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ABSTRACT
Traumatic brain injury (TBI) is a leading cause of pediatric morbidity andmortality. Recent studies suggest that children and adolescents haveworse
post-TBI outcomes and take longer to recover than adults. However, the pathophysiology and progression of TBI in the pediatric population are
studied to a far lesser extent compared to the adult population. Common causes of TBI in children are falls, sports/recreation-related injuries, non-
accidental trauma, and motor vehicle-related injuries. A fundamental understanding of TBI pathophysiology is crucial in preventing long-term brain
injury sequelae. Animal models of TBI have played an essential role in addressing the knowledge gaps relating to pTBI pathophysiology. Moreover,
a better understanding of clinical biomarkers is crucial to diagnose pTBI and accurately predict long-term outcomes. This review examines the
current preclinical models of pTBI, the implications of pTBI on the brain’s vasculature, and clinical pTBI biomarkers. Finally, we conclude the review
by speculating on the emerging role of the gut-brain axis in pTBI pathophysiology.
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Introduction
Traumatic brain injury (TBI) is a significant public health

issue and a leading cause of mortality globally. The CDC

2017 surveillance report estimates that TBI-related hospi-

talization was 224,000 in the United States.1 Moreover, TBI

is a crucial contributor to prolonged disability and depen-

dence.2 Epidemiological studies and biomedical research

have focused on understanding the pathophysiology of TBI

in the military setting because military service members are at

an increased risk of blast-related injuries from explosives or

blunt force to the head during warfare.3 An appreciation for

TBI in the adult civilian population is becoming more

prominent.4,5 However, TBI pathophysiology and progres-

sion in the pediatric civilian population is studied to a lesser

extent than the adult population despite some studies

showing that children have worse post-TBI outcomes and

take longer to recover.6-8

Young children (0-4 years old) and adolescents (15-19 years

old) are at an increased risk of developing TBI, predominantly

resulting from falls or motor vehicle accidents.9,10 An epide-

miological study showed that 28% of children who visited the

emergency department were reported to have been struck by or

against an object.11 Likewise, the CDC revealed that over

812,200 children (age 17 or younger) were treated in the United

States for a concussion or TBI in 2014.11 Importantly, children

that survive TBI-related events have an elevated risk of de-

veloping psychological, social, sensorimotor, and cognitive

impairments in later childhood and into adulthood.12-17 When

juxtaposed to an increased risk of death post-TBI, these

findings highlight the significant economic and public health

burden of pediatric traumatic brain injury (pTBI) on society.10

Thus, it becomes paramount that adequate funding and research

be directed towards understanding the pathophysiology of TBI

in the pediatric population since no therapies currently exist that
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effectively mitigate the consequential effects of pTBI long-

term.8

Although TBI studies in adults - humans, pigs, and rodents

have provided a functional understanding of TBI pathophys-

iology, several nuances exist and should be considered before

extrapolating results from adult TBI (aTBI) to pTBI. For

instance, many aspects of the central nervous system (CNS) in

the pediatric population, e.g., as myelination and synapse

formation, are in continual development, and brain injury in

children could severely impact these brain maturation processes

with lasting neurological consequences.18,19 In this review, we

examine: 1) current preclinical models of TBI and their use in

pTBI, 2) the implications of pTBI on the brain’s vasculature,

and 3) clinical pTBI biomarkers. For simplicity, we will refer to

the pediatric population in this review as the neonatal period to

adolescence. We will conclude the review by briefly discussing

an emerging role in pTBI pathogenesis’s gut-brain axis.

Research Models of TBI and Their Application in the
Pediatric Population
The development of an experimental animal research model that

recapitulates the mechanisms of TBI has been a persistent challenge

for researchers.20,21 The multi-planar and heterogeneous physical

forces involved, coupled with concussive, rotational, sheering, and

ischemic intracerebral injuries that result, have proven challenging to

recreate TBI in a rigorous and reproducible manner.22-24 For the

past several decades, the modalities that have been developed for use

in animal subjects generally focus on imparting a single component

of these multifactorial injurious mechanisms and then studying the

consequential brain injury pattern. Several such paradigms for

studying TBI in animals have been described in the literature.22,25,26

These models have proven paramount in advancing our under-

standing of the complex pathophysiology that underlies TBI.

