in bron-
chopulmonary diseases to reduce both the viscosity and 
tenacity of mucus, as well as to facilitate its removal.77,78

Figure 3. Exemplar studies on the development of mucoadhesive or mucus-penetrating nanoparticles. (a) Mucoadhesive 
nanoparticles based on chitosan-coating for binding to negative-charged mucus layer. (b) Mucoadhesive nanoparticles based on 
phenylboronic acid-rich nanoparticles (PBNP) for adhesion to mucin and mucin-controlled drug release. (c) Mucus-penetrating 
nanoparticles by low molecular weight PEG coating. (d) Mucus-penetrating nanoparticles based on NAC-coating by reducing mucus 
viscosity.
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Discussion and outlook on nanoparticle-based 
therapies

Along with the design of nanoparticles to be mucoadhe-
sive or mucus-penetrating, other properties might be help-
ful in future developments. Some of the intrinsic properties 
of the newly developed nanoparticles, such as enzymatic 
activity, require special attention to treat olfactory injuries. 
The enzymatic activity involves catalase-, superoxide dis-
mutase-, oxidase, and peroxidase-like properties; thus, the 
nanoparticles developed to have these properties can play 
roles similar to those of the body’s natural antioxidant 
enzymes.79,80 For example, nanoparticles such as cerium 
oxide (CeO2), copper oxide, and polyoxometalate (POM), 
have been shown to exert some of those properties in vitro 
and in vivo and were thus highly effective in scavenging 
reactive oxygen species (ROS) under oxidative stress con-
ditions (e.g. inflamed tissues such as osteoarthritis, skin 
infection, and spinal cord injury).81–84 Acute injuries and 
infections in the olfactory system mostly entail severe 
inflammation with excessively generated ROS; thus, using 
such enzymatic nanoparticles would help attenuate local 
inflammation, possibly contributing to olfactory tissue 
recovery; this, however, requires further investigation. 
Furthermore, when the enzymatic nanoparticles are modi-
fied to be mucoadhesive or mucus-penetrating and to 
deliver drugs, their therapeutic functions in inflamed 

olfactory tissues could be synergized and potentiated, 
which constitutes a potential future research area.

While we focused on nanoparticle delivery to the site of 
olfactory injuries, nasal delivery often reaches the brain 
region, and thus, olfactory dysfunction is closely linked to 
brain diseases. Recently, the severe acute respiratory syn-
drome coronavirus 2 (SARS-CoV-2) has been shown to sig-
nificantly influence the respiratory and central nervous 
systems, leading to anosmia and several neurological dis-
eases.85,86 Olfactory dysfunctions caused by sensorineural or 
traumatic etiologies are difficult to treat clinically. Although 
researchers and medical companies are focusing on develop-
ing drugs for anosmia and SARS-CoV-2-induced anosmia, 
there are few reports on the use of nanoparticles to treat anos-
mia. As a key mechanism of sensorineural/traumatic anos-
mia, the disruption of the olfactory neurons is considered87; 
therefore, strategies for drug delivery from intranasal to brain 
are thought to be a promising treatment option.69,88,89 As 
listed in Table 2, some of the nanocarrier systems developed 
for nose-to-brain delivery are also based on mucoadhesive or 
mucus-penetrating polymeric nanoparticles, with composi-
tions such as lipids, fatty acids, PEG, PEG-PLGA, and 
Pluronic F127.69,90,91 The olfactory sensory neurons directly 
cross-talk with the brain and central nervous system, so nan-
oparticle-based therapeutics through the route of nose-to-
brain would be a promising therapeutic strategy to address 
olfactory dysfunction.

Table 2. Nanocarriers with mucoadhesive or mucus-penetrating property developed for the intranasal drug delivery.

Drug Application Size (nm) ζ-potential (mV) References

Mucoadhesive nanocarriers
 Chitosan Chitosan Olfactory dysfunction — — Li et al.92

 Chitosan NPs Estradiol Alzheimer’s disease 269.3 ± 31.6 +25.4 ± 0.7 Wang et al.93

Rivastigmine Alzheimer’s disease 185.4 ± 8.4 +38.4 ± 2.8 Fazil et al.94

Thymoquinone Alzheimer’s disease 172.4 ± 7.4 +30.3 ± 2.2 Alam et al.95

Bromocriptine Parkinsons’ disease 161.3 ± 4.7 +40.3 ± 2.7 Md et al.96

Pramipexole Parkinsons’ disease 292.5 ± 8.8 +14.0 ± 2.9 Raj et al.97

Ropinirole Parkinsons’ disease 173.7 ± 2.3 +32.7 ± 1.5 Jafarieh et al.98

Tapentadol Chronic pain 201.2 ± 1.5 +49.3 ± 1.2 Javia and Thakkar99

 Thiolated chitosan NPs Cyclobenzaprine Chronic pain 272.1 ± 11.5 +20.9 ± 1.7 Patel et al.100

