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ABSTRACT

Traumatic braininjury (TBI) is a leading cause of pediatric morbidity and mortality. Recent studies suggest that children and adolescents have worse
post-TBI outcomes and take longer to recover than adults. However, the pathophysiology and progression of TBI in the pediatric population are
studied to a far lesser extent compared to the adult population. Common causes of TBI in children are falls, sports/recreation-related injuries, non-
accidental trauma, and motor vehicle-related injuries. A fundamental understanding of TBI pathophysiology is crucial in preventing long-term brain
injury sequelae. Animal models of TBI have played an essential role in addressing the knowledge gaps relating to pTBI pathophysiology. Moreover,
a better understanding of clinical biomarkers is crucial to diagnose pTBI and accurately predict long-term outcomes. This review examines the
current preclinical models of pTBI, the implications of pTBI on the brain’s vasculature, and clinical pTBI biomarkers. Finally, we conclude the review

by speculating on the emerging role of the gut-brain axis in pTBI pathophysiology.
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Introduction

Traumatic brain injury (TBI) is a significant public health
issue and a leading cause of mortality globally. The CDC
2017 surveillance report estimates that TBI-related hospi-
talization was 224,000 in the United States." Moreover, TBI
is a crucial contributor to prolonged disability and depen-
dence.” Epidemiological studies and biomedical research
have focused on understanding the pathophysiology of TBI
in the military setting because military service members are at
an increased risk of blast-related injuries from explosives or
blunt force to the head during warfare.> An appreciation for
TBI in the adult civilian population is becoming more
prominent.*® However, TBI pathophysiology and progres-
sion in the pediatric civilian population is studied to a lesser
extent than the adult population despite some studies
showing that children have worse post-TBI outcomes and

6-8
take longer to recover.

Young children (0-4 years old) and adolescents (15-19 years
old) are at an increased risk of developing TBI, predominantly
resulting from falls or motor vehicle accidents.”! An epide-
miological study showed that 28% of children who visited the
emergency department were reported to have been struck by or
against an object.11 Likewise, the CDC revealed that over
812,200 children (age 17 or younger) were treated in the United
States for a concussion or TBI in 2014. Importantly, children
that survive TBI-related events have an elevated risk of de-
veloping psychological, social, sensorimotor, and cognitive
impairments in later childhood and into adulthood.>'” When
juxtaposed to an increased risk of death post-TBI, these
findings highlight the significant economic and public health
burden of pediatric traumatic brain injury (pTBI) on socie'ty.10
Thus, it becomes paramount that adequate funding and research
be directed towards understanding the pathophysiology of TBI
in the pediatric population since no therapies currently exist that
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effectively mitigate the consequential effects of pTBI long-
term.®

Although TBI studies in adults - humans, pigs, and rodents
have provided a functional understanding of TBI pathophys-
iology, several nuances exist and should be considered before
extrapolating results from adult TBI (aTBI) to pTBI. For
instance, many aspects of the central nervous system (CNS) in
the pediatric population, e.g., as myelination and synapse
formation, are in continual development, and brain injury in
children could severely impact these brain maturation processes
with lasting neurological consequences.lg’19 In this review, we
examine: 1) current preclinical models of TBI and their use in
pIBI, 2) the implications of pTBI on the brain’s vasculature,
and 3) clinical pTBI biomarkers. For simplicity, we will refer to
the pediatric population in this review as the neonatal period to
adolescence. We will conclude the review by briefly discussing
an emerging role in pT'BI pathogenesis’s gut-brain axis.

Research Models of TBI and Their Application in the
Pediatric Population
The development of an experimental animal research model that
recapitulates the mechanisms of TBI has been a persistent challenge
for researchers.”*! The multi-planar and heterogeneous physical
forces involved, coupled with concussive, rotational, sheering, and
ischemic intracerebral injuries that result, have proven challenging to
recreate TBI in a rigorous and reproducible manner.”>** For the
past several decades, the modalities that have been developed for use
in animal subjects generally focus on imparting a single component
of these multifactorial injurious mechanisms and then studying the
consequential brain injury pattern. Several such paradigms for
studying TBI in animals have been described in the literature. %>
These models have proven paramount in advancing our under-
standing of the complex pathophysiology that underlies TBI
However, studies on the applicability of these models to human head
injuries, especially those involving the pediatric brain, are sparse.?” >
TBI models can be broadly grouped into 2 major classes:
penetrating vs non-penetrating injury. Once differentiated into
the above classes, the models have then been designed to simulate
either focal or diffuse injury through specific modifications. The
models vary in their ability to produce mild to severe injury. Some
models are more amenable to adjusting severity gradients than
others. Ease of implementation is also an important consideration
when choosing the appropriate model due to the high throughput
of animals often needed for TBI experiments. This section ex-
plores some of the more commonly used models in TBI research
and discusses their use in pTBI research.

Closed Head Animal Models of TBI

“Closed head” animal models of TBI refer to the generation of
brain injury by applying an impulse, i.e., force, through an intact
skull with or without skin incision and outer table exposure. The
major variations of this overarching category include impact and

non-impact modalities. In general, non-impact impulse models
impart an inertial force to the head and cause angular brain
momentum and resultant diffuse injury, while fixed impact
models result in more focal TBL.?>* However, modifications can
be made to each model to simulate the desired predominant
injury pattern. Each of these will be described in turn below.

Non-Impact Models. In non-impact impulsive loading, angular
momentum is imparted to the brain by inducing rapid head
movement and slower deceleration without external loading.
These models, therefore, recapitulate diffuse axonal or shear
injury caused by the stretching and compression of anisotropic
tissue.>*? Interest in this specific modality has experienced
renewed vigor, given that a vast component of modern human
TBI is secondary to the primary impact from sporting collisions,
motor vehicle accidents, and wartime blast injuries.

Non-impact blast impulse models have a conspicuous
translation to the injuries experienced by soldiers in modern
warfare. Replicating those conditions is usually accomplished by
using a piston actuator to compress air or gas through an ex-
pansion chamber several feet in length instead of using a formal
solid weight.**° Alternatively, some studies expose experi-
mental animals to actual detonated explosives to replicate the
desired wartime conditions with greater ﬁdelity.36 In models
employing compressed air or gas via a shock tube, the imparted
force can be titrated to achieve different severities of TBI,
ranging from mild to fatal.>****”* To the best of our
knowledge, there are no non-impact blast impulse models that
have been validated in pediatric rodent animal models, and there
is only one study that employed a non-impact model in young
porcine subjects. The authors showed that 3- to 5-day old
piglets receiving repetitive rapid axial rotation with a pneumatic
actuator exhibited worsened composite cognitive function and
increased mortality compared to single injury and sham pig-
lets.*” Given that 1 in 6 children live in a conflict zone fre-
quently exposed to explosives, the absence of non-impact blast
impulse models for pediatric populations is a critical barrier to
40,41

progress pI'BI research on a global scale.

Impact Models. Impact-based TBI research models use a var-
iable weight generally conducted through a tube propelled by
gravity or a pneumatic or electromagnetic actuator to transmit a
mechanical load directly onto the skull.*** The resultant injury
(focal vs diffuse) is a function of both the mass of mechanical
load used and applied to the skull, both of which can be easily
modified. These models include the classic “weight-drop”
model described by Marmarou et al., whereby a brass load is
dropped through a two-meter Plexiglass tube and onto a murine
skull.*? Several closed head impact models recapitulate TBI in
the pediatric animal subjf:cts.27’28’44’45 The modifications to
standard models for application to young subjects are minor,
and mainly consist of altering the impulse amplitude or manner
of fixation to the apparatus. The weight-drop impact model is
less commonly used in pTBI research today than the controlled
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cortical impact model (discussed in the open head animal models of
TBI section), which affords high precision and reproducibility.8

Open Head Animal Models of TBI

Similar to closed head analogs, “open head” animal models of
TBI, in which a craniectomy is performed so that impulses may
be applied directly to the exposed dura, can be broadly divided
into 2 schemas: fluid percussion and direct cortical impact.
These models sacrifice the significant head movement of other
models in exchange for in situ extradural impulses. The open
head models can induce a focal cortical contusion of moderate to
severe grade (direction cortical impact) or diffuse brain/axonal
injury (fluid percussion).24’46