However, studies on the applicability of thesemodels to humanhead

injuries, especially those involving the pediatric brain, are sparse.27-30

TBI models can be broadly grouped into 2 major classes:

penetrating vs non-penetrating injury. Once differentiated into

the above classes, the models have then been designed to simulate

either focal or diffuse injury through specific modifications. The

models vary in their ability to produce mild to severe injury. Some

models are more amenable to adjusting severity gradients than

others. Ease of implementation is also an important consideration

when choosing the appropriatemodel due to the high throughput

of animals often needed for TBI experiments. This section ex-

plores some of the more commonly used models in TBI research

and discusses their use in pTBI research.

Closed Head Animal Models of TBI

“Closed head” animal models of TBI refer to the generation of

brain injury by applying an impulse, i.e., force, through an intact

skull with or without skin incision and outer table exposure. The

major variations of this overarching category include impact and

non-impactmodalities. In general, non-impact impulse models

impart an inertial force to the head and cause angular brain

momentum and resultant diffuse injury, while fixed impact

models result in more focal TBI.24 However, modifications can

be made to each model to simulate the desired predominant

injury pattern. Each of these will be described in turn below.

Non-Impact Models. In non-impact impulsive loading, angular

momentum is imparted to the brain by inducing rapid head

movement and slower deceleration without external loading.

These models, therefore, recapitulate diffuse axonal or shear

injury caused by the stretching and compression of anisotropic

tissue.31,32 Interest in this specific modality has experienced

renewed vigor, given that a vast component of modern human

TBI is secondary to the primary impact from sporting collisions,

motor vehicle accidents, and wartime blast injuries.

Non-impact blast impulse models have a conspicuous

translation to the injuries experienced by soldiers in modern

warfare. Replicating those conditions is usually accomplished by

using a piston actuator to compress air or gas through an ex-

pansion chamber several feet in length instead of using a formal

solid weight.33-35 Alternatively, some studies expose experi-

mental animals to actual detonated explosives to replicate the

desired wartime conditions with greater fidelity.36 In models

employing compressed air or gas via a shock tube, the imparted

force can be titrated to achieve different severities of TBI,

ranging from mild to fatal.33,35,37,38 To the best of our

knowledge, there are no non-impact blast impulse models that

have been validated in pediatric rodent animal models, and there

is only one study that employed a non-impact model in young

porcine subjects. The authors showed that 3- to 5-day old

piglets receiving repetitive rapid axial rotation with a pneumatic

actuator exhibited worsened composite cognitive function and

increased mortality compared to single injury and sham pig-

lets.39 Given that 1 in 6 children live in a conflict zone fre-

quently exposed to explosives, the absence of non-impact blast

impulse models for pediatric populations is a critical barrier to

progress pTBI research on a global scale.40,41

Impact Models. Impact-based TBI research models use a var-

iable weight generally conducted through a tube propelled by

gravity or a pneumatic or electromagnetic actuator to transmit a

mechanical load directly onto the skull.42,43 The resultant injury

(focal vs diffuse) is a function of both the mass of mechanical

load used and applied to the skull, both of which can be easily

modified. These models include the classic “weight-drop”

model described by Marmarou et al., whereby a brass load is

dropped through a two-meter Plexiglass tube and onto a murine

skull.42 Several closed head impact models recapitulate TBI in

the pediatric animal subjects.27,28,44,45 The modifications to

standard models for application to young subjects are minor,

and mainly consist of altering the impulse amplitude or manner

of fixation to the apparatus. The weight-drop impact model is

less commonly used in pTBI research today than the controlled
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cortical impact model (discussed in the open head animal models of

TBI section), which affords high precision and reproducibility.8

Open Head Animal Models of TBI

Similar to closed head analogs, “open head” animal models of

TBI, in which a craniectomy is performed so that impulses may

be applied directly to the exposed dura, can be broadly divided

into 2 schemas: fluid percussion and direct cortical impact.