Selegiline Depression 215.0 ± 34.7 +17.1 Singh et al.101

 Chitosan-PLGA NPs Chlorpromazine Schizophrenia 463.9 ± 12.0 +21 ± 2 Chalikwar et al.102

 Chitosan-coated liposomes Ghrelin Cachexia 194.0 ± 6.1 +6.0 ± 0.4 Salade et al.67

Mucus-penetrating/penetration-enhancing nanocarriers
 Pluronic® F127 PLGA NPs Diazepam Epilepsy 183.2 < −15 Sharma et al.103

Midazolam Epilepsy 164.0 ± 4.5 −16.6 ± 2.5 Sharma et al.104

 Pluronics-coated PLGA — Chronic rhinosinusitis 188 ± 7  −7 ± 1 Lai et al.74

 PEGylated Zinc Zinc Olfactory 
enhancement

1.4 ± 0.4 −27.5 ± 2.5 Singletary et al.105

 Lipid/PEG-PLGA NPs FTA Glioblastoma 164.3 ± 10.3 −12.0 ± 1.3 Sekerdag et al.76

 TPSG micelles Zolmitriptan Migraine 24.2 ± 0.7 — Jain et al.106

Sumatriptan Migraine 23.1 ± 0.4 — Jain et al.107

 Polysorbate 80 SLN Rosmarinic acid Huntington’s Disease 149.2 ± 18.2 −38.27 Bhatt et al.108

FTA: farnesylthiosalicylic acid; SLN: solid lipid nanoparticles.
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Stem cell-based transplantation 
therapies

Stem cells have self-renewal potential and multi-lineage dif-
ferentiation properties and have therefore been used for 
therapeutic purposes in regenerative medicine. In particular, 
multipotent adult stem cells including hematopoietic stem 
cells (HSCs), mesenchymal stem/stromal cells (MSCs), and 
fetal tissue-derived stem cells, can be specialized more 
toward tissue- and lineage-specific cell types; thus, a wide 
range of clinical trials have been performed for over 
60 years.109 Although these stem cells have beneficial effects 
in regenerative medicine in vitro, several pathophysiologi-
cal conditions such as hypoxia, restricted nutrient supply, 
oxidative stress, and inflammation, suppress the therapeutic 

efficacy in vivo. Thus, to enhance stem cell functions against 
pathophysiological conditions, recent studies on stem cell-
based therapy have adopted new technologies such as virus-
mediated transduction of stem cells, gene-editing tools, 
optogenetics, chemogenetics, extracellular vesicles (EVs), 
and application of nanoparticles.109–111

Therapeutic evidences of stem cell 
transplantation to olfactory dysfunctions

Various cell transplantation treatments have recently been 
studied for the restoration of dysfunctional olfactory system 
(Table 3). Transplanted stem cells are more likely to secrete 
beneficial substances (proteins such as growth factors or 
exosomes) that help the survival and regeneration of target 

Table 3. Stem cell therapies used to treat olfactory dysfunctions.

Material Application Measured parameters Strengths & Defects Reference

BM-MSCs TX-100 
induced 
anosmic rat

Behavioral test (food 
finding test), histologic 
changes of olfactory 
epithelium, mRNA level 
of NGF and BDNF

-  Proposed BM-MSC as new potential 
therapeutic modality for anosmia

- Lacks mechanism study
-  Clinical application can be limited due to 

invasive direct injection method.

Jo et al.120

TX-100 
induced 
anosmic rat

Histological changes of 
olfactory epithelium, 
western blot of NGF

-  Proposed BM-MSC as new potential 
therapeutic modality for anosmia

-  Lacks mechanism study, no behavioral test 
was performed

-  Clinical application can be limited due to 
invasive direct injection method.

Kwon et al.121

Ad-MSCs Dichlobenil 
induced 
anosmic mice

Histologic changes of 
olfactory epithelium, EOG 
on mice olfactory mucosa

-  Suggest the possibility of a future central 
role in regenerative medicine for ADSCs

- Lacks mechanism study
-  Clinical application can be limited due to 

invasive direct injection method.
- No behavioral test was performed.