Fluid Percussion Models. 'The fluid percussion model has evolved
since its inception by Denny-Brown and Russell in the 1940s.
The original design relies on applying an impulse to the skull
vertex alone after preparatory craniectomy. Historically, this
model was developed in feline specimens, but researchers adopted
the model for applications in other mammals.*”**® Some of the
earliest adaptations to murine subjects were described in 1987 by
Mclntosh et al. and Dixon et al., who further modified the
original design to allow lateral and midline testing.**° The
Stalhammar apparatus was later developed, marking one of the
seminal points in the model’s history.”’" In the Stalhammar
method, a weighted pendulum is released from a known height to
strike a piston attached to a fluid reservoir — often isotonic
saline.’™? The mechanical impulse is transmitted through the
fluid to cause a localized deformation of the exposed brain.
Although these models have remained relatively unchanged
since their inception, researchers have made refinements to allow
for more precise digital manipulation of experimental parameters
like pulse pressure, pulse velocity, and load duration.**>® One
crucial improvement was to perform the craniectomy and fluid
percussion at sites other than the “standard” parasagittal location.
In addition, the induction of apnea following percussion is a well-
documented complication of this model and should be closely
monitored to prevent mortality, particularly in pTBI models.”>**
Adaptions of the lateral and midline fluid percussion models to
the pediatric rat have also been described.’”*® More recently, a
study by Newell e a/. was the first to demonstrate the feasibility of
the lateral fluid percussion model in juvenile mice.”” Fluid
percussion models have also been utilized in newborn and young
piglets to assess hemodynamic responses post—TBI.w'62
Cortical Impact Models. Controlled cortical impact (CCI)
models share some of the general concepts of the weight drop,
impact accelerator, and fluid percussion models. For this reason,
they are commonly referred to as rigid percussion models.?® In
the most common paradigm for this model, a limited circular
craniectomy is performed on an anesthetized subject where the
head is securely affixed to the experimental apparatus by ste-
reotactic pinning to prevent cranial motion. A direct extradural

impulse is applied by a rigid piston that is driven electrome-
chanically, pneumatically, or electromagnetically.®*®* Thus, the
velocity and depth of the impulse can be scaled to affect both the
severity of resultant brain deformation and the local contusion
and axonal damage that follow.®*

While initially developed for studying aTBI, CClI is the most
commonly used TBI model to study pTBI progression and
pathogenesis. For pediatric applications, postnatal day (PND)
17-35 in rats and PND 21 in mice are frequently used in CCI
studies.® There are, however, limitations to this model. The
generated TBI is often too severe, confounding postoperative
assessments and post-mortem analyses. To address this limi-
tation, researchers have created closed head cortical impact
models that allow for repetitive concussive impulses to the same
subject.és’66 This refined model simulates a repetitive injury that
mimics recurrent mild TBI; this novel feature will enable re-
searchers to study the impact of mild, repetitive injuries that

commonly occur in student-athletes.?>**

Models of Inflicted TBI

Shaken baby syndrome, also known as abusive head trauma or
inflicted TBI, is often overlooked in the pTBI literature. As a
result, very few models mimic the effects of shaken baby
syndrome in babies less than one-year-old. Although models
of shaken baby syndrome are utilized by a much smaller
number of research groups, their studies can recapitulate the
widespread cortical hemorrhage pattern suffered by human
infant patients. At least 3 rodent models have been reported in
the literature. Smith ef a/ were the first to describe such a
model in 1998.°” Their protocol involved exposing anes-
thetized PND 6 rat pups to one daily shaking episode for 3
consecutive days via a mechanical tabletop shaker set to 200
cycles per minute followed by euthanasia on PND 9. Bonnier
and colleagues described another experimental model dif-
fering from the previous approach in that anesthetized PND 8
were exposed to shaking at 900 cycles per minute for 15
seconds on a tabletop shaker.®®®” Two decades later, Ka-
wamata et al. described a refined apparatus and design con-
sisting of lucent, fenestrated, and cushioned plastic tubes.
PND 3 and PND7 mice were shaken by the same common
tabletop shaker at 250 cycles per minute in single-minute
bouts 5 times daily. The authors conclude that the model may
help study the effects of cerebral microhemorrhages on be-
havioral outcomes in early development.7O

Research data on models of shaken baby syndrome in larger
mammals is limited. Finnie and colleagues have published a
few studies on their immature ovine model of inflicted
TBIL.®"! This model involves manually grasping the axilla of
anesthetized lamb subjects and vigorously shaking them in
ten, 30-second bouts over a half hour. The development of a
large animal model of pediatric inflicted TBI was galvanized

by the hypothesis that the large volume gyrencephalic brains
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and relatively weak cervical muscles of ovine animals better
replicated the forces and injuries experienced by human
babies. Simulating abuse in anesthetized juvenile animals is
controversial and presents a barrier to developing additional
inflicted TBI models.® The reconciliation of these ethical
concerns through the development of novel models should be
a focus of future research.

Cerebrovascular Dysfunction Following TBI

in Children

A major consequence following TBI is the damage to the brain’s
vasculature. Cerebrovascular damage in animal and human TBI
studies has been described in the context of hypoperfusion,
hemorrhage, ischemia, edema, and blood flow abnormalities.”?
Cerebrovascular dysfunction is a hallmark finding in many
pediatric conditions and often predicts cognitive outcomes.””
For example, a systematic review by Bakker e# a/. found that
decreased blood flow velocities in premature infants and chil-
dren with sickle cell disease were associated with poor cognitive
performance.74 Likewise, Taylor ez al. showed that vascular
alterations in children increased the risk for cognitive impair-
ment.”> Moreover, recent studies suggesting the role of cere-
brovascular dysfunction in neurodegenerative diseases further
support the importance of vascular integrity in maintaining
brain function and health.”® This section briefly discusses the
functional and structural vascular alterations evident following

pIBIL

Cerebral Blood Flow Dysfunction Following pTBI

Transcranial doppler (TCD) ultrasound and magnetic reso-
nance imaging arterial spin labeling (MRI ASL) has been used
to measure cerebral blood flow (CBF) in children. TCD studies
showed that newborns exhibit low (~24 cm/s) cerebral blood
flow velocity (CBFV); however, CBFV then rapidly rises
(~95 cm/s) and peaks at 6-9 years of age.”” Beyond 10 years of
age, CBFV declines and approximate adult values (~50 cm/
s).”””” Furthermore, MRI ASL studies by Biagi ef al. showed
that CBF was highest in children 4-12 years of age and rapidly
declined in adult subjects.80 One explanation for the increased
CBF values in children is the increased metabolic and energy
demand needed by the developing brain.”® Other vascular
parameters such as cerebral vasoreactivity (CVR), which
measures vascular responsiveness to vasodilation via changes in
blood carbon dioxide (CO,), have also been shown to be ele-
vated in children compared to adults.®>®? These findings make
it apparent that cerebral hemodynamics in normal physiology
differs significantly in early childhood compared to adults.
Cerebral autoregulation (CA) is crucial for maintaining a
steady-state CBF under a precise range of cerebral perfusion
pressure (CPP).” In normal physiology, Vavilala et al. showed
that the cerebral autoregulatory index (i.e., how fast blood flow
velocity returns to baseline after a transient decrease in mean

arterial pressure) is lower in adolescents than in adults.*> pTBI
patients often reveal a significant reduction in CBF compared to
aTBI patients.73 It remains unclear whether the lower autor-
egulatory index in the pediatric population may be responsible
for the more significant CBF alterations in pTBI compared to
aTBI patients. Nonetheless, it is widely known that a drastic
decrease in CBF puts the developing brain at risk for ischemia
and neuronal death.8**%> Animal models of pIBI in piglets
have revealed CA impairment couples a reduction in CBF and
greater constrictions in pial vessels. Interestingly, CA impair-
ment was more prominent in newborn TBI piglets (1-5 days
old) compared to juvenile piglets (3-4 weeks 0ld).%%8¢ The
findings from the study mentioned above were corroborated by
the results in another study demonstrating worsened and
prolonged hypotension in PND 17 and PND 28 rats compared
to adult rats following TBLY

Furthermore, human clinical studies in children have shown
that CA impairment following TBI is a significant predictor of
poor outcomes. More importantly, young age appears to be a
risk factor for CA ilrnpairment.gg’91 The mechanisms that lead
to CA impairment and subsequent decrease in CBF are unclear;
however, several pathways have been implicated.73 For example,
endothelin-1 (ET-1) has been shown to increase in pTBI
animal models, and treatment with ET-1 antagonist, BQ-123,
mitigates CA impairment by attenuating CBF decline and pial
artery vasoconstriction.”*”> Similarly, a vasodilatory N-methyl-
D-aspartate (NMDA) agonist (MK801) reduced pial vessel
vasoconstriction and improved CBF following pTBL*® More
recently, the c-Jun N-terminal kinase (JNK) intracellular sig-
naling pathway has been implicated in pTBI-induced CA
impairment.73 These therapeutic targets that mitigate CA
impairment are especially clinically relevant in the pediatric
population since clinical studies have shown that CA impair-
ment is present in about 17% of mild pTBI patients and 42% of

moderate-severe pT'BI pattien’fs.gl’94

Blood-Brain Barrier Dysfunction Following pTBI

The brain’s vasculature’s primary structural unit is the blood-
brain barrier (BBB). The BBB regulates a stringent transport of
molecules and cells between the periphery and the brain pa-
renchyma. This unique structure is composed of endothelial
cells held together tightly by junctional proteins, astrocyte end-
feet processes, surrounding pericytes, and a basal lamina.”
Transporter and protein composition at the level of the BBB
changes with brain maturity. For example, the immature BBB
relies heavily on the inward transport of glucose and amino acids
compared to the adult BBB.”° Likewise, P-glycoprotein (P-gp)
efflux transporter expression at the BBB has been shown to be
increased at PND 7 compared to PND 28 in rats.®> Moreover,
Muramatsu et al. demonstrated that PND 7 rats had increased
immunoglobulin G (IgG) compared to PND 21 rats following
24 h post-hypoxia-ischemia insult. Thus, an indication that the
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BBB is more responsive to hypoxia-ischemia insults in younger
rats (PND 7) compared to older rats (PND 2).%7

Following TBI, the BBB becomes compromised. BBB
perturbation post-TBI is evidenced by increased BBB per-
meability and loss of junctional proteins.”® While most TBI
patients tend to show acute BBB breakdown (days to weeks),
some studies have shown that the breakdown of the BBB post-
TBI may last for yezurs.gg'102 Models of pTBI, like aTBI, have
revealed increased extravasation of dyes or IgG into the brain
parenchyma.103 Additionally, Badaut et al. showed increased
BBB permeability to IgG coupled to the loss of junctional
protein claudin 5 in PND 17 rats at day 3 post-pTBIL. As
measured via caveolin-1, cellular transcytosis was increased at
days one and 7 following pTBI initiation in the same study.lo4
Interestingly, claudin 5 levels have been shown to significantly
increase at day 7 and up to 60 days post-pIBI compared to
controls. 10319

Amyloid-beta accumulation is implicated in TBI path-
ogenesis and is thought to be mediated by BBB dysfunction
at the transporter level.'”® Several studies have demon-
strated that the P-gp efflux transporter is crucial for clearing
amyloid-beta.’®”'%® Failure to remove amyloid-beta from
the brain promotes neuroinflammation and neuro-
degeneration, which in turn impairs normal brain func-
199 Jullienne et al. and Pop et al. showed that P-gp

transporter expression is decreased in PND 17 rats fol-

tion.

lowing pTBI. Consequently, the decrease in P-gp expres-
sion was coupled to increased brain amyloid-beta
accumulation.’® 1% Increased expression of perlecan and
fibronectin perivascular matrix proteins post-pTBI is also
thought to mediate the accumulation of brain amyloid-
beta.''?

A complication of BBB damage seen earlier and more
frequently in children than in adults is the accumulation of fluid
in the brain (edema).''''? Edema in pIBI patients is often
associated with poorer outcomes and increased mortality114. In
children, higher water content, a softer skull, and weaker cer-
vical support are thought to be responsible for the increased risk
of diffuse edema seen in children compared to adults.’® In-
creased expression of water channel aquaporins (AQP4) present
on the end-feet processes of astrocytes is thought to mediate the
vasogenic edema formation seen post—pTBI.73 This finding is
supported by a study showing that inhibition of AQP4 via
small-interfering RNA (siRNA) in PND 17 pTBI rats reduced
edema and improved cognitive outcomes compared to con-
trols. Conversely, the increased expression of AQP4 in PND
17 rats is also thought to play a role in edema resolution;
however, it appears that this benefit is present 3 days post-
pTBL'™

Breakdown of the BBB post-TBI is often associated with
neuroinflammation, neuronal death, and long-term neu-
rological deficits. Recent insights have generated new in-
terest in studying the role of vascular integrity as a target for
developing therapeutics that may be used to manage TBI

acutely and long-term. For additional insights, readers are
referred to this excellent review on vascular impairment

post-pTBIL.”?

Neuroimaging and Assessment of Clinical Biomarkers
Following TBI in Children
Despite many proposed TBI therapies with encouraging
early phase trials, none have made it through phase III
clinical trials.'™ Discovering biomarkers is an important
part of understanding the pathophysiology of any disease
and identifying new ideas for therapies. While many bio-
markers have been investigated and reviewed for the di-
agnosis, prognosis, and treatment of a1'BI, and a few have
focused on the pediatric population, no standard biomarkers
have been widely adopted in the field. 110121 I general, TBI
diagnosis is determined by the severity of primary cerebral
lesions and secondary brain damage. Secondary brain
damage can result from several biochemical and molecular
mechanisms, including reactive oxygen species (ROS)
production, lipid peroxidation, excessive glutamate release,
and neuroinflammation.’?? The current standard for the
assessment of TBI severity in both aTBI and pTBI is the
Glasgow Coma Score (GCS), which classifies TBI as mild
(13-15), moderate (9-12), or severe (<8)1%3. Scoring is based
on subsectional scales of the eye, verbal, and motor re-
sponses, with a score of 0 being no response (deep coma or
death) and the highest score being “normal” ability to re-
spond to the task, i.e., fully awake and alert). Iankova de-
scribes the clinical application of the GCS, including
changes in the scale and the inconsistencies with scoring, as
healthcare professionals are prone to subjective interpre-
tation or discrepancies in the GCS assessment tech-
niques.124 Likewise, the Glasgow Outcome Scale (GOS)
defines functional/neurological outcome and is typically
scored as: 1 = death; 2 = persistent vegetative state; 3 = severe
disability; 4 = moderate disability; and 5 = good recovery.125
Although GOS is a global and nonspecific clinical score in
infants and children with TBI, it is most widely used to
assess late neurologic outcomes in this subset of
pat'fients.l%'128 However, GCS and GOS are not specific to
TBI, and these scales can be used to assess the severity of
brain-related injuries, including stroke and Alzheimer’s
Disease.'?%130

Several reviews have described the use of brain imaging
techniques following TBI in pediatric populations.131'135
Popular imaging techniques include computed tomography
(CT) and MRI. TBI can result in physical changes of the
brain structure, including axonal and white matter (WM)
injury. The corpus callosum is a common area of injury in
TBI, and its location permits the assessment of its structural
integrity and function via imaging. Corpus callosum white
matter integrity is measured using fractional anisotropy
(FA). At the same time, the corpus callosum function can
be assessed using interhemispheric transfer time (IHTT),
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which measures the time it takes for information to cross
cerebral hemispheres. Dennis ez a/. have shown that callosal
function is associated with disrupted white matter integrity
in pTBI.136 A recent study that examined post-TBI (mild
TBI) cortical thickness, which varied by brain sub-region,
compared to controls with orthopedic injury highlights the
complexity of using neuroimaging techniques to predict
TBI outcomes.'®” Brain imaging has been explored in the
prediction of post-TBI behavioral deficits.'® In addition,
several metabolites detected during brain imaging have
been examined for their applicability as biomarkers of TBI,
including N-acetyl aspartate, creatine, choline, lactate, and
myoinositol.mg'142

Although CT scans are becoming increasingly common in
head injury cases, physicians must consider the risk of un-
necessary exposure to radiation, which is especially dangerous
for children.!*>144 Although MRI provides a better resolution
of brain structure and function compared to CT, this tech-
nique has its own challenges in the pediatric population,
including lack of proper child-sized equipment, increased
movement-related artifacts, and the use of sedatives.'** The
goals of brain imaging are 2-fold and include detecting injuries
that may require surgical or therapeutic intervention, as well as
determining the prognosis of rehabilitative therapy or other
long-term treatment plans. However, brain imaging tech-
niques can be expensive, risky, and provide minimal infor-
mation for targeting patient treatment or an assessment of
patient prognosis. A biological fluid biomarker or panel of
markers can provide a potentially faster, less expensive, and
less stressful option to identify targeted therapeutic options for
TBI patients. For the purposes of this review, we will briefly
discuss some of these biomarkers that have been explored in
TBI-defined pediatric clinical samples.

Some of the most commonly measured brain-specific
biomarkers include neuron-specific enolase (NSE), S100
calcium-binding protein B (S100B), myelin basic protein
(MBP), glial fibrillary acidic protein (GFAP), and ubiquitin
carboxyl-terminal hydrolase L1 (UCH-L1). The outcomes
of pediatric clinical studies using these markers are listed in
Table 1. Many nonspecific markers for inflammation,
damage, degeneration, and changes in metabolism have also
been explored, and these are listed in Table 2. Since TBI can
result in long-term cognitive changes or deficits, it is also
important to explore brain biomarkers that may help to
predict these differences. Wilkinson e# al. found that the
combination of high levels of NSE and low soluble neuron
cell adhesion molecule (sNCAM) may be used to predict
children at risk of attention and functioning issues following
TBL'* Brain-derived neurotrophic factor (BDNF), a
protein with many roles in the maintenance and regeneration
of neurons, is decreased following brain injury and is as-
sociated with abnormalities seen on a head CT and 6-month
recovery prognosis.147 Lo, Jones, and Minns found that the
prognostic pairing of inflammatory mediators and brain-

specific proteins yields better unfavorable outcome predictive
values in pTBI than using individual markers.'*® Likewise,
combining GCS and serum biomarker concentrations im-
proves outcome prediction, including increased specificity
and sensitivity."*” A combination of markers will likely be
required to best diagnose or determine outcome prediction
measurement for pTBI. For an in-depth discussion on the
relevance of pT'BI biomarkers, the reader is referred to this

excellent review.'>?

A Putative Role for the Gut-Brain Axis (GBA) in
pTBI Pathophysiology

The gut microbiome plays an important role in pediatric health
and disease, with strong evidence suggesting an influential part
of the microbiome in maintaining brain function, homeostasis,
and stress responses through the brain-gut axis.”®! This
complex mutualistic ecosystem encompasses a diverse collection
of microbial genomes that outnumber the cells in the human
body.ls2 Several studies have shown both intrinsic and extrinsic
factors can shape the composition of the microbiome.'*3"1*° For
instance, children have a higher degree of interpersonal variation
in their microbiome composition, especially within the first 3
years of life compared to adults. Additionally, the host’s geo-
graphical location also tends to have a significant effect on gut
microbiome composition, with pronounced differences seen
between individuals from different geographical and cultural
backgrounds.**'** Other factors that shape the gut micro-
biome include sex, genetics, lifestyle, and medications.'”> These
factors should be considered when examining the bi-directional
underpinnings of the gut-brain axis in maintaining overall
health.

Disruption of the microbiome has been implicated in many
neurodegenerative diseases, including Parkinson’s disease (PD),
Alzheimer’s disease (AD), and multiple sclerosis (MS).1°6-160
Furthermore, recent studies have highlighted the role of the gut
microbiome in maintaining healthy brain function.'®® For
example, Braniste et al. showed that germ-free mice, beginning
with intrauterine life, are prone to increased BBB permeability
compared to pathogen-free mice with normal gut flora.
However, the re-introduction of microbes to these germ-free
mice decreased BBB permeability and improved cognitive
outcomes. ' Additionally, there is a growing body of preclinical
and clinical evidence supporting microbiome dysbiosis in the
pathogenesis and progression of aTBL'%371%7 However, studies
investigating the relationship between gut microbiome dys-
function and TBI progression in the pediatric population re-
main scarce.

The intestinal epithelium is a mechanical barrier that pre-
vents commensal bacteria and pathogenic microbe translocation
from the gut lumen into the bloodstream. However, following
TBI, the permeability of the intestinal epithelium increases,
providing a mechanism for bacterial translocation into systemic
circulation.'®®¢8171 The translocated microbes are then pro-
pelled through blood vessels, ultimately gain access to other



Nwafor et al

(penuyuo))

0,002 '[e 10 sobiag

6£00¢ ‘|e 19 si9dg

£9002 [e 10 Jobieg

,900¢ ‘e 1® \_wmgwm

2G00% ‘e 10 Jobiag

¢5002
‘le 10 AeAypedoApueg

,€002 '[e 10 B|lpulds

€002 "[E 19 Jepiy

-2002 ‘e 10 Jebieg

L0002 ‘[ 10 UossyuUplid

$5 UBIP[IYD Ul SLWOINO YJIM 81e|a4i00
SUOIBIIUBOUOD ‘dgN [eliul pue ‘JSN Mead pue [eniu] «
SUOIBIIUBOUO0D Yead 8y} Ul USSas alem SUOole|a1I00
1saybiy pue ‘syuiodawli} |je 1e SWOINO SSIOM YlIM
PSJBIDOSSE 8loM SI9)IBWOI] |[e 10} SUONRIIUSU0D JoyBIH «

Jaylewolq yoes 1o}
suosuedwod yead 0} awi JusIayip A|leonsiels alom aIdy] e
alonas aiow Bulaq |g 1 paloljul yum ‘seouaiayip dnolb
-usamiaq Jueoiiubis pamoys sisa} aAIHUBOD pue [euolOUNS o

SaIpNIS Jayuny Juelem 4giN pue 3SN
aIyM ‘|g1 PaIoIjuIl 1o} 013109dsS JOU BAIISUSS JoU SeM gOO0 LS o

sisoubelp g1 Jere| ul |nydjay aq Aew auun

Buneoipul ‘euun uey) wWnIas Ul Jaides yead s|joAd] gO0LS e
ualp|iyo Ayyeay sa painful ureiq

1O BUUN pue wnias ul Jaybiy ale suonesuasuod gooLs

abeyliowsy [elueioeiul
noyum sa abeyuowsay [elueloeiul yum sjusied

|91 ul payeasie Apueoyiubls a1om SUOIBIUSIUOD dgIA o
$]0J)U0D SA sjuaned gl Ul pasealoul

Ajpueoyubis alom SUONBIUSOUOD OO LS PUB JSN o

191 P8SO[0 yum uaip|iyo
ul Ayjigesip reaisAyd wuel-uoys ‘reqolb 1oipald Aew

3SN “4enamoy ‘1D ewliouge o Joyoipaid Jood e sem JGN e
awo9o]no poob 0] pasedwod awoono Jood

yum syuaned ul Jaybiy Ajueoyiubis suonenuaouod 3N e

awWooINo Jood Yum paye|aliod
8q 0} sieadde uoneAs|e S} pue |g 1 Joye pesealoul sI 00 LS

IHIN @Anebau sa aasod ypm sjusiied uj SUOIBIJUSOUOD
900LS Ul 9oualayIp JEdRIUBIS OU SEM BIBY) ‘IOAOMOH e

Ainful peay Ajuo

Uum asoy} sa saunful Aipog Jayio pue peay yum sjusiyed
Ul pasealoul A|[eolisliels a1om Suoleluaduod gooLs

Ainful peay pasojo a1anss Yim
swuened ul siy | Jeye a|qelosiep Aluo sem pue ‘susied
10 J|BY 1SOW(E Ul PaSEeaIoul 819M SUOIBIUSIUOD OO LS «

uoISa| [elueIOBIUI
101paid 0} ybnous oi10ads 10 SAIISUSS JoU Sem JSN e

S3INOJLNO NIV

peleAs|a

pajenss

pajens|3

pajens|a

paleAs|3

pajens|a

NI

paleAs|3

paleAs|3

191 "314v
JONVHO

|91 8@Inde Yum sieah g|> ualIp|iyo gg| wnies
(dnosb
lad G1 = U) |91 PaOIUILOU SA PBDIJUI UM UBIP|IYD wnisg
ESe)
191 P3OIUI YIM USIPIIYo | 1O wnieg
S|04u02 Aylesy 7| pue auun

Ainfur ureiq olwexodAy Jo dneWNEI} YIM UBIPJIYD G| PUB WnIas

$]0JJU0D $9 pue

(Pa1oIUL 1 “‘PBIDIUILOU 9G) |1 PIIW UHM USIPIIYD 00 L wniag

I91 POSOId Yim UIp[Iyd 98 wnies

191 YHm UBIp|iyo /g ‘[e10} ualpliyo Auiesy 9g |t wniag

191 prw yum ‘siesh g| 01 G pabe ‘uaip|iyo /| pooig
S|0U0D 9| pue (g] = u) |gL 8I9A8s 1o (9 = u)

ajesopow ‘(£g = u) piw yum ‘gl o} 0 pebe ‘uaip|iyo Gi wnieg
noyum

82 PUEe ] UO UOIS8| [eluBIdRIUI YIM UBIP|IYD 22 wnieg

ddAL

NOILVINdOd I1dINVS

dgIN PUB ‘go0tS ‘ISN

dgIN pue ‘g00tS ‘ISN

dgIN pue ‘'gootS ‘ISN

d001s

dgIN pue ‘goots ‘ISN

3SN

g001s

g001S

g001S

3SN

H3IMHVINOIF

*Ainfur ureiq oewnes | ourelped uBwWNY Ul SieyJewolq oiloads-urelq [enualod *| ajqel



Journal of Central Nervous System Disease

(penuyuo))

Auenss |g] 101pald 0} sieadde goo|LS e
ueods |9 [BIUBIO [BWIOU SA 10 [BIUBIO
[ewlouge ue yym ualp(iyo ui saybiy Ajueoiiubis sem 900 LS «
191 pliw 0} pasedwod |gl 81eAas 0} |9 @loAas 0} ajesapow
02¢ 102 "B 10 %000qBg  8jeIapow YIm UaIp|iyd ul jeybiy aiem S|aas] 400LS UBSIA e payens|3 Jo sinoy 9 ulyum pajuasaid oym ‘sieak g1> uaip|iy) wniesg 9001S

S[eA8| dv45 Wnias uo 10aye ou pey Adelsy) eluisyiodAH e
anjea onsouboid sy Buiesipur ‘syiuow 9
e 8WOo2IN0 [BUOIOUN} YIIM PBJB[S.I0D dY45) WNISS o
wnias ueyl 49 ul Jaybiy sem 438D
6,102 e 19 Jesei4 pue |g1-1sod | ABp UO P8.LINd00 UOHEBIUSIUOD YD) Yedd payeAs|] |91 919A8S YUM UBIP|IYD /2 PUB WnIeg dv4o

auLIN Ul UBSS SBM 82UBIBYIP OU INg 1D 191 @Amsod & yum uaiIpjiyo auun
0102 [e 1o UsjeH ‘siusited [01u00 SA |gL Ul JayBiy a1em sjens| g00LS WNIsS « paleAs|g 9 ‘1D aAiebau Jo usye] | D Ou Jayle YIM UBIP[IYd GOl PUE Wwnieg g001S

elwIaYlodAY SA BILLIBYIOWIOU YliM pajesi)
sjuaned ui Jaybiy alem s|oAd| pue ‘s|0Juod 0} pasedwod sjuaned
,,0102 e 10 NS sjualed |g1 Ul peseeIoul 81em SUOIBIUBOUOD UIBJONUAS-D « pejens|3 |0JjU0D G PUB |gl SJ9ASS UNM UBIP[IYD pue Sluejul /i 489 uIg[oNUAS-0

Augeqoud ybiy yum syusied ul 8wooino Jood 1o1paid Ayredojeydaous olwayos!
0,01L02 '[e 10 4obi9g O} ©|qe SEM 4G PUE ‘ISN ‘A00LS JO Sishjeue Alojosfel] e - oIX0dAY ym USIp|IYd 82 PUE [gL UM UBIP|Iyd g/ wnieg dg9IN pue ‘ISN ‘gootLs

Jood sem Aunful [elueloelul 108)18p 0} g0 LS JO
Aljige |[esano ayy Janamoy ‘Ainful [elueioeiul Yim uaipjiyo (1noyum gz pue Ainful
5,6002 ‘e 10 |1yoeg  ulJeybly Apueoiubis e1em SUOIEBIUBIUOD GOOLS UBSI « payens|3 [elUBIOBAUI UUM ) BWNEI} PBSY UUM UBIP[IYD 25| wniesg g001S

19 UO paliluspl SUOISa| [eluBIOBAUI
,,6002 '[& 10 1ug|j8lseD yum spuaned ul parensis Apueoyubls sem 900LS «  PoleAd|T IEL Pl YIM UBIPIIUD 601 wnies €00}S

ewneJ} peay Joujw
UHM UBIp|Iyd Ul uoisnjuod peay onewoldwAse pue (g1 ppw
olewoldwAs usamiaqg ysinbunsip Jouued SN pue g001S
weoniubis
INg ‘yeam sem JSN Pue 900 LS USOMIS] UONE[DII0 BY] e
SUOISNUOD 0} PaJedWod g1 PIIW UM USIP|IYD ussmiaq 191 Pl yum G6 pue
£,6002 ‘e 10 19Ae)  s|oAs| SN 10 GO0 IS UBBW Ul SBOUBIBYHIP JUBDHIUBIS ON o paleAs|3  UOoISNIUOD YIM €G ‘sieah G| o] syuow 9 pabe ualpjiy) wniasg 3SN PuUe g001S

Aianooal [eoibojoinau ||y
B UIM pPa]eIoosSe ale suoleljuaouod ybily uane asnedaq
Joxew onsoubold ajgeljes e 8q Jou Aew goO S ‘IOAOMOH e
SUONBJUBOUOD 191 (f = u) a1enss 10 ‘(g = u)
212002 ‘[e 18 ezzeld g001'S 1s8Ybly 8y1 pey |91 819A8S YIMm UBIPIYD o pajeAs|g  ejesapow ‘(6 = u) pliw yim ‘siesh G| o} | abe ‘uaipiiyD wniss 4001S

wnies
uewny Ayyeay pajood Jo 8ouBI8j8l |043U0D E 0} paledwod
,,L00Z 'Ie 1o luebbey sjuaned 9 Jo G Ul paye|nBaidn suoReUBOU0D OO LS o payeAs|] |91 919A8S Yyum ‘siesk /| o) | pabe ‘ualp|iyo XIS wnissg 9001S

191 "314v ddAL

S3ANODLNO NIVIN 3ONVHO NOILY1NdOd I1dINVS H3IMHVINOIF

"panunuog °L |qeL



Nwafor et al

(Penunuo))

10 Aq passasse

UOSS9)| [elUBIORIUI 8}NOR J08}ep O} [enualod sey | T-HON e
ddIN pue g001S

uey} Jepag awoolno Jood pajoipaid dy49 pue | -HON e
Awenes 191 yum

pale|ailod | -HON PUB dY4D) JO SUOIIBIUSIUOD PASBaIOU| o
uoISsiwpe uo
$8109S DSH Yim pale|aiiod Ajaaebau asay) pue ‘sjosuod

0} pasedwod |g] YiM UIp|Iyd Ul SUOIBIUSduO0d 4giN ualp|iyo
,29102 '[e 10 O||SPUON 10U INg ‘GO0LS PUB ‘L T-HON ‘dv-4D Joubly a1om aioy] « pajeAs|g  |o4uod Auyesy OF pue gL ynm 1> pabe uaip|iyo Gy wnisg dv49 pue |7-HON

Aienss |gl pue
1D U0 UOISa] [eluBIORAUl YIM PBJe|a1Io0 [g 1 JO SIY 9 UIyIm
026102 e 1o Bded  painsesw SUONeUSsOU0D dyHD) pasesioul ApueoyiublS « payeAs|3 S|0JJUOD BWINEl} 09 PUE |1 YIM UIP|IYD /61 wnissg dv4o

SDd @Aubod yum pajeloosse

s1ing ‘|91 Joj oi10ads Jou S| GOOLS ¥eul SMOUS SIY] e
aouewiopad Alowaw [eqian Buipnjoul
{(80d) swoidwAs anissnouoo-1sod pey oym ualpjiyo

UHM POJBIDOSSE 91aMm S90oUdJIayip g001S ou1oads-|g] saun(ul oipadoyuo yum uaip(iyo
26102 [e 1o 4opnis  Ainfur Buimoj|o) UOHEAS|S JO S|DAB) Je|IlIS PAYAIUXS SANOIL) peieAs|g  |04u0d Zg pue gL Pliw yim ‘9| 0} 9 pabe ‘uaip|iyo 9¢ wnieg d001S
yreap
10 BWO2IN0 8siom Yum sjuaied |g] ul Jsise} malb H-JN e 0/dsH pue ‘uibobejaioas
+22+02 yresp 1o 8WooNo 9sIom ‘(H-4N) Ssiuawrejjoinau
©I0pPa pUB YoInZ  yum sjusiied ul sjeAs| ISN PUe ‘dv¥4D ‘G00LS Polens|d e 191 Uim uaIp|iyo €9 wnieg ‘dv49 ‘ISN ‘9001S

AUBABS |g1 YlIM PaIe|aiiod SUOIBIUSOU0D 00 LS UBIPSIA
1D Joy peau ey} 8onpal
0} [euejod oy} 8ABY pue 1D YIM 81e|aliod ‘uswebeuew
22102 [B 18 JOIANOE |1 JO SINOY € ISl BU) Ul USXE] ‘S|oAs] 900LS POSEIoUl «  PBJeAs|T 1L PIW yum ‘sieak gi> pebe ‘usip|iud 9t wniag g001S

eluisylodAy onnadesayy Aq palosye 1ou ing
‘|91 Jeye sAep G 0} dn pasealoul 8Je SUONBIUBIUOD dgIN «
Jeak |> 0} pasedwood Jeah |=
22C+02 ‘(e 18 NS sjusned |g1 Ul pesesIoul 81am SUORBIUBIUOD g UBSIN palens|q S|0JJUOD /G pUB g1 8I9ASS YlIM UBIP|IYD /2 480 dan

19 peay uo sajijewlouge
Jo swoidwAs [eolul)d Jo aoussald sy} yum pale|aliod
siesewWolq ou JaAamoy ‘ddiN Pue ‘g00+S ‘ISN 4o Jeus
uey} Jobuo.ls SEM UOIIE[21109 BY} PUB SOY) YIIM UOIIE|81I00
annebsu ueoyiubis e pey G 1dags pue L 1-HON
sdnoib
Aue usamiaq sUONBIIUBOUOD G| OGS Ul Seoualayip
ou alIym ‘|gl ‘pliw Jou INQ ‘8I8A8S pue 8jelapow Yim
12¢10Z "[e 10 Jobiag  uaIp|Iyd Ul UORENUBOUOD |T-HON Paseasoul AjuedyiubiS « poleAs|3 sjou00 Ayyeay 0L pue |gL Yum uaipiiyo 6g wnieg S1dags pue |7-HON

191 "314v ddAL

S3ANODLNO NIVIN 3ONVHO NOILY1NdOd I1dINVS H3IMHVINOIF

"panunuog °L |qeL



Journal of Central Nervous System Disease

10

(penuyuo))

mmw _‘ON
Buemy pue yed

268102 ‘[e 10 Jebzio)

162102 '[e 10 eded

oc 02 “[E 19 UOSUIIIM

629102 '[e 10 eded

0294+02 e 18 dulyy

Anful

-1sod syjuow 9 e (SOH Jood) BWOJNO B|qeIOABJUN YIM
peye|a1100 |g1-1sod Xoem | e ISN pPue g00LS Peyens|3 «

dnoib s9H poob ayy

01 pasedwod dnoib gor) Jood ayy ui Jaybiy aiem uoissiwpe
-1s0d »eam | pue UOISSIWPE 1e Yioq S|aAd] SN PUe g001S »