These models sacrifice the significant head movement of other

models in exchange for in situ extradural impulses. The open

headmodels can induce a focal cortical contusion of moderate to

severe grade (direction cortical impact) or diffuse brain/axonal

injury (fluid percussion).24,46

Fluid PercussionModels. The fluid percussion model has evolved

since its inception by Denny-Brown and Russell in the 1940s.

The original design relies on applying an impulse to the skull

vertex alone after preparatory craniectomy. Historically, this

model was developed in feline specimens, but researchers adopted

the model for applications in other mammals.47,48 Some of the

earliest adaptations to murine subjects were described in 1987 by

McIntosh et al. and Dixon et al., who further modified the

original design to allow lateral and midline testing.49,50 The

Stalhammar apparatus was later developed, marking one of the

seminal points in the model’s history.51 In the Stalhammar

method, a weighted pendulum is released from a known height to

strike a piston attached to a fluid reservoir – often isotonic

saline.51,52 The mechanical impulse is transmitted through the

fluid to cause a localized deformation of the exposed brain.

Although these models have remained relatively unchanged

since their inception, researchers have made refinements to allow

for more precise digital manipulation of experimental parameters

like pulse pressure, pulse velocity, and load duration.53-56 One

crucial improvement was to perform the craniectomy and fluid

percussion at sites other than the “standard” parasagittal location.

In addition, the induction of apnea following percussion is a well-

documented complication of this model and should be closely

monitored to prevent mortality, particularly in pTBI models.52,54

Adaptions of the lateral and midline fluid percussion models to

the pediatric rat have also been described.57,58 More recently, a

study byNewell et al.was the first to demonstrate the feasibility of

the lateral fluid percussion model in juvenile mice.59 Fluid

percussion models have also been utilized in newborn and young

piglets to assess hemodynamic responses post-TBI.60-62

Cortical Impact Models. Controlled cortical impact (CCI)

models share some of the general concepts of the weight drop,

impact accelerator, and fluid percussion models. For this reason,

they are commonly referred to as rigid percussion models.25 In

the most common paradigm for this model, a limited circular

craniectomy is performed on an anesthetized subject where the

head is securely affixed to the experimental apparatus by ste-

reotactic pinning to prevent cranial motion. A direct extradural

impulse is applied by a rigid piston that is driven electrome-

chanically, pneumatically, or electromagnetically.63,64 Thus, the

velocity and depth of the impulse can be scaled to affect both the

severity of resultant brain deformation and the local contusion

and axonal damage that follow.63

While initially developed for studying aTBI, CCI is the most

commonly used TBI model to study pTBI progression and

pathogenesis. For pediatric applications, postnatal day (PND)

17-35 in rats and PND 21 in mice are frequently used in CCI

studies.8 There are, however, limitations to this model. The

generated TBI is often too severe, confounding postoperative

assessments and post-mortem analyses. To address this limi-

tation, researchers have created closed head cortical impact

models that allow for repetitive concussive impulses to the same

subject.65,66 This refined model simulates a repetitive injury that

mimics recurrent mild TBI; this novel feature will enable re-

searchers to study the impact of mild, repetitive injuries that

commonly occur in student-athletes.22,24

Models of Inflicted TBI

Shaken baby syndrome, also known as abusive head trauma or

inflicted TBI, is often overlooked in the pTBI literature. As a

result, very few models mimic the effects of shaken baby

syndrome in babies less than one-year-old. Although models

of shaken baby syndrome are utilized by a much smaller

number of research groups, their studies can recapitulate the

widespread cortical hemorrhage pattern suffered by human

infant patients. At least 3 rodent models have been reported in

the literature. Smith et al. were the first to describe such a

model in 1998.67 Their protocol involved exposing anes-

thetized PND 6 rat pups to one daily shaking episode for 3

consecutive days via a mechanical tabletop shaker set to 200

cycles per minute followed by euthanasia on PND 9. Bonnier

and colleagues described another experimental model dif-

fering from the previous approach in that anesthetized PND 8

were exposed to shaking at 900 cycles per minute for 15

seconds on a tabletop shaker.68,69 Two decades later, Ka-

wamata et al. described a refined apparatus and design con-

sisting of lucent, fenestrated, and cushioned plastic tubes.

