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The exceptional potential for application that metallic nanoparticles (MeNPs) have shown, 
has steadily increased their demand in many different scientific and technological areas, 
including the biomedical and pharmaceutical industry, bioremediation, chemical synthesis, 
among others. To face the current challenge for transitioning toward more sustainable 
and ecological production methods, bacterial biosynthesis of MeNPs, especially from 
extremophilic microorganisms, emerges as a suitable alternative with intrinsic added 
benefits like improved stability and biocompatibility. Currently, biogenic nanoparticles of 
different relevant metals have been successfully achieved using different bacterial strains. 
However, information about biogenic nanoparticles from rare earth elements (REEs) is 
very scarce, in spite of their great importance and potential. This mini review discusses 
the current understanding of metallic nanoparticle biosynthesis by extremophilic bacteria, 
highlighting the relevance of searching for bacterial species that are able to biosynthesize 
RRE nanoparticles.
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INTRODUCTION

Metallic nanoparticles (MeNPs) possess unique physical properties that make them highly 
attractive in material science and biology. Their nanometric scale is comparable in size to 
subcellular structures, and the wide variety of core materials available, coupled with tunable 
surface properties, make nanoparticles an excellent platform for a broad range of notable 
applications (De et  al., 2008). Due to the increasing interest, back in 2018, market reports 
estimated that the worldwide production of MeNPs had the expectation of reaching 50 
billion US dollars by 2026 (Ovais et al., 2018). However, amid the COVID-19 crisis, healthcare 
applications of nanoparticles are storming into the spotlight, led by the focus on diagnostics 
and treatment of SARS-CoV-2 (Brouwer et  al., 2021; Park et  al., 2021; Pilaquinga et  al., 
2021; Wang et  al., 2022) as well as other viruses (Draz et  al., 2020; Dung et  al., 2020; 
Perotti and Perez, 2020) and bacterial infections (Barani et  al., 2021). Therefore, the global 
market for nanotechnology is currently projected to keep growing (Rasmi et  al., 2021; 
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Tortella et  al., 2021), and will most probably surpass the 
pre-pandemic estimation.

Biomedical applications take advantage of the small size of 
nanoparticles, which allows them to easily surpass the blood–
brain barrier and skin epithelium, making them suitable as 
drug-carriers. Additionally, the high surface area-to-volume 
ratio of MeNPs in solution and their unique chemical and 
physical properties such as uniformity and conductance, improves 
the distribution of the drugs being delivered, enhancing its 
therapeutic impact (Khan et al., 2018). Also, the functionalization 
of MeNPs with various macromolecules has been proven to 
expand and further improve many biomedical properties. Their 
hybridization with biopolymers such as chitosan, hyaluronic 
acid, cellulose, or starch has shown betterment in release 
kinetics, biocompatibility, and pharmacokinetics of drug-carrier 
MeNPs (Hussain et  al., 2019).

Several MeNPs have also shown to exert antibacterial, antifungal, 
and antiviral effects, and they are currently used in preventing 
biofilm formation and antibiotic resistance (Fernando et al., 2018; 
Gahlawat and Choudhury, 2019; Thambirajoo et  al., 2021). A 
study working with clinical Acinetobacter baumannii isolates, 
that showed high level of resistance to antibiotics, proved that 
treating the bacteria with silver nanoparticles (AgNPs) markedly 
interrupted bacterial growth, inhibited biofilm formation, and 
downregulated transcription levels of important virulence genes 
(Hetta et al., 2021). In addition, MeNPs have also gained attention 
for their antioxidant properties, with potential application in 
pharmaceutical and cosmetic products (Patel et  al., 2021). 
Furthermore, nanoparticles applications also harness extraordinary 
potential to contribute to environmental protection amid the 
climate change crisis, as they can be  used for bioremediation, 
and also as additives to enhance the efficiency of biofuels and 
pesticides, reducing their use (Johnson et  al., 2013; Rai et  al., 
2018; Shang et  al., 2019; Chauhan et  al., 2022).

A variety of chemical and physical methods has been used 
for the synthesis of MeNPs. However, these conventional methods 
are fraught with many problems including its cost, high-energy 
consumption, the use of toxic solvents, and the generation of 
hazardous by-products, which affects the biocompatibility of 
MeNPs, limiting their applications (Thakkar et  al., 2010). In 
addition, the scalability of the traditional methods is also 
challenging because of the low stability and monodispersity 
of the obtained products (Ali et  al., 2019). Accordingly, there 
is an increased pressure and demand to develop clean, nontoxic, 
eco-friendly, and economical methods of MeNPs synthesis 
(Hosseini and Sarvi, 2015).