Franceschini et al.122

HSC Dichlobenil 
induced 
anosmia mice

Histologic changes of 
olfactory epithelium.

-  First evidence that transplanted HSCs 
migrating to the olfactory epithelium and 
contribute to epithelial restoration.

- Lacks mechanism study
-  Clinical application can be limited due to 

invasive direct injection method.
- No behavioral test was performed.

Franceschini et al.123

NSCs 3-MI induced 
anosmic mice

Behavioral test (food 
finding test), histologic 
analyses on olfactory 
epithelium, western blot 
of olfactory epithelium 
(OMP, α-tubulin)

-  Evaluated both functional and histologic 
recovery of anosmic mice

- Non-invasive (intranasal) injection of NSCs
- Lacks mechanism study.

Lee et al.124

OSCs Ift88 gene 
deleted 
hyposmia mice

Histologic changes of 
olfactory epithelium, EOG 
on mice olfactory mucosa

-  Proposed OSCs as new potential 
therapeutic modality for hyposmia

-  Non-invasive (intranasal) injection of OSCs
-  Recover of sensory losses in olfactory 

tissues
-  Study on human-derived OSCs need to be 

investigated.

Kurtenbach et al.125

Ad-MSC: adipose-derived mesenchymal stem cell; BDNF: brain derived neurotrophic factor; BM-MSC: bone marrow derived mesenchymal stem cell; 
EOG: electroolfactogram; HSC: human cord blood-selected CD133+ stem cell; NGF: nerve growth factor; NSC: neural stem cell; OMP: olfactory 
marker protein; OSC: olfactory stem cell; TX-100: triton X-100.
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cells, rather than directly differentiating to provide new cell 
sources.112,113 Among other secretome molecules, neuro-
trophic factors enhance neuronal survival, regulate progeni-
tor cell proliferation, and promote neurogenesis.114–116 For 
example, nerve growth factor (NGF) is known to transport 
to OE, and its presence in OE can modulate neuronal turno-
ver.117,118 Additionally, brain-derived neurotrophic factor 
(BDNF) has been implicated in generating and differentiat-
ing new olfactory receptor neurons.119 The upregulation of 
neurotrophic factors by the stem cells transplanted to the 
olfactory injury sites would thus be a promising approach 
for increasing the healing capacity of dysfunctional olfac-
tory systems.

Tissue healing, including those in the olfactory system 
such as repairing endothelial cells and sensory neurons, 
entails neo-blood vessel formation and angiogenesis. 
MSCs are known to induce and secrete angiogenic 
cytokines.126 Therefore, MSCs are an effective therapeutic 
cell source for the treatment of anosmia. In a recent repre-
sentative study, bone marrow-derived MSCs (BM-MSCs), 
adipose tissue-derived MSCs (Ad-MSCs), and HSCs were 

transplanted into an OE degeneration rat model (Figure 
4(a)).120 The intranasal injection of BM-MSCs could aug-
ment the thickness and cellular composition of the OE to 
the normal level. In addition, the restoration rate of olfac-
tory functions due to the BM-MSC injection was signifi-
cantly enhanced compared to that of the control group.120 
This study also found a close relationship between the res-
toration of olfactory functions and the activated neuro-
trophic factors, including NGF and BDNF. In another 
study, in a rat anosmia model, the transplantation of 
BM-MSCs promoted the morphological restoration of the 
olfactory mucosa when compared to the contralateral con-
trol side.121 Franceschini et al.122 transplanted Ad-MSCs 
into immunodeficient mice with permanent damage in the 
dorsomedial olfactory region induced by dichlobenil inoc-
ulation (Figure 4(b)). The transplanted cells integrated into 
the lesioned OE and clusters of differentiated cells were 
observed in the epithelium.122 In particular, there was a 
marked increase in the thickness of the OE and the expres-
sion of OMP in the Ad-MSC transplanted group compared 
to the control group.

Figure 4. Application of stem cell transplantation in olfactory dysfunction and the regenerative effects of cell-based therapeutics.
AD-MSCs: adipose-derived mesenchymal stem cells; BDNF: brain-derived neurotrophic factor; BM-MSCs: bone marrow-derived mesenchymal 
stem cells; NGF: nerve growth factor; NSCs: neural stem cells; OE: olfactory epithelium; OECs: olfactory ensheathing cells; OMP: olfactory marker 
protein; TGF-β1: transforming growth factor beta 1.
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Other types of stem cells have also shown therapeutic 
efficacy in restoring olfactory dysfunction. One study has 
shown that HSCs transplanted into injured OE of NOD-
SCID mice resulted in improved neuronal recovery, with 
an increased expression of GAP43.123 Lee et al.124 investi-
gated neural stem cells (NSCs) as a potential treatment for 
olfactory dysfunction (Figure 4(c)). The olfactory bulb-
derived NSCs recovered olfactory function and the expres-
sion of OMP in a murine OE-injured model. Compared to 
the control, NSC-treated mice showed a better recovery of 
olfactory function in terms of the food-finding test and the 
expression of OMP.124 Olfactory ensheathing cells (OECs) 
are a unique glial cell type that ensheathe olfactory axons 
into large bundles as they traverse from the lamina propria 
to the nerve fiber layer of the olfactory bulb. They express 
guidance cues and extracellular matrix molecules to assist 
in the growth and provide directional and tropic support to 
the primary neurons to reach the olfactory bulb (Figure 
4(d)).127 A recent study revealed that OECs secrete trans-
forming growth factor β1 (TGF-β1), which can increase 
their phagocytic activity by regulating integrin/milk fat 
globule-epidermal growth factor (EGF) factor 8 (MFG-
E8) protein signaling pathway.128

Discussion and outlook of stem cell-based 
therapies

As noted, stem cell transplantation to the dysfunctional 
olfactory system is effective with convincing evidence. 
However, a couple of issues remain that need to be 
addressed. First, the cells considered as the stem cells of the 
olfactory nerve epithelium have not been accurately identi-
fied in the molecular biology context, which makes it diffi-
cult to determine the differentiated fate of transplanted stem 
cells and their possible specific roles. Second, it is also 
unclear what kinds of biochemical factors are essentially 
involved in the differentiation of stem cells into olfactory-
specific cells, complicating the identification of the decisive 
role of secreted molecules from the transplanted cells. In 
addition, the effects of injection route, injection dose, num-
ber of administrations, and source of stem cells used for 
olfactory dysfunction, have not been well examined, requir-
ing more systematic studies in the area. Given that these 
issues are addressed in the future, we may identify the fate 
of stem cells transplanted (whether they are differentiated or 
not, and if so, what fraction and which lineage cells would 
be) and the mechanisms underlying the differentiation into 
specific cell types that are needed for the recovery of dys-
functional olfactory tissues.

As the surrounding matrix influences stem cell proper-
ties, such as survival and differentiation capacity, it is 
highly recommended to use biomaterials and scaffolds for 
stem cell delivery. Many hydrogels and 3D scaffold sys-
tems for the delivery of stem cells have been developed 
with tunable physico-mechano-chemical properties such 

as stiffness, dynamic mechanical properties (e.g. stress 
relaxation), ligand type, and density.129–132 Depending on 
these extracellular matrix properties, the biological fate of 
stem cells can be modulated. For example, when MSCs 
were cultured in stress-relaxing hydrogels, their differen-
tiation into osteogenic or chondrogenic lineage was sig-
nificantly enhanced compared to those in non-stress-relaxing 
hydrogels,133,134 implying the importance of dynamic 
mechanical properties of hydrogels in cell fate determina-
tion. In addition, the ligand type of 3D scaffolds primarily 
determined the lineage differentiation of NSCs,135–137 dem-
onstrating the difference in initial cellular perception of the 
extracellular matrix ligand governing the intracellular 
signaling that leads to altered cell fate. Therefore, future 
studies on stem cell delivery to the olfactory system are 
needed that use the hydrogels and 3D scaffolds that are 
designed to specifically stimulate the cells to induce 
secretome and/or differentiate to the cells helpful for the 
recovery of dysfunctional olfactory tissues.

Although here we focused on the delivery of stem cells, 
their secretome such as extracellular vesicles (EVs), are 
considered to be of utmost importance as an alternative to 
stem cells because of their merits over living cells, includ-
ing delivery to target specific cell types, less immune 
responses, stabilization in the body, and the ability to con-
tain drugs.111,138 Some of the applications of EVs to dys-
functional tissues such as kidney diseases, cardiovascular 
diseases, bone defects, fibrosis, stroke, and spinal cord 
injuries, have shown the therapeutic efficacy of EVs to 
levels comparable to those treated with conventional stem 
cell delivery approaches.111,138–140 The applications of stem 
cell-based therapies for the dysfunctional olfactory system 
are still in infancy; thus, future strategies need to harness 
the new technologies that progress in scaffold develop-
ment and EV biogenesis, in order to potentiate the cellular 
capacity for regenerating the dysfunctional olfactory 
tissues.
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