PND 3 and PND7 mice were shaken by the same common

tabletop shaker at 250 cycles per minute in single-minute

bouts 5 times daily. The authors conclude that the model may

help study the effects of cerebral microhemorrhages on be-

havioral outcomes in early development.70

Research data on models of shaken baby syndrome in larger

mammals is limited. Finnie and colleagues have published a

few studies on their immature ovine model of inflicted

TBI.8,71 This model involves manually grasping the axilla of

anesthetized lamb subjects and vigorously shaking them in

ten, 30-second bouts over a half hour. The development of a

large animal model of pediatric inflicted TBI was galvanized

by the hypothesis that the large volume gyrencephalic brains
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and relatively weak cervical muscles of ovine animals better

replicated the forces and injuries experienced by human

babies. Simulating abuse in anesthetized juvenile animals is

controversial and presents a barrier to developing additional

inflicted TBI models.8 The reconciliation of these ethical

concerns through the development of novel models should be

a focus of future research.

Cerebrovascular Dysfunction Following TBI
in Children
Amajor consequence following TBI is the damage to the brain’s

vasculature. Cerebrovascular damage in animal and human TBI

studies has been described in the context of hypoperfusion,

hemorrhage, ischemia, edema, and blood flow abnormalities.72

Cerebrovascular dysfunction is a hallmark finding in many

pediatric conditions and often predicts cognitive outcomes.73

For example, a systematic review by Bakker et al. found that

decreased blood flow velocities in premature infants and chil-

dren with sickle cell disease were associated with poor cognitive

performance.74 Likewise, Taylor et al. showed that vascular

alterations in children increased the risk for cognitive impair-

ment.75 Moreover, recent studies suggesting the role of cere-

brovascular dysfunction in neurodegenerative diseases further

support the importance of vascular integrity in maintaining

brain function and health.76 This section briefly discusses the

functional and structural vascular alterations evident following

pTBI.

Cerebral Blood Flow Dysfunction Following pTBI

Transcranial doppler (TCD) ultrasound and magnetic reso-

nance imaging arterial spin labeling (MRI ASL) has been used

to measure cerebral blood flow (CBF) in children. TCD studies

showed that newborns exhibit low (∼24 cm/s) cerebral blood

flow velocity (CBFV); however, CBFV then rapidly rises

(∼95 cm/s) and peaks at 6-9 years of age.77 Beyond 10 years of

age, CBFV declines and approximate adult values (∼50 cm/

s).77-79 Furthermore, MRI ASL studies by Biagi et al. showed

that CBF was highest in children 4-12 years of age and rapidly

declined in adult subjects.80 One explanation for the increased

CBF values in children is the increased metabolic and energy

demand needed by the developing brain.73 Other vascular

parameters such as cerebral vasoreactivity (CVR), which

measures vascular responsiveness to vasodilation via changes in

blood carbon dioxide (CO2), have also been shown to be ele-

vated in children compared to adults.81,82 These findings make

it apparent that cerebral hemodynamics in normal physiology

differs significantly in early childhood compared to adults.

Cerebral autoregulation (CA) is crucial for maintaining a

steady-state CBF under a precise range of cerebral perfusion

pressure (CPP).73 In normal physiology, Vavilala et al. showed

that the cerebral autoregulatory index (i.e., how fast blood flow

velocity returns to baseline after a transient decrease in mean

arterial pressure) is lower in adolescents than in adults.83 pTBI

patients often reveal a significant reduction in CBF compared to

aTBI patients.73 It remains unclear whether the lower autor-

egulatory index in the pediatric population may be responsible

for the more significant CBF alterations in pTBI compared to

aTBI patients. Nonetheless, it is widely known that a drastic

decrease in CBF puts the developing brain at risk for ischemia

and neuronal death.81,84,85 Animal models of pTBI in piglets

have revealed CA impairment couples a reduction in CBF and

greater constrictions in pial vessels. Interestingly, CA impair-

ment was more prominent in newborn TBI piglets (1-5 days

old) compared to juvenile piglets (3-4 weeks old).60,86 The

findings from the study mentioned above were corroborated by

the results in another study demonstrating worsened and

prolonged hypotension in PND 17 and PND 28 rats compared

to adult rats following TBI.87

Furthermore, human clinical studies in children have shown

that CA impairment following TBI is a significant predictor of

poor outcomes. More importantly, young age appears to be a

risk factor for CA impairment.88-91 The mechanisms that lead

to CA impairment and subsequent decrease in CBF are unclear;

however, several pathways have been implicated.73 For example,

endothelin-1 (ET-1) has been shown to increase in pTBI

animal models, and treatment with ET-1 antagonist, BQ-123,

mitigates CA impairment by attenuating CBF decline and pial

artery vasoconstriction.92,93 Similarly, a vasodilatory N-methyl-

D-aspartate (NMDA) agonist (MK801) reduced pial vessel

vasoconstriction and improved CBF following pTBI.86 More

recently, the c-Jun N-terminal kinase (JNK) intracellular sig-

naling pathway has been implicated in pTBI-induced CA

impairment.73 These therapeutic targets that mitigate CA

impairment are especially clinically relevant in the pediatric

population since clinical studies have shown that CA impair-

ment is present in about 17% of mild pTBI patients and 42% of

moderate-severe pTBI patients.91,94

Blood-Brain Barrier Dysfunction Following pTBI

The brain’s vasculature’s primary structural unit is the blood-

brain barrier (BBB). The BBB regulates a stringent transport of

molecules and cells between the periphery and the brain pa-

renchyma. This unique structure is composed of endothelial

cells held together tightly by junctional proteins, astrocyte end-

feet processes, surrounding pericytes, and a basal lamina.95

Transporter and protein composition at the level of the BBB

changes with brain maturity. For example, the immature BBB

relies heavily on the inward transport of glucose and amino acids

compared to the adult BBB.96 Likewise, P-glycoprotein (P-gp)

efflux transporter expression at the BBB has been shown to be

increased at PND 7 compared to PND 28 in rats.85 Moreover,

Muramatsu et al. demonstrated that PND 7 rats had increased

immunoglobulin G (IgG) compared to PND 21 rats following

24 h post-hypoxia-ischemia insult. Thus, an indication that the
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BBB is more responsive to hypoxia-ischemia insults in younger

rats (PND 7) compared to older rats (PND 2).97

Following TBI, the BBB becomes compromised. BBB

perturbation post-TBI is evidenced by increased BBB per-

meability and loss of junctional proteins.98 While most TBI

patients tend to show acute BBB breakdown (days to weeks),

some studies have shown that the breakdown of the BBB post-

TBI may last for years.99-102 Models of pTBI, like aTBI, have

revealed increased extravasation of dyes or IgG into the brain

parenchyma.103 Additionally, Badaut et al. showed increased

BBB permeability to IgG coupled to the loss of junctional

protein claudin 5 in PND 17 rats at day 3 post-pTBI. As

measured via caveolin-1, cellular transcytosis was increased at

days one and 7 following pTBI initiation in the same study.104

Interestingly, claudin 5 levels have been shown to significantly

increase at day 7 and up to 60 days post-pTBI compared to

controls.103,105

Amyloid-beta accumulation is implicated in TBI path-

ogenesis and is thought to be mediated by BBB dysfunction

at the transporter level.106 Several studies have demon-

strated that the P-gp efflux transporter is crucial for clearing

amyloid-beta.107,108 Failure to remove amyloid-beta from

the brain promotes neuroinflammation and neuro-

degeneration, which in turn impairs normal brain func-

tion.109 Jullienne et al. and Pop et al. showed that P-gp

transporter expression is decreased in PND 17 rats fol-

lowing pTBI. Consequently, the decrease in P-gp expres-

sion was coupled to increased brain amyloid-beta

accumulation.105,110 Increased expression of perlecan and

fibronectin perivascular matrix proteins post-pTBI is also

thought to mediate the accumulation of brain amyloid-

beta.110

A complication of BBB damage seen earlier and more

frequently in children than in adults is the accumulation of fluid

in the brain (edema).111,112 Edema in pTBI patients is often

associated with poorer outcomes and increased mortality114. In

children, higher water content, a softer skull, and weaker cer-

vical support are thought to be responsible for the increased risk

of diffuse edema seen in children compared to adults.113 In-

creased expression of water channel aquaporins (AQP4) present

on the end-feet processes of astrocytes is thought to mediate the

vasogenic edema formation seen post-pTBI.73 This finding is

supported by a study showing that inhibition of AQP4 via

small-interfering RNA (siRNA) in PND 17 pTBI rats reduced

edema and improved cognitive outcomes compared to con-

trols.104 Conversely, the increased expression of AQP4 in PND

17 rats is also thought to play a role in edema resolution;

however, it appears that this benefit is present 3 days post-

pTBI.114

Breakdown of the BBB post-TBI is often associated with

neuroinflammation, neuronal death, and long-term neu-

rological deficits. Recent insights have generated new in-

terest in studying the role of vascular integrity as a target for

developing therapeutics that may be used to manage TBI

acutely and long-term. For additional insights, readers are

referred to this excellent review on vascular impairment

post-pTBI.73

Neuroimaging and Assessment of Clinical Biomarkers
Following TBI in Children
Despite many proposed TBI therapies with encouraging

early phase trials, none have made it through phase III

clinical trials.115 Discovering biomarkers is an important

part of understanding the pathophysiology of any disease

and identifying new ideas for therapies. While many bio-

markers have been investigated and reviewed for the di-

agnosis, prognosis, and treatment of aTBI, and a few have

focused on the pediatric population, no standard biomarkers

have been widely adopted in the field.116-121 In general, TBI

diagnosis is determined by the severity of primary cerebral

lesions and secondary brain damage. Secondary brain

damage can result from several biochemical and molecular

mechanisms, including reactive oxygen species (ROS)

production, lipid peroxidation, excessive glutamate release,

and neuroinflammation.122 The current standard for the

assessment of TBI severity in both aTBI and pTBI is the

Glasgow Coma Score (GCS), which classifies TBI as mild

(13-15), moderate (9-12), or severe (≤8)123. Scoring is based
on subsectional scales of the eye, verbal, and motor re-

sponses, with a score of 0 being no response (deep coma or

death) and the highest score being “normal” ability to re-

spond to the task, i.e., fully awake and alert). Iankova de-

scribes the clinical application of the GCS, including

changes in the scale and the inconsistencies with scoring, as

healthcare professionals are prone to subjective interpre-

tation or discrepancies in the GCS assessment tech-

niques.124 Likewise, the Glasgow Outcome Scale (GOS)

defines functional/neurological outcome and is typically

scored as: 1 = death; 2 = persistent vegetative state; 3 = severe

disability; 4 = moderate disability; and 5 = good recovery.125

Although GOS is a global and nonspecific clinical score in

infants and children with TBI, it is most widely used to

assess late neurologic outcomes in this subset of

patients.126-128 However, GCS and GOS are not specific to

TBI, and these scales can be used to assess the severity of

brain-related injuries, including stroke and Alzheimer’s

Disease.129,130

Several reviews have described the use of brain imaging

techniques following TBI in pediatric populations.131-135

Popular imaging techniques include computed tomography

(CT) and MRI. TBI can result in physical changes of the

brain structure, including axonal and white matter (WM)

injury. The corpus callosum is a common area of injury in

TBI, and its location permits the assessment of its structural

integrity and function via imaging. Corpus callosum white

matter integrity is measured using fractional anisotropy

(FA). At the same time, the corpus callosum function can

be assessed using interhemispheric transfer time (IHTT),
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which measures the time it takes for information to cross

cerebral hemispheres. Dennis et al. have shown that callosal

function is associated with disrupted white matter integrity

in pTBI.136 A recent study that examined post-TBI (mild

TBI) cortