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Abstract
The novel coronavirus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a major pandemic 
outbreak recently. Various diagnostic technologies have been under active development. The novel coronavirus disease 
(COVID-19) may induce pulmonary failures, and chest X-ray imaging becomes one of the major confirmed diagnostic 
technologies. The very limited number of publicly available samples has rendered the training of the deep neural networks 
unstable and inaccurate. This study proposed a two-step transfer learning pipeline and a deep residual network framework 
COVID19XrayNet for the COVID-19 detection problem based on chest X-ray images. COVID19XrayNet firstly tunes the 
transferred model on a large dataset of chest X-ray images, which is further tuned using a small dataset of annotated chest 
X-ray images. The final model achieved 0.9108 accuracy. The experimental data also suggested that the model may be 
improved with more training samples being released.

Graphic abstract
COVID19XrayNet, a two-step transfer learning framework designed for biomedical images.
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1 Introduction

The recent outbreak of the novel coronavirus disease 
(COVID-19) started in Wuhan at the end of the last year, 
and now COVID-19 has been spreading across the world 
[1]. The disease was caused by the severe acute respira-
tory syndrome coronavirus 2 (SARS-CoV-2), which was a 
single-stranded RNA virus. SARS-CoV-2 may have been 
transmitted from animals such as bats to humans, and the 
respiratory droplet nuclei were believed to facilitate the 
inter-human transmissions [1, 2]. Various clinical symp-
toms were observed in COVID-19 patients, including 
mild cough and acute respiratory failure, etc. COVID-19 
patients with mild symptoms were estimated to have a low 
mortality rate, but the exact number is difficult to sum-
marize because they were usually not tested [3]. How-
ever, those with respiratory failures had to take mechani-
cal ventilation treatment in hospital and their mortality 
rate could reach as high as 81% [4]. Because COVID-19 
is a very recent outbreak epidemic event, both diagnosis 
technologies and treatment options are still under active 
development [1, 5].

Various diagnostic technologies of COVID-19 are 
under active development and clinical evaluation. There 
are roughly three groups of diagnostic technologies, i.e., 
nasopharyngeal and oropharyngeal swab (NOS) test, 
antibody-based blood (ABB) test and imaging test. The 
samples collected from the NOS test are screened for the 
existence of the genomic regions of SARS-CoV-2 using 
molecular biology technologies such as reverse-transcrip-
tion polymerase chain reaction (RT-PCR) or real-time RT-
PCR (rRT-PCR) [6]. Antibody-based test detects the IgM 
antibodies responding to SARS-CoV-2 in the blood within 
15 min and demonstrates a very high detection accuracy 
even in the patient’s blood just a few days after the ini-
tial infection [7]. Chest computerized tomography (CT) 
serves as another informative diagnostic technology of 
COVID-19 patients even when the NOS tests are nega-
tive [8]. Various feature extraction algorithms were pro-
posed to generate quantitative features from these medical 
images, e.g., local binary patterns (LBP) [9], histogram of 
gradients (HOG) [10], and rotation-invariant TriZ [11]. 
Medical image-based diagnosis models may be established 
by the classification algorithms using the image features 
generated from the above-mentioned feature extraction 
algorithms [12].

Pneumonia detection based on deep learning and X-ray 
images of lungs is a challenging problem due to the limited 
number of publicly available annotated images. At present, 
this study has only collected 189 COVID19-related X-ray 
images and 36 control images. This is insufficient for train-
ing a stable and well-performing neural network. At the 

same time, only a single chest X-ray series was obtained 
for each patient, meaning it was impossible to know the 
health and disease status of the same sample, which is 
unfair for model training.

This study investigated the problem of discriminating 
COVID-19 patients from the healthy and other pneumonia 
samples using a limited number of publicly available chest 
X-ray images of COVID-19 patients. A two-step transfer 
learning model (COVID19XrayNet) was proposed to pro-
vide a candidate solution for training an accurate neural net-
work model using the existing small dataset of COVID-19 
X-ray images. Firstly, a pre-trained deep residual network 
(DRN) model ResNet34 was fine-tuned on a large dataset of 
pneumonia chest X-ray images. Then the fine-tuned model 
was transferred to detect the COVID-19 chest X-ray images. 
The final model exhibited a satisfying detection performance 
of COVID-19 patients against both healthy and other pneu-
monia chest X-ray images. Our experimental data also sug-
gested that the proposed model may be further refined with 
more COVID-19 chest X-ray images.

2  Materials and Methods

2.1  Datasets

This study utilized two datasets for training the COVID-19 
detection model. The first dataset released 5860 chest X-ray 
images from the routine clinical examinations of patients 
aged between 1 and 5 years [13]. This dataset has been pre-
split into the training and testing datasets, and there are two 
classes of samples, i.e., pneumonia patients and normal con-
trol persons, as shown in Table 1. The dataset was denoted 
as dsPneumonia, and publicly available at https ://data.mende 
ley.com/datas ets/rscbj br9sj /2. All the images are released in 
the JPEG image format with varied image sizes. The detailed 
information may be found on its web site.

The second publicly available dataset was recently 
released as the imaging data of various virus-infected pneu-
monia patients [14]. This dataset pays special attention to 
the SARS-CoV-2-infected patients and consists of both chest 
X-ray and CT images. Only the chest X-ray images were 

Table 1  Chest X-ray images of pneumonia and normal samples in the 
dataset dsPneumonia

The dataset was pre-split into the training and testing datasets by the 
original authors

Dataset Normal Pneumonia Total

Training 1350 3884 5234
Testing 235 391 626
Total 1585 4275 5860

https://data.mendeley.com/datasets/rscbjbr9sj/2
https://data.mendeley.com/datasets/rscbjbr9sj/2
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used in this study. The images annotated as “no finding” 
or being infected by multiple viruses were excluded from 
further analysis. The dataset does not have normal samples. 
So the 235 normal images from the Testing dataset of the 
dataset dsPneumonia [13] were added to this dataset, and a 
three-class dataset was generated as dsCOVID19, as shown 
in Table 2. A stratified strategy was conducted to randomly 
split the dataset dsCOVID19 into the Training dataset (70%), 
Validating dataset (10%) and Testing dataset (20%). This 
dataset was publicly available at https ://githu b.com/ieee8 
023/covid -chest xray-datas et.

Some other chest X-ray image datasets may also be uti-
lized to replace the first dataset. The Radiological Society 
of North America (RSNA) released the RSNA Pneumonia 
Detection Challenge in 2018, and their dataset may serve 
the same purpose as our first dataset [15]. The large dataset 
of chest X-rays CheXpert provides another comprehensive 
source for pre-training the models [16], and 2.44% of the 
CheXpert images are from the pneumonia patients. The third 
dataset MIMIC-CXR covers 297 class labels for its chest 
X-ray images, and 6.9% of its images are from pneumo-
nia patients [17].This study serves as the proof-of-principle 
experiment for the two-stage transfer learning strategy. So 
these existing datasets are not evaluated in this study.

2.2  Convolution Neural Network (CNN)

Convolutional neural network (CNN) is a feedforward neural 
network framework inspired by the connected visual nerve 
system [18]. CNN is designed to abstract the visual compo-
nents of images and to map the images to lower dimensions 
while retaining the essential image features. A typical CNN 
architecture has three types of layers, i.e., convolutional, 
pooling and fully connected layers. The convolutional layer 
utilizes the convolutional kernel to extract local features 
from the training images, such as extracting features in the 
human vision system [19]. The pooling layer may efficiently 
reduce the parameter dimensions by sub-sampling the pre-
vious layer, so that the overfitting may be avoided [20]. 
The fully connected layer serves as the output layer for the 
final prediction results, as similar in the traditional neural 

networks [21]. Our proposed algorithm framework is based 
on the CNN architecture.

2.3  Deep Residual Network (ResNet)

The depth of a deep neural network (DNN) is a crucial fac-
tor for the model performance [22]. A DNN with more lay-
ers may extract more complicated image features. So theo-
retically, better model performance may be achieved with 
deeper DNNs. However, the degradation problem renders 
the DNN saturated if the number of DNN layers increases. 
The deep residual network (ResNet) tries to solve this prob-
lem by bypassing the input information directly to the output 
layer, so that the output layer has access to the un-altered 
input data. ResNet consists of multiple residual blocks, each 
of which may be defined as H(x) = F(x) + x, where x is the 
input data, F(x) is the mapping function of the identity resid-
uals and H(x) is the mapped solution function. ResNet34 is 
a pre-trained deep residual network (DRN) model for image 
recognition, and this study borrowed some residual blocks 
of ResNet34 to our proposed deep learning framework [23].

2.4  Transfer Learning and Model Tuning

Transfer learning is a supervised machine learning strategy 
to exert the pre-trained model using a small-scale dataset 
[24]. A large number of samples are required to effectively 
train a DNN model, e.g., ResNet34 was pre-trained using 
1.28 million images [23]. We hypothesized that the growth 
patterns of pulmonary internal structures and the real-world 
objects followed the same physical rules. The pre-trained 
model ResNet34 may be used to detect COVID-19 patients 
based on the chest X-ray images through fine-tuning on 
a small dataset of COVID-19 images. The essence of the 
transfer learning is to map the pre-trained model f(x) through 
an additional mapping function g(x), so that a fine-tuned 
transfer learning model may be defined as g(f(x)). Because 
of the hierarchical representation nature of convolutional 
neural networks, the shallow layers usually learn basic fea-
tures, such as texture and edges. The pre-training process 
f(x) enables the parameters learned by over a million images 
to be shared with downstream image-based learning tasks. 
This strategy speeds up the convergence of the downstream 
tasks g(x). Many recently published transfer learning studies 
suggested the validity of this strategy. This study transferred 
the pre-trained ResNet34 model to the COVID-19 detection 
problem based on the chest X-ray images.

2.5  Modified Neural Network Architecture, 
COVID19XrayNet

The collection and annotation procedure of medical images 
has the characteristics of labour intensiveness and difficult 

Table 2  Summary of the three classes of samples in the dataset 
dsCOVID19

Only the chest X-ray images of persons carrying one disease or no 
disease were kept for analysis

dsCOVID19 COVID19 Other pneu-
monia

Total pneu-
monia

Normal

Training 131 43 174 164
Validating 19 6 25 23
Testing 39 14 53 48
Total 189 63 252 235

https://github.com/ieee8023/covid-chestxray-dataset
https://github.com/ieee8023/covid-chestxray-dataset
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sample recruitment, etc. So, it is almost impossible to train 
a DNN model of biomedical images from scratch. The pre-
trained ResNet34 was transferred to be fine-tuned for our 
investigated problem.

We proposed two types of novel layers to the pre-trained 
model ResNet34, as shown in Fig. 1. The feature smoothing 
layer (FSL) used the 1 × 1 convolution to keep the shape of 
the tensors, and smoothed the pre-trained tensors to learn 
features from the new training images. FSL was inserted 
after the pre-trained residual blocks. The feature extrac-
tion layer (FEL) doubled the number of channels using the 
first three operations and flattened the feature map into one 
dimension. FEL extracted the operation-based features and 
described the previous layer with abstracted information. So, 
we hypothesized that FEL will help improve the final fully 
connected layer with these abstracted features.

The bottom part of Fig. 1 illustrates the proposed net-
work framework COVID19XrayNet in this study. The input 
medical image is 224 × 224 in pixels and three in channels, 
the same as ResNet34. This study used the input layer and 
the next three residual blocks of ResNet34. We inserted 
one FSL before and after the second residual block, respec-
tively. An FEL was inserted after the third residual block. 
The final fully connected 512 × k layer facilitates the model 
training using the limited number of COVID-19 images, 

where k is the number of classes in the investigated prob-
lem. COVID19XrayNet(k) may be used for the biomedical 
image-based classification problem, where k is the number 
of classes.

2.6  The Experimental Pipeline of This Study

This study proposed a two-step transfer learning pipeline 
to firstly transfer and tune the ResNet34 model using the 
chest X-ray images dataset dsPneumonia without COVID-
19 cases, and then further transfer the tuned model on the 
dataset dsCOVID19, as illustrated in Fig. 2.

In the first step of our pipeline, the pre-trained model 
ResNet34 was transferred to the dataset dsPneumonia and 
the proposed framework COVID19XrayNet(2) was utilized 
to tune the parameters of the internal layers. This binary 
classification model was initialized using the pre-trained 
model ResNet34, and was further trained using the 5234 
training to extract the pneumonia-specific features in the 
chest X-ray images. The model was trained for ten epochs. 
The batch size was set to 32. The optimizer AamW was used 
with the initial learning rate 0.0001. All the other parameters 
were set to the default values.

The second step used the model trained in the first step 
of this pipeline, and tuned the model using the framework 
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Fig. 1  The framework COVID19XrayNet in this study. This study 
proposed two newly designed layers, i.e., feature smoothing layer 
(FSL) and feature extraction layer (FEL). The framework of the pre-
trained ResNet34 model was revised to solve the COVID-19 detec-

tion problem in this study. The dashed-line box is the framework of 
ResNet34. The bottom part illustrates the framework proposed in this 
study
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COVID19XrayNet(3). The dataset dsCOVID19 consisted 
of three sample classes, i.e., COVID-19, other pneumo-
nia, and normal. So the output layer was revised as the 
dimensions of 512 × 3. The model was trained on the 
training dataset and tuned on the validating dataset. The 
final test result was calculated on the testing dataset. 
Compared with the first step, this model has fewer train-
ing samples. So the batch size was reduced to 16, and the 
model was trained for 20 epochs with a smaller learning 
rate 0.00005. All the other parameters were set to the 
default values.

Although the upstream task is a two-class classifica-
tion without the label COVID-19 and the downstream 
task is the three-class classification, both of the tasks 
abstract image features from the chest X-ray images. The 
proposed model COVID19XrayNet learns the inherent 
patterns from the X-ray images for similar purposes. So 
we hypothesize that the model tuned in the upstream task 
will be further refined in the downstream task.

2.7  Implementations

All the experiments were carried out in a Standard NC6 
(6 CPUs, 56 GB Memory, and 1 K80 GPU card) Azure 
Virtual Machine. The code was implemented by PyTorch 
1.4 and Scikit-learn 0.22, in the Python programming 
languages.

3  Experimental Results and Discussions

3.1  Data Augmentation

Deep neural networks rely on a large number of high-qual-
ity training samples to achieve accurate detection results. 
But compared with the publicly available training dataset 
in the area of computer vision, most of the biomedical 
image datasets release fewer than 10,000 images, includ-
ing the two datasets used in this study [13, 14].

This study employed multiple image augmentation tech-
niques to generate simulated images of the training dataset 
of dsPneumonia, so that the deep neural network COV-
ID19XrayNet could be trained with a sufficient number of 
chest X-ray images. The image augmentation techniques 
used in this study were randomly resized crop, random 
rotation, random horizontal flip, and random vertical flip. 
These augmentation techniques ensure that the simulated 
images are actually the variants of the original images and 
carry similar image patterns as the original ones [25]. The 
crop ratio [0.8, 1.0] was set for the operation of the ran-
domly resized crop, so that the lesion sites in the chest 
X-ray images were not excluded. For the same reason, 
the operation of random rotation used a random rotation 
angle [− 20, 20] in degrees. All data augmentation func-
tions were provided by the Python package PyTorch and 
were integrated into the model training pipeline. These 

Fig. 2  Illustration of the experimental pipeline in this study. The first step trained and evaluated the framework COVID19XrayNet(2) using the 
dataset dsPneumonia, while the second step trained and evaluated the framework COVID19XrayNet(3) using the small dataset dsCOVID19
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data augmentation functions were automatically utilized 
before generating each training batch at the pipeline.

3.2  Evaluating the Model of Pneumonia Versus 
Normal

The network framework COVID19XrayNet(2) was initial-
ized from the pre-trained ResNet34 and further tuned using 
the augmented training dataset, as described in the above 
sections. The cross entropy loss measures the performance 
of a classification model with the probabilistic outputs 
[26]. The COVID19XrayNet(2) was evaluated for its cross 
entropy loss function and the running averages over the win-
dow size 5.

Figure 3 demonstrates that the model’s initial loss was 
very high and the first cross entropy loss was as high as 
0.6736. The running average loss was 0.7308 over the 
window size 5. A radical decrease in both metrics was 
observed after a few batches of training. For example, the 
cross entropy loss and running average on the 100th batch 
dropped to 0.4702 and 0.4314. The training process stopped 
at the batch 1635, and the cross entropy loss was decreased 
to 0.0717, compared with the initial loss value 0.6736.

A binary classification model was trained and evaluated 
in this step, and its performance metrics are illustrated in 
Fig. 4. The pneumonia and normal images were regarded 
as positive and negative samples, respectively. The metrics 
specificity (Sp) and sensitivity (Sn) were percentages of cor-
rectly predicted negative and positive samples, respectively. 

Fig. 3  The loss values of the 
training models over different 
batches. The horizontal axis 
shows different batches, while 
the vertical axis shows the loss 
values for the two metrics, cross 
entropy loss and the running 
average
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Fig. 4  Performance metrics AUC, Acc, Sp and Sn of the network 
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axis shows one of the ten epochs and the vertical axis shows the per-

formance metric values. The performance metrics were calculated on 
the a training and b testing datasets of dsPneumonia
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The metric accuracy (Acc) was the percentage of all the cor-
rectly predicted samples. The area under the curve (receiver 
operating characteristic) was a parameter-independent met-
ric to describe a binary classification model. The detailed 
definitions may be found in [27, 28].

The COVID19XrayNet(2) was satisfyingly tuned to 
achieve the accurate detection of pneumonia samples in the 
dataset dsPneumonia, as shown in Fig. 4. The parameter-
independent metric AUC reached as high as 0.9978 on the 
training dataset, as shown in Fig. 4a. The trained model 
achieved very good AUC (> 0.9660). The model trained in 
epoch 8 achieved a balance of Sp = 0.9017 and Sn = 0.9744, 
as shown in Fig. 4b.

So we hypothesized that the COVID19XrayNet(2) 
achieved the best testing performance at epoch 8. The model 
achieved 0.9977 in AUC on the training dataset, and 0.9857 
in AUC on the testing dataset. The metrics Sp = 0.9017 and 
Sn = 0.9744 suggested that the model performed accurately 
and stably on both training and testing datasets. So the COV-
ID19XrayNet(2) model at the epoch 8 was transferred to the 
second step for detecting COVID-19 patients in the follow-
ing sections.

3.3  Evaluating the COVID‑19 Detection Model

The best model transferred from the above section was 
further tuned using the dataset dsCOVID19, as shown in 
Fig. 5. The investigated problem had three classes of sam-
ples, i.e., COVID-19, other pneumonia, and normal ones. 
The metric Cohen’s kappa was introduced to evaluate the 
tuned models. The Cohen’s kappa (Kappa) was defined as 

K = (p0–pe)/(1–pe), where p0 is the empirical probability of 
agreeing on the label assignments of the samples, while pe 
is the expected agreement probability for a random pre-
diction [29]. Kappa is considered as a more robust metric 
than the percentile agreement of predictions. Kappa ranges 
between − 1 and 1. A larger Kappa value suggested a bet-
ter model performance. The prediction accuracy (Acc) was 
still defined as the overall percentage of correctly predicted 
samples over the three classes.

Firstly, the framework COVID19XrayNet(3) seemed to 
be overfitted after the epochs 18 of the training process, as 
shown in Fig. 5a. Although the training performance had a 
slight increase in both Acc and Kappa, the validating per-
formance metrics kept decreasing on the epochs 19 and 20. 
So the model trained on the epoch 18 was retrieved for the 
evaluation on the testing dataset.

Our final model achieved 0.9108 in Acc and 0.8574 in 
Kappa on the testing dataset of the COVID detection prob-
lem, as shown in Fig. 5b. In particular, our model achieved 
0.9231 in Acc for COVID-19 patients, while 0.9583 in Acc 
for normal persons. Non-COVID-19 pneumonia patients 
received less accurate predictions, which may be due to the 
very limited number of images in the dataset dsCOVID19.

3.4  Two‑Step Transfer Learning Model 
was Necessary

This study proposed one more step of tuning the trans-
ferred model on a similar dataset for the COVID-19 
images. Our hypothesis was that the pre-trained model 
ResNet34 was not optimized for the chest X-ray images, 
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and the parameter tuning of ResNet34 on the same data 
type may help the model perform reasonably on the target 
dataset. The model training used both original images and 
the augmented images, while the model detection perfor-
mance was calculated using only the original images.

Figure 6 illustrates the experimental data of directly 
transferring the pre-trained model ResNet34 to the binary 
classification problem between pneumonia and normal 
samples. The model performance kept increasing with 
more epochs of training, as in Fig. 6a. But the model 
achieved both Acc and Sn smaller than 0.7000. This was 
not acceptable, since pneumonia patients need to be accu-
rately detected. The AUC and Sp were 0.8176 and 0.8340, 
respectively. This may be because the class labels of the 
dataset dsPneumonia do not exist in the ImageNet dataset, 

and the pre-trained model ResNet34 cannot extract the 
effective features of these X-ray image.