A promising approach to achieve a more efficient and 
sustainable MeNPs production method is to take advantage 
of the array of microbiological resources in nature, as 
microorganisms play an important role in adsorbing and 
accumulating metals from their environment (Velusamy et  al., 
2016). In order to survive at high metal concentrations, they 
reduce its toxicity by changing the redox state of the metallic 
ions present in their surroundings, which in some cases leads 
to the formation of well-defined metallic nanoscale particles.

In this minireview, we  aimed to present recent information 
related to bacterial biosynthesis of MeNPs and the advantages 

of using extremophilic bacteria, emphasizing the relevance of 
rare earth bionanoparticles.

EXTREMOPHILIC BACTERIA IN THE 
BIOSYNTHESIS OF NANOPARTICLES

Producing MeNPs using biotechnological processes is usually 
less costly, highly efficient, and more ecological than chemical 
methods. Several bacteria possess remarkable ability to reduce 
metal ions, and are one of the best candidates for production 
of biogenic nanoparticles. Bacterial NPs biosynthesis has the 
advantage of producing more stable MeNPs that show a lowered 
tendency toward agglomeration. This improved stability is 
believed to be  caused by the capping of the NPs surface by 
native microbial proteins and other biomolecules (Ovais et  al., 
2018). These capping proteins bind to MeNPs through their 
amine groups and cysteine residues, neutralizing the net surface 
charge of the particles, preventing agglomeration which would 
cause the loss of their specific properties. In the case of 
chemically produced NPs, oftentimes surfactants are used to 
increase stability, but these compounds are usually toxic, 
hindering their biomedical applications. Protein-enabled stability 
of biosynthesized NPs is non-toxic, environmentally friendly, 
and overall safer (Beeler and Singh, 2016).

Furthermore, MeNPs biosynthesis by bacteria offers greater 
control over the conditions of the production process, which 
is relevant given that pH, the medium used, presence of light, 
concentration of metal ions, and temperature could affect the 
shape, size, and manufacture efficiency of MeNPs. Because of 
this, extremophilic microorganisms that are naturally adapted 
to live under extreme environmental conditions (e.g., high 
metal concentration, high and low temperature, acidic or alkaline 
pH, high pressure, salinity, and radiation) are particularly 
relevant to MeNPs biosynthesis. Many extremophiles have 
specific mechanisms to quell stresses associated with metal 
toxicity, and some of them grow optimally at very high metal 
ion concentrations, such as those found in hydrothermal vents 
or volcanic areas, dumping sites of metallurgical waste or 
mining waste from processed ores, where mesophilic 
microorganisms simply cannot survive. Some of them are even 
able to live under multiple stress conditions, reason why they 
are recognized as polyextremophiles, such as thermophilic and 
acidophilic microorganisms that also possess very high 
metal resistance.

As extremophiles thrive in a wide variety of harsh conditions, 
their use allows for greater control of the MeNPs production 
parameters. They also produce robust and stable capping 
proteins that resist harsh conditions (Beeler and Singh, 2016), 
resulting in MeNPs of higher chemical stability (Correa-
Llantén et  al., 2013). Deinococcus radiodurans is a prime 
example of the usefulness of extremophiles in MeNPs synthesis. 
This polyextremophile is an extremely radioresistant, 
thermotolerant, psychrotolerant, and acid tolerant bacterium 
that has been shown to produce protein capped spherical 
silver NPs. Interestingly, the size of the AgNPs produced 
decreased as the concentration of silver chloride supplemented 
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to the reaction media increased (Kulkarni et  al., 2015). This 
kind of control over the size of the NPs produced is a 
unique feature of biosynthesis. Besides the concentration of 
the salt precursors, other factors such as pH, temperature, 
and reaction time are crucial variables determining NPs size 
(Ovais et  al., 2018).

Other bacteria show similar features that allow for NPs 
size control. For example, the thermophilic bacterium Geobacillus 
wiegelii strain GWE1, which was isolated from a drying oven, 
was shown to produce non-metallic nanoparticles. When exposed 
to Na2TeO3 salt the microorganism was able to produce elemental 
tellurium NPs and when exposed to Na2SeO3, was able to 
reduce Se4+ to Se0 to form selenium NPs, both intra and 
extracellularly. The size and shape of Se-NPs produced by this 
microorganism has been shown to be  modulated by pH and 
temperature (Correa-Llantén et  al., 2014), and the size of the 
NPs was further modified when 5% polyvinylpyrrolidone was 
added to the culture medium, resulting in 52% smaller NPs 
(Muñoz-Ibacache et  al., 2015).