Ainfui-lsod yaam auo 0} pasedwod pajess|d

asom (qw/bd G| = 9-7| pue qw/Bd 9| = 3SN “Jw/6d
8/1 = g001S) UOISSIWPE JB SUOIBIJUSdUOD WNIBS UBIPS| e

sinoy oct

1e pajeas|e Buiurewsal pue Ainfui-isod sinoy gy 1e

Bunyead (100> Jw/Bd 69 SA g/ 1) S|osuod o} pasedwod
sjuaned |g1 Ul pasEaloul OS|e a1aM S|9Ad| G2 | dAgS WnJIasS «

(s1onuoo ur w/Bd Ggg sA |91 Ul 2/ee

uBIpaW) S|9A8| WnIas o} pasedwod Jaybiy ||eJono aiom
ybnouy) ‘sjeAs| WNJas YIM pale|aliod S|and| | -HON 4SD

sinoy 0z Aqg s|eng|

10u09 0} ¥orq Buljiey usyy Ainful Jeye sinoy g| 1e Bupjead

“(100>d ‘qw/Bd z¥| SA L 9€ uelpaw) S|0J3u09 0} pasedwod
sjuaiied |g ] Ul pasealoul alam S[Ad| L -HOMN WNIas

1D Uo suoIs9|

[eluesoenul onewnes) Bupoipaid ul [nyasn aq Aew | T-HON o

suoIsa| 10 J0 Allanas Yim pasealoul | T-HON JO S|oAT e
swoldwAs |91 INOYNM JO YlIM BwNEBJ} IO ‘S|0JU0D
ewnel} 0} paledwod SUOIS9| [elueIoRlUl YUM sjuaied

ul L7-HON J0 S|oAd| pasealoul A|ledisiels a1am a1ay] e

191 Jeye swajgoid pajejai-uoiuane ulsl-buoj joipaid Aew
pue ualp|iyo Ul JoIABYSq [eWwIouge UM Paleloosse aiom
INVONS 4O S|9A8] JaMo| pue JSN JO suolesiuaouod JaybiH e

10 pesy uo

uoIsa| [elueloeIUl JOIPaId 0} |ge Sem ‘00 LS IouIng ‘dV4D
S|04]U09 SA sjuaied |g] Ul SUONBIIUSIUOD

‘9001S 10U Ing ‘dydD pesealoul Ajpueoiiubls sem aloy] e

Ainfui-isod yuow auo Jano swoydwAs
9AISSNOU02-}s0d Jo aAnoIpald Jou alem | T-HON Pue dy4o e
L-HON Ul 8dusiayip ou sem a1ayl ajiym ‘Aunfur aipadoyuo
0} pasedwod |g] anoe ul jaybiy Apuediiubis sem dyHo e

S3ANODLNO NIVIN

paleAs|3

pajenss

paleAs|3

PaxIN

PaxIN

peleAs|a

191 "314v
JONVHO

19.L yum sjusned ourelped Gi

$]0J)U0D painfuiuou 0g-/ | pue gl

wnies

480

818A8S UIM ‘sieak /G| 0} syeem pg pabe ‘UsIpiiyo 61 pue wnieg

$|0J]U0D BWINEI} 09 PUB |1 Slelspow
/PIW yum ‘siesk |z o) sxeam g pabe ‘ualpiiyo 961

191 Yim usIpjiyd €2

Bwnel)
PESY INOYIIM S|OUOD L PUE |G L PIIW UIM USIPIYD 1 |

sieak 9| 0} || pabe ‘Ainlul oipadoyuo
UIM USIP[IYO 0Z PUB |91 PIIW YIM UBIPIIYD G2

NOILY1NdOd

wnies

wnieg

wnies

wniag

3dAl
I1dINVS

(9-11 pue) 3ISN pue 9001S

S¥1dads pue L7-HON

LT-HON

INVONS pue 35N

g00}S pue dv49

IT-HON pue dv49

H3IMHVINOIF

"panunuog °L |qeL



11

Nwafor et al

$]10JjU0D pue sjusiied |g] UseMIa( JualayIp
Apueoiiubis jou a1em JSN pue dy4D JO S|ons| AeAIeS

9e020¢C $|04u09 painfuiun
BYUIS pUe ‘leJeneyq 10U Ing ‘(20" = ) AInful [e19]9)SOINOSNW UM S|0JU0D
‘eneyg ‘Bunsp 0} pasedwod syusned [gl Ul paleAd|e a1om S|9Ad| 900LS e paxi
sjuened g1
pliw u sBuipul 19 yum pareroosse AjBuoils Jou S|9AS| NEJ e
qw

/6d 98°g sem G1-g1 SO pue “Jw/Bd 802 ‘21-6 SOD “Tw
/6d 84’8 sem g-g SO yum spusiied 1o} SanjeA ney UBIPSIA o
1g.1-1sod Aep 1su)
mmm_.ON ‘e 18 seynls 8yl SOH Yim pajeldoosse >_®>_Hmm®c QJOM S[OA3| Ne] WNISS e pajens|3

dnolb
aWo9IN0 8|qelone) 8y} 0} pasedwod dnoib sjgeionejun
8y} Ul pajeAsle alom |gl-1sod oom | S|oAs| 900 LS e
(Qw/Bd g sA G1) |g1-1sod yeam
8uOo SA Aep U0 pajens|o Os|e alom S[oAS| SN UBIPSIA e
46102 (qw/Bd 11 sA pg1) Jare| yoam auo 0} paredwod |gl
BuemH pue “ed Yed -isod Aep | 1e pajens|e aiom S|oAs| 900 LS WNISS UBIPI o

191 4314V

S3INOIJLNO NIV JONVHO

(IWWVDNS) 8|ndsjow uoisaype |80 uonau a|gnjos ‘(S41dAds) edX Si L 1onpold umopyeaiq
uLioads-||0 ‘(L17-HON) L7 8SejolpAY [eulwIB)-Ax0qied upinbign ‘(dy4D) uteloid oipioe Asejuqy elb ((4S0) piny [euldsoigalad (dgin) uieioid aiseq uljeAw (900 LS) g uteloid Buipuig-wnidfed 00 LS ‘(FSN) ese|oud dlyoads-uoinau :Aey

(Aanfur ou yum Gz
= u ‘Ainful [e19]8YSOINISNW YIM Gg = U) S|0JIU0D 0G
pue (Anfur ureiq ueoyubis-uou Q| = u ‘Ainful ureiq
JueoyubIs | = u) |gL PeIe|oS! ‘BINd. YUM UBIP|IYD 42 eAlleg

sjuedioiyed |04ju00 9L pue |g1 ouelpad gG| wnies

(owoono a|qeIoNBIUN G

peleAs|3 = U ‘eWO00}N0 8|qeIoA.) G = U) sjusied |g1 ourelpad O wnies

3dAL
NOILLVINdOd EREINA)

3SN Pue ‘g00LS ‘dv4D

nej

3JSN pue 900tS

H3IMHVINOIF

‘penunuo) °1 ajqeL



Journal of Central Nervous System Disease

12

(panunuUoD)
uonoajoidoinau
JO WisiueYOBW B 108|}91 Aew pue syjuow g je awoono d16ojoinau
Ja)eq yum pajeloosse sem Anful Jeye 4HN pue 9-| jo uonenbeidn
98002 (s0D) Aenss $|0J)U0D payoIEW
e 19 maseyD  Aunful pesy yim psje|e1100 SUOREIUSOUOD ‘g-| Jou Ing ‘DN (Y 2) AueT « pajes|3 L€ pue |g1 81eA8s yim ualipliyo 62 480 49N pue 97|
syuaned (dnoub Jad g = u) ssaul
<2002 ‘e 18 19 Buininunsuou sa BuIAIUNS Ul JB[IWIS 819M SUOHBIIUSOUOD Ja3IBWOI] o 21UOIYD YJIM S|OJIUOD PaIe|ludA sunos|es
sinosseug INVOI 8Ign|os Jo suojenusduod isaybiy sy pey sjusned |g] « POXIN  SA SAHY 10 ‘gL ‘sisdes yum sjusied ewse|d -3 pue -7 ‘WvOI ‘dL-4DL
sjuaned sgyy Buiaians-uou ul 3saybiy sem 9-T) o
+,9002 ‘e 10 SUOIBJUBOUOD 9-TY 1Samo| 8y pey sjuaied |g] a|iym ‘sdnoib (dnoub Jad g = u) Jaoued Jo ‘SaUV
slinosseug Jayio ||e 0} paledw 09 SUOEUS2U0D 9-1) Ales Jaybiy pey suaned SQUY « - ‘sisdas ‘|g1 @19AaS Yum uaip|iy) Bewse|d d4dD pue 9-1)
1g.L Buimojjo} abewep 10 ss8.IS [BLUPUOYIOHW
Apeas Jo Auanas ay) 1oapyal Aew ggdsy palens|s jeys sisabbng e
AlIaASS |91 YIM pajeloosse sem pue sjuaiied [0JU0d / pue
£,9002 ‘[E 10 [B7 ‘S|04}U00 0} pasedwod sjusied |g] Ul pasesioul a1om s[eAd] 09dsy Yead e paleAs|g |gL 9J9A8S YIM UBIP|IYD pue Sjuejul € 4S80  (09dsy) 09-uisi04d ¥o0ysS jesH
|g.1-1sod awoono [esibojoinau
29002  J1ood pue Aierss Aunfur peseaioul Yim peleioosse Ssem |-OH Pasealou] e sjuaned |0Jju0d
‘e 18 Jesno) sjualied |0JjUOD SA |g] Ul PASEBIOUI SUOIBIUBOUOD |-OH e paleAsd| / pue |gl YHM UBIP[IYO pue Sjuejul 8 48D (1-OH) | @seusabAxo sweH
sjuiodawiy Jaye| 18 g -] Ul Seoualayip
AjUo pue ‘|g Jalje SUOBIUBOU0D §-9SBdASED Ul SOOUBISYIP OU 819M 818y ] «
|91 [elUSPIOO. puUB PaJdIjul UBSMIB] SYeulwLdSIp
,,G002 10U pIp |-osedseo pue Se4 pasealoul JOASMOY [BAIMNS JO SOO) Jou S|0JjU0D g-asedseo ‘g1
‘e 19 |I9Yo1eS ING ‘gL PAOIJUI YIM PBJE[S1I0D SUOIIBIUSIUOD O SWOIYI0}AD Pasealdu| « paleAd|q 6| PUB |1 YIM UIp|Iyd pue sjueul /9 48D ‘|-osedsed ‘seq ‘O 8Wo0IYo0AD
asuodsai anljelousbal Jenosen
pides e Buieosipul ‘|g1-1s0d Y ' g2 ¥e paiindd0 SUOHEIIUSIUOD 49 JA Yedd «
op7002 auisouape Ul asealoul Buipual} e se |jom $]0JjU02 painfuiuou G pue
‘|e 18 810Uy Se ‘S|0J)u09 0} pasedwod |g1 Yim UsIp|Iyd Ul pasealou] Sem 4HJA UBS| e paleAd|T gL ©J9A8S UM UBIP|IYd pue Sjueul | 480 493A
191 [e1USpIOd. SA PAJdIIIUI YIM PaleIoosse Ajaniisod aiam sjans| 0/dsH e
asuodsal ssalls snousbopus ue Bupesipul ‘sjosuod
7002 '[e 10 B 0] pajedwod suaned |g1 Ul pasealoul a1am SUOlBUddu0D 0/dSH e pareas|3 191 YUM UBIp|Iyd pue sjueul 0g 480  (02dsy) oz-uieioid Mooys 1esH
|91 Ul 8j0) 8AiRosloid B
00002 @Aey Aew } Buieoipul ‘g-|og pesesaloul yim sjusijed Joj Joleq Sem [BAIANG « S|0JjU0D
‘e 1@ e $]0Jju00 0} pasedwod sjusied |g] Ul PaSEaloul 81om S[OAd| g-|og pojeAs|q 61 pue |91 8I19A8S YIM UBIP|IYD €2 48D (2-10g) 2 ewoydwA| ||90-g
awWoo)No Jood YIMm pajeioosse sem g-| Pasealou] «
,60002 S]0JjU0D 0} S|0JjU0D
‘le 1@ uajey\\ pasedwod syuaned |gl ul paseasoul Ajjuediubls a1om SUOBIUSOUOD 8-T|e pajens|q 2 pue |g1 8I19A8S YIM UsIp|Iyo /g 480 8-

191 "314v IdAL

S3ANODLNO NIVIN JFONVHO ATdNVS H3IMHVINOIF

fanfur uresq onrewnel; ouelpad uewny jo aAoipaid Ajjenusiod siayiewolq dvadsuoN g ajgel



13

Nwafor et al

(penuyuo))

0s€H0Z TR 18 UI

«€H02
‘e 10 Bejoiyd

2 L0Z ‘[ 10 ny

<0102 19beN
pue Bueyn

20102
‘e 1@ uosuemg

66002
‘e 10 Jablog

056002
‘e 10 zoyoues

66002
‘e Jo meseyD

,8002
‘e 10 mesey)

148002
‘e 18 meseyo

Ajjepow pue awooNo ajqeloAeiun yuow 9 sioipaid undado) e

ueos |9 [eniul uo abeylioway

plouyoeiegns opewnel} pue ‘sjidnd aAijoealun ‘9 10 G JO UOHEOLISSE[D

19 ‘21008 SOH) Jamo| e ‘uiglold aAloeal-0) pue 8soon|b pasealoul
pey os|e Ali[epow JO SWOoN0 9|geIOABJUN YIUOW-9 UIM SJUSNIEd e
$|0JjU00 0} pasedwod uaIP|IYD |91 Ul pasealoul sjaAs| undedod ewse|d

uiajoidodi|-|0181$8|0YD Ul 8SeaIdap dlelapow
B UIM pauiquiod 8soon|b pasealoul Jo suleied moys |gl Yim sjusied e
sdnoib
Aue usamiaq Usas a1am q| | QD Ul SBOUBIBHIP OU B|IYM ‘S|0U0D pue |91
01 pasedwod sjuaned ondas ul pasealoul sem uoissaldxa 90D |IYdonaN e
s10J1u090 0} pasedwod ‘syusned |g1 ul sebueyo sjelepow pue
‘ondas ul 1aH pue “1a7 ‘O Jo S|oAs| pasealoap Ajueoiubls Sem aiay] e

syuened |gL ul
ajo4 Juepodw ue Aejd Aew sisoydode jey) Bunsabbns ‘g -1sod awooino
100d YiM pajeloosse alam 9 aWwoiyd0}Ao pue [gHINH JO S|oAS| palend|d e

aWOo9}NOo |g] Jo} Josew
uonoipaid Jood e 1 Bupjew ‘Alueass Anful yim 81181109 10U PIP S|9AS| dNF
sdnoib pas|q aAebau sA aAlIsod By} Ul Je[ILIS 819M SUOBIIUSIUOD dNg «

Ainlur urelq JueolIUBIS Jo @oUBSOE B)BOIPUI S[OAS| JBWIP-J MOT o

10 peay Aq paynuspl
191 ynm pereroosse Ajueoyiubis sem ‘gooLS 10 6dININ 10U Ing ‘Jewip-q e

191 pajolul
PIIW Ylm SIUBJUI Ul pasealou] a1om usbouuqy pue ‘JoH ‘6dININ ‘9-11 pPue
‘paseai0ap Ajueoiubls ajem gHANL PUE ‘UXe108 ‘ZL-TI ‘YDl ‘NYOA

waelsAs |9 pue ulelq 8y} usamiaq uonoeiaiul ue sysebbns
|91 Jeye asejAwe pue asedi| sawAzus oneasoued ul sesealoul AjJe] «

awoo)no [eoibojoinau

181180 YIM pale1oosse a1am SN Pasealdap pue ‘XD pue 49N pPasealou| «
Auanes Ainlur yum pejelaliod

‘AN@D 40 ANAg JouIng ‘ISN pue ‘XOQ ‘4ON 40 suonenusouod (Y g) Aueg

4NQdD Jou 4aNg Jo} usss alem sabueyod Jueoliubis o e

awoo1Nno 2160j0INaU JaNaq Yim paleloosse alom U g 1e
g 1-71 4O SUOIIBIJUBDUOD JBMO| PUB ‘Q-T]| PUB 4N JO SUOIIRIJUBDUOD JBYBIH o
Ig1-1sod y g 1e Aanes Aunfur yum parefe1iod g1-| pue 4N e

8]01 aA0810.doINBU B 9ARY SIoylew asay) Buneoipul ‘HN Yim
paje|a1I00 XD PUB ‘S8Wwooino pooh pey oym usipliyo ul 1aybiy sem 4N e

S3ANOJLNO NIVIN

S]0JIU0D 92|
paleAs|3 pue |gl 819ASS 8iNOB UM UBIP|IYd 92 |

S]0JJU0D
Gl pue sisdes yim uaipliyd OF O}

paleAs|g paledwod |gl 9I9A8S UYIM UaIp|Iyd G|
$|0JjU0D

pareAs|3 2l pue |g1 8leAss Yum uaip|iyod Lg
(b=
u) aniebau pas|q sA (g = u) aalsod

abueyo oN paa|g :Ainful peay yum ualip|iyo g6
1D uo

pejeAs|q  paluspl ewnel pesy yum uaipjiyo 9
SjuejUl [0JJU0D

PaXIN 02 PUe |g L PaJOIjUl PIIW LM sjuejul 9|

pejeas|3 |91 8leAes yim uaip|iyo |G
S|0JjU0D paydlew

paxIN 2E pue |g1 8leAss Yim uaip|iyod ge
S$|0JjU0D payolew

paxiN L2 pue |g1 8I8A8s yum uaipiyo Lg
S|0JjU0D paydlew

pejeas|3 Cl pue |gl 8I8A8s Yim uaip|iyo g|

191 J314v

JONVHO NOILY1NdOd

ewse|d

ewse|d pue
poo|q 3J0YM

4S80

wnieg

ewse|d

wnieg

wnieg

undado)

1a71 pue 1aH
‘01 ‘91 ‘esoon|b ‘ddD ‘10d
q11ad pue ¥9a0

9 9WO0IYo01A0 pue |goNH

(dNg) epnded onainureu-ejeq

g001}S pue ‘6dNIN ‘Jswip-a

uabouuqyy pue
‘49H ‘6dININ ‘911 ‘2H4NL
‘uixejos ‘gLl ‘YOI ‘NYOA

oselAwe pue ased

3SN

4SO pue ‘IN@D ‘4NAg XO0d4 ‘49N

4S80

4S80

3dAL
ATdNVYS

ANaD
puE ‘4aNg ‘49N ‘9-11 ‘d1-I

X0d pue 49N

H3IMHVINOIF

"panunuoy °g o|qeL



Journal of Central Nervous System Disease

14

“(luLo)

uiuodou} oelpIeD ‘(2-03) g-ueoopus ‘(1-13) L-ulleyiopud ‘(g-dv) z-unelodoibue ‘(NJO) unuodosiso ‘(SyNYIW) spioe dlejonuoqu-oioiw (YNQW) YNQ [etpuoyooiw (1Q7) sutejoidodi-Aususp-mol ‘(TaH) suieloidodil-Aysusp-ybiy
‘(D1) 1048188]0Y92 |10} ‘(D 1) SapuadA|bu ‘((10d) uluonojeooid ‘(LgDINH) | Xog dnoib Ajigow-ybiy ‘(49H) 10108} yimoib s1hooreday (6dININ) 6-0seuraloidojjelaw xuyew ‘(g44NL) g Joideoal J010e} siso1oau Jowny ‘(NVDA) dndsjow
uoIsaype JejNn||a9 Je|nasea (|19) [reunsaulonsed ((JSN) asejous ayoads-uoinau ‘(4NQD) 10108} olydosjoinau panuep-[elb {(4aNg) 4010e} oiydosjoinau paauap-urelq ‘(XD @) umrooas|gnop ‘(4ON) J010e} yimolab anau ‘(NvDI) aindsjow
uolsaype Jejnjeoenul ‘(g1-491) Leieg-ioloe) ymmoib Bujwiojsuel; ((SQyy) swoipuAs ssalisip Alojelidsal ainoe (dyD) uielold aanoeas-9 ‘(493A) J01oe} yimolb [eljaylopua Jejnasen (4SD) ping [euidsoigaiad ‘(7)) upnapialul Ay

400202
‘e 1o 8o

o602
‘e 10 9o

260202

‘le 1@ oen

166102 [38 On

098402
‘e 19 SHOIH

62102 e 10 Ny

7102

‘e 1° OXleM

15102
‘e 10 pneod

JULD JO S|9A8| [euliou

Ul g pue U0 pareAs|a Yum sjuaied ul g | sem SO uoissiwpe abelane ay] «
[endsoy ayi ui skep 0|-1 uiyim

Ju1o (qw/Bu <) pareasia yum sidwes auo ises| 1e pey siuaied g/l o

2-dV pue SS| pue |-13 pue SOH usamieq pejoslep diysuoneres 10aiq «
1-13 pue (SS]) 8100s Ajuanes
Ainful pue ‘g-| pue SOY ‘g-dV pue SOB usemiag diysuone|as 8sIoAU| «

Alrepow yum pajejelliod pue |gl-isod y g/ o} dn pasealoul sjgas| NdO e
SUOIS9) |eluelORIUI
pue ‘SOB 0} BUIPIOODE ‘|g] 819A8S UM Pale|alIod S[aAd] NdO BWSEld e

Ayrepow jo1paid Aew asay) pue ‘SOY) pue S|aAd)

uiqojfoway pue ujwnNg|e WnNJas UOISSIWP. Usam}ad Uofe[2.100 BuolS «
Aljeuow 1o} s1010B} 3su Juspuadapul

alam 8> DSH e pue ‘uoissiwpe uodn elwadA|biadAy ‘elwsuiwungeodAH o

Aynoiyip uonuale yum paje|allod Ajjoalip alem o0ge-Hiw ul sebuey) e
(dg-a0g-diw ‘dg-06z-Hiw :paenbaidn aiom
2 pue ‘00ge-Hiw ‘dg-q9z-diw ‘dg-|gg-Hiw ‘dg-gg|-Hiw :psjeinbaiumop
2I9M IN0y) BAIES pue 4D Yloq ul sebueyd Jejwis pey SyNYIW XIS «

awooino Jood yum sjuaned ul Jaybiy aiem s|ons| god ead e
191 Jeye ABeydoine paseaiour Bunsebbns
‘sAep / 01 dn pasealoul aiam siaxiew Yioq Jo S|aAs| yead pue Ues|\ e

19 Jeye pasealoul are sdINYQ eyl BulApubis ‘suoiieliueouod
L9DINH PuUB YNQIW Udamiaq uoie|a1io0 Jueolubis e sem a1ay] e
Aujigesip a1an8s pey Jo paip Jaye| oym sjusiied Ul Jaybiy sem YNQIW UBS| e
syuaned
|0J1U0D 0} paledwod |g] Ul pasesloul 81om SUOBIUSOUOD YN UBSIA o

sisoubo.d Jood pue Ainful urelq 1sebbns suonesusouod Jawip-q YbiH

10 peay
UO |91 YHM pajeloosSe SUORBIIUSOUO0D JaWIp-q Ul 8Sealoul JUedIUBIS «

S3ANOJLNO NIVIN

NI

PaxIN

paleAs|3

PaxIN

PaxIN

polens|3

poaleAs|q

paleAs|3

191 J314v
JONVHO

191 (11 = u) e1enes 1o (g =
U) 81e1epowW ‘(41 = U) pliw yum usipjiyd

(]gL 210088 || = U ‘|gl orelopow ¢ =
U ‘gL pliw 1 = u) 9L YIm uaip|iyo 82

(191 210088 0G =

U ‘|gL S1elopow G = U ‘|gL piw L| =
u) 191 yum ‘sreak 6-g pabe ‘uaip|iyo 99

gL

8laA8s 0] 81elopow YIM UaIp|iyo €12

S|04JU09 40 (8 = u) |91l
819A9s ‘(09 = U) |91 PliW Yum usipiiyo

sjuaned [01u0d

0€ PUE |gL 9I9ASS UlIM USIPIIYD 0E

sjuaned |01u0D

€1 PUB g1 SI9ASS )M UBIPIIYD Zh

s|onuod Ayyeay

02 PUE g1 Yum ‘sieak g|.< ‘ualp|iyo gy

NOILY1NdOd

ewse|d

ewse|d

ewse|d

wnieg

BAIleS 10 45D

4S80

4S80

ewse|d

3dAL
ATdNVYS

(JuL9) uluodos oelpse)

(e03) 2
-ueoopus ‘(1-13) L-uleyiopud
‘(2-dv) g-uneiodoibue ‘9|

(NdO) unuodosiso

uigojBowsy pue uiwngy

SYNYIw

29d pue | ujoeg

LGOWH Pue YNQIW

Jewip-q

H3IMHVINOIF

"panunuoy °g o|qeL



Nwafor et al

15

organs, and may usher in post-TBI complications such as sepsis,
which in turn increases BBB permeability, promotes neuro-
inflammation, and worsens cognitive outcomes.” Furthermore,
damage to the intestinal epithelium following TBI may lead to
gastrointestinal  ischemia, stress ulcers, and intestinal
dysautonomiat.léS’172 Moreover, intestinal damage has been
shown to correlate with the severity of brain injury and may be
associated with TBI-related morbidi'fy.166 Furthermore, some
studies have demonstrated in models of aTBI that specific
bacterial species such as Lactobacillus acidophilus and Clostridium
butyricum may be beneficial for post-TBI recovery.173’174

The pediatric microbiome is functionally and compositionally
different from the adult microbiome!*?; yet, to our knowledge,
there are no preclinical studies that have examined the gut-brain
axis in pI'BI despite numerous aIBI studies demonstrating a
promising role for gut dysbiosis in disease progression. Thus,
preclinical and clinical studies that will examine microbiome
dysbiosis in pTBI are urgently needed and could provide insights
into the development of therapies that mitigate pTBI associated

long-term neurological sequelae in children.'”>2%

Conclusion

Traumatic brain injury poses a significant economic and public
health crisis. Despite the considerable advances in studying TBI in
the adult population, fewer studies have examined the patho-
physiology and progression of TBI in the pediatric population.
Given the considerable differences in CNS development and
cerebrovascular function between children and adults, as high-
lighted in this review, newer studies must investigate pTBI
pathophysiology separate from aT'BI. Furthermore, the diagnostic
and prognostic value of neuroimaging and clinical biomarkers in
pTBI needs to be explored. Ideally, optimal biomarkers should be
easily accessible, minimally invasive, and rely on objective mea-
sures. Equally important is the emerging role of the microbiome in
'TBI pathophysiology. While some studies have examined the role
of the microbiome in aTBI, to our knowledge, no studies have
elucidated a role for the microbiome in pI'BI. Taken together, this
review addresses the current gaps in the pathophysiology of TBI in
the pediatric population. Furthermore, we emphasize the im-
portance of distinguishing between alT'BI and pTBI in preclinical
and clinical TBI research.
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