3.5  COVID19XrayNet Outperformed ResNet34

We evaluated whether the proposed new deep residual 
network COVID19XrayNet outperformed the existing 
ResNet34, as shown in Fig. 7. Firstly, the existing deep neu-
ral network framework ResNet34 performed very well on 
after the parameter tuning, as shown in Fig. 7a. The best 
model performance metric AUC reached 0.9718 at the epoch 
9, but its overall accuracy was only Acc = 0.8690. Figure 7b 
illustrates that the proposed framework COVID19XrayNet 
outperformed ResNet34 in all the four performance metrics. 
The COVID19XrayNet also achieved a balanced pair of Sp 
and Sn. So the proposed COVID19XrayNet may serve as 
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the vertical axis the performance metric values. The performance 
metrics were calculated on the a training and b validating datasets of 
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a good complementary framework for the medical image-
based prediction problems.

We also evaluated how the existing framework ResNet34 
performed on the two-step transfer learning pipeline, as 
shown in Fig. 8. ResNet34 performed slightly better on 
detecting the normal samples than the proposed model 
COVID19XrayNet. But ResNet34 achieved more than 
0.1000 worse in detecting COVID-19 patients than COV-
ID19XrayNet, and 0.2500 worse in detecting the other pneu-
monia patients than COVID19XrayNet.

The experimental data suggested that both the two-step 
transfer learning pipeline and the new framework COV-
ID19XrayNet were necessary for the COVID-19 detection 
problem.

3.6  COVID19XrayNet may be Improved Using more 
Training Samples

The COVID19XrayNet was evaluated for its performances 
using different numbers of training samples, as shown in 
Fig. 9. The dataset dsCOVID19 was randomly split into the 
training (70%), validating (10%) and testing (20%) samples. 
The overall accuracy (Acc) and the Cohen’s kappa (Kappa) 
were calculated for the COVID19XrayNet-based two-step 
transfer learning pipeline using 20%, 40%, 60%, 80% and 
100% of the training samples. Figure 9 illustrates that COV-
ID19XrayNet achieved 0.8081 in Acc even using only 20% 
of the training samples. Both Acc and Kappa were increased 
with more training samples being utilized.

So the experimental data suggested that our proposed 
COVID-19 detection model may be improved if more train-
ing data were available.

3.7  Future Directions

This study proposed to use a two-stage transfer learning 
strategy to solve the problem of medical imaging with a 

small amount of data. We modified the model structure of 
ResNet34 to obtain the neural network framework COV-
ID19XrayNet, which enables it to migrate to multiple down-
stream tasks. But some issues can be discussed in detail to 
make it a general framework. For instance, what model is 
most suitable for migration? What kind of general algorithm 
is used to solve the structural modification from upstream 
model to downstream model? These problems are the direc-
tions that we need to continue to study in the future.

4  Conclusion

This study proposed a two-step transfer learning pipe-
line based on the deep neural network framework COV-
ID19XrayNet for the COVID-19 detection problem. COV-
ID19XrayNet is not a completely new neural network. 
Instead, COVID19XrayNet integrated two novel layers 
into the popular ResNet32, i.e., feature smoothing layer 
(FSL) and feature extraction layer (FEL). Our experimen-
tal data demonstrate that COVID19XrayNet outperforms 

Fig. 8  Comparison of ResNet34 
and COVID19XrayNet in the 
two-step transfer learning pipe-
line. The horizontal axis shows 
one of the three classes. The 
vertical axis shows the three-
class prediction accuracy
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the original version of ResNet32. The overall accuracy of 
0.9192 was achieved. Our experimental data supported that 
the accurate prediction performance of the proposed model 
was achieved through the collaborations of all the three fac-
tors, i.e., the novel framework COVID19XrayNet, the two-
step transfer learning pipeline and the sufficient number of 
training samples. The proposed model was anticipated to be 
improved if more chest X-ray images of COVID-19 patients 
were released.

This proof-of-principle study demonstrated that a deep 
learning model with satisfying prediction performance may 
be developed on a small dataset by the two-step transfer 
learning strategy. The experimental data showed the neces-
sity of the two-step transfer learning strategy to improve 
the X-ray image-based deep learning model using only 189 
annotated COVID19 X-ray images. It is anticipated that the 
model will be further improved with more available anno-
tated images.
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