Another thermophile from the same genus, Geobacillus 
sp. ID17, was shown to have the ability to intracellularly 
biosynthesize gold NPs. This was observed in whole cells 
as well as in cell extracts, which led to the finding that the 
biosynthesis is enzymatically mediated and requires NADH 
as cofactor (Correa-Llantén et  al., 2013). In this context, 
the reported evidence that proteins and specifically some 
metallo-enzymes from extremophiles might play a key role 
in the nucleation and crystal growth of bacteriogenic MeNPs, 
is particularly relevant for its technological implications 
(Correa-Llantén et  al., 2014).

BACTERIAL MECHANISMS OF NPs 
BIOSYNTHESIS

Bacteria usually have specific mechanisms, which rely on their 
survival strategies to deal with hazardous inorganic materials 
in the environment, most probable as a way of stress response 
(Ghosh et al., 2021). Metal ions are accumulated on the surface, 
or inside bacterial cells, where they are reduced into MeNPs 
by biological reducing agents. The latter are highly variable 
but generally consist of reductase enzymes, exopolysaccharide, 
or electron shuttle quinones (Gahlawat and Choudhury, 2019; 
Patel et  al., 2021).

The location of MeNPs biosynthesis also varies greatly. Bacteria 
that favor intracellular MeNPs production, can form MeNPs in 
the periplasmic space, in the cell wall, or in the cytoplasm. Metal 
ions can enter bacterial cells through ion channels, active transport, 
endocytosis, or through the lipid membrane (Tsekhmistrenko 
et  al., 2020). Then, NPs formation involves metal excretion/
accumulation across membranes, enzymatic action, efflux pump 
systems, binding at peptides, and precipitation (Ghosh et al., 2021).

Bacteria that produce extracellular MeNPs can form them 
at the outer surface of the cell wall or throughout the culture 
media, often utilizing cell-wall-associated biomolecules (Beeler 
and Singh, 2016). Extracellular synthesis involves enzyme 
secretion and particle capping (Singh and Singh, 2019). Cell walls 

can have a role either in intracellular or extracellular biosynthesis, 
and it has been found that metal ions are attracted to their 
negatively charged functional groups, where they nucleate before 
the reduction that results in MeNPs biosynthesis (Beeler and 
Singh, 2016).

Different enzymes can be  involved in the generation of 
NPs, most of them belonging to oxidoreductases, a wide 
class of enzymes capable of catalyzing redox reactions, 
transferring electrons from an electron donor to an oxidant, 
which in the case of MeNPs production corresponds to the 
inorganic ions. Notably, MeNPs biogeneration can take place 
in the presence of specific enzymes, without requiring the 
presence of whole microorganisms, indicating that the full 
bacterial metabolic machinery is not needed (Correa-Llantén 
et  al., 2014). Evidence has shown that NADH-dependent 
nitrate reductase is one of the main reducing agents in the 
transformation of ions into nanoparticles, particularly in 
the case of silver (Tsekhmistrenko et  al., 2020). Bacterial 
synthesis of MeNPs from other metals seem to rely on 
similar enzymes. It has been observed that in Au-NPs 
production, the reduction of gold by bacteria is carried by 
NADH-dependent reductases. When analyzing biosynthesis 
of Au -NPs, the NADH-dependent Au3+ reductase activity 
found in crude extracts of Geobacillus sp. ID17 dropped in 
approximately 98% in the presence of SDS or proteinase K, 
reflecting the enzymatic nature of the reaction (Correa-
Llantén et  al., 2013).

The previously mentioned G. wiegelii strain GWE1 also 
uses NADH-dependent enzymes. MALDI-TOF analysis 
allowed  the identification of one of the enzymes implicated 
in the biosynthesis process as a 1-pyrroline-5-carboxylate 
dehydrogenase (Correa-Llantén et al., 2014). While the halophilic 
bacterium Halomonas salina, is known to secrete the cofactor 
NADH and NADH-dependent enzymes, specially nitrate 
reductase, which is speculated to act as a scaffold or nucleating 
agent that might be  responsible for the bioreduction of Au+3 
to Au0, and subsequent formation of thermodynamically stable 
gold nanoparticles, which is pH and temperature dependent 
(Shah et  al., 2012).

Not only NADH-dependent reductases are involved in 
NPs biosynthesis. An interesting example is the ABC-transport 
protein capable of reducing gold ions in Au-NPs synthesis 
by the thermophilic bacterium Thermus scotoductus SA-01 
(Erasmus et al., 2014). The authors speculate that this protein 
reduces Au3+ through an electron shuttle mechanism through 
a cysteine disulfide bridge with no cofactors involved. The 
protein also showed to initiate nucleation of the ions for 
MeNPs synthesis.

Beside enzymes, several biocompounds can be  used by 
bacteria for the production of MeNPs, including 
naphthoquinones, hydroquinones, and anthraquinones (Ovais 
et  al., 2018). The extracellular polymeric substances (EPS) 
secreted by many bacteria has also been shown to be  involved 
in the production of MeNPs, by using its constituent saccharides 
as reducing agents. Au3+ reduction has been proven to 
be  mediated by the hemiacetal groups (aldehyde equivalents) 
present in EPS (Kang et  al., 2017). Other mechanisms for the 
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synthesis of MeNPs include changes in solubility of the metal 
ions, biosorption, complexation, and extracellular precipitation 
(Ovais et  al., 2018).

RARE EARTH BIONANOPARTICLES, 
RECENT ADVANCES, AND CURRENT 
CHALLENGES

Rare earth metals are a group of 17 chemical elements of the 
periodic table: lanthanum (La), cerium (Ce), praseodymium 
(Pr), neodymium (Nd), promethium (Pm), samarium (Sm), 
europium (Eu), gadolinium (Gd), terbium (Tb), dysprosium 
(Dy), holmium (Ho), erbium (Er), thulium (Tm), ytterbium 
(Yb), lutetium (Lu), scandium (Sc), and yttrium (Y). Their 
fundamental properties make them crucial for the development 
of the modern technological industry and they are currently 
used in rechargeable batteries, cell phones, TVs, computers, 
electric motors, wind turbines, among others (Balaram, 2019). 
Consequently, they are among the most critical elements and 
the European Commission of Enterprise and Industry included 
them in a list of materials with high supply risk and high 
economic importance (Patel et  al., 2021).

These rare earth elements (REE) are sourced primarily from 
mineral ores, which are limited and unevenly distributed 
worldwide, and nowadays most of the production is located 
in only a few countries such as China, United States, Australia, 
and India (Balaram, 2019). Therefore, in order to ensure their 
supply, it is becoming urgent to find more sources, such as 
new deposits, or old mines (Wei et al., 2019) as well as efficient 
methods for recycling electronic and industrial wastes (Deshmane 
et  al., 2019).

Recently, it has been shown that is possible to recover REE 
from sulfide mines left over, which is comprised of non-valuable 
sulfide minerals that generate acid mine drainage (AMD) when 
exposed to oxygen and water. This AMD forms mainly in 
coal and metal ore mining areas, whether active or abandoned, 
and generates a long-term pollution threat. A combination of 
electrochemical, biological, and physical methods has shown 
promising REE recovering rates from AMD, surpassing 
conventional solvent-based methods, which have minimal yields 
when directly applied to AMD (Patel et  al., 2021). Recent 
works show that certain bacteria adsorb lanthanides on their 
surface, where they can later be  detached from washing the 
cells with solutions of varying pH. A Gram-negative bacterium 
of the genus Roseobacter was shown to be  able to adsorb 
every lanthanide, and the authors were able to separate them 
using decreasing pH washes (Bonificio and Clarke, 2016). This 
kind of approach holds promise for the development of biological, 
efficient, and environmentally friendly ways of recovering REE 
from AMD.

Rare earth elements can also be recovered biologically taking 
advantage of REE-NPs producing organisms. To date, REE-NPs 
have been biosynthesized almost exclusively using plant biomass. 
Cerium NPs, for example, have been produced using several 
plant extracts (Singh et al., 2020). Petroselinum crispum aqueous 

extract has been shown to synthesize CeO2 nano- and 
microparticles (Korotkova et  al., 2019). Cerium oxide 
nanoparticles can also be  obtained from Acalypha indica leaf 
extract (Kannan and Sundrarajan, 2014). These biosynthesized 
CeO2 NPs have showed antibacterial activity against Gram-
positive and Gram-negative bacteria.

Other REE-NPs have been obtained from different organisms. 
Clove bud extract (Syzygium aromaticum) was used to develop 
an eco-friendly route for the synthesis of dysprosium oxide 
NPs. These NPs appear to be  non-toxic, and showed no 
inhibition of bacterial growth when assayed against Staphylococcus 
aureus (Gram-positive) and Escherichia coli (Gram-negative). 
They were evaluated as a non-toxic system for the detection 
of the organic pollutant Picric Acid (Jain et  al., 2021). The 
synthesis of lanthanide-NPs has also been carried out using 
Mutingia calabura leaf extract (Kumar et al., 2020). This La-NPs 
showed antioxidant activity, as well as moderate antibiotic 
activity against various bacterial species. They were also effective 
in Coomassie brilliant blue dye degradation beneath the sunlight. 
Terbium oxide NPs biosynthesis has been carried out incubating 
Tb4O7 in the presence of Fusarium oxysporum, a fungal species. 
The NPs thus obtained showed high biocompatibility and 
inhibited the growth of bone cancer cells, with no toxicity 
against normal osteoblasts even in relatively high concentrations 
(Iram et  al., 2016).

Even though bacterial NPs biosynthesis shows enormous 
advantages, as discussed in previous sections, reports for the 
obtention of bacterial REE-NPs are almost non-existent at 
present. A relatively recent study achieved the biosynthesis of 
europium selenide (EuSe) NPs using a recombinant E. coli 
expressing phytochelatin synthase and metallothionein, both 
known as heavy-metal binding proteins (Kim et  al., 2016). 
The authors speculate that the cationic precursors of the 
EuSe-NPs attach to the metal binding protein surfaces, 
aggregating into NPs through electrostatic attraction. They 
additionally performed in vitro studies using HeLa, SKOV-3, 
and 293T cells, showing that the EuSe-NPs obtained are cytotoxic 
against cancer cell lines.

The latter study shows that bacteria expressing REE binding 
proteins should be studied as candidates for REE-NPs production, 
although the use of recombinant E. coli or other mesophilic 
strains would not be  suitable for real life application in the 
hostile conditions of AMD, where REE recovery is crucial. In 
this scenario, extremophiles are the ideal candidates for biomining 
REE from AMD. In this line, a recent publication investigated 
the bioaccumulation of europium by the thermophilic bacterium 
Thermus scotoductus SA-01, showing through TEM-EDX analysis, 
that the bacterium accumulates Eu both intracellularly and 
extracellularly (Maleke et  al., 2019). FT-IR analysis showed 
that phosphate, carboxyl, and carbonyl groups from amides 
were involved in the biosorption of Eu, but no NPs production 
was reported.

A relevant protein in the bacterial bioaccumulation of REE 
seems to be  Lanmodulin (LanM). This protein forms highly 
stable and water-soluble complexes with REE over a wide pH 
range. Recent studies show that it is the most REE-selective 
protein characterized to date, while retaining REE binding in 
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the presence of industrially relevant concentrations of competing 
ions (Deblonde et  al., 2020). It has been shown to be  more 
selective toward REE ions than synthetic small-molecule chelators, 
and appeared to be  stable under acidic conditions and high 
temperatures. It was first described in the Gram-negative 
Methylorubrum extorquens, a bacterium that has been shown 
to use La3+ as a cofactor for its methanol dehydrogenase 
(Nakagawa et  al., 2012). LanM could be  an interesting protein 
to consider when searching for potential REE-NPs 
producing bacteria.

CONCLUSION AND FUTURE 
PERSPECTIVES

The incredibly wide array of different applications that MeNPs 
have in many different areas, has prompted interest in their 
large-scale production, which possesses the challenge of 
developing economic and ecologically friendly ways of obtaining 
them. Biosynthesis using extremophilic bacteria is an alternative 
that fulfills the requisites for sustainable production. It also 
offers several benefits over other methods of biosynthesis, 
including better stability toward aggregation and oxidation of 
the formed MeNPs, and the possibility of exploring many 
different reaction conditions owing to the diversity of 
environments bacteria survive and function in. This is why 
extremophilic bacteria, which have adapted to thrive in the 
most demanding conditions for life are ideal candidates to 
form MeNPs under a wide diversity of pH and temperature 
values, high ion concentration, or even pressures. This allows 

extremophiles to perform MeNPs biosynthesis in the harshly 
acidic, high temperature, and high oxidative stress conditions 
of mining sites, unlocking the opportunity to treat mining 
wastes in situ, and recover high value materials from what is 
otherwise debris. Bacterial biosynthesis, however, has been 
seldom reported for REE-NPs, despite the great interest of 
these elements, and the opportunities that REE-NPs forming 
bacteria could bring to the biomining of these scarce and 
valuable metals. The identification of bacterial proteins involved 
in the transport and biological interaction with REE, such as 
lanmodulin, may lead the path to discovering REE-NPs 
biosynthesizing thermophilic bacteria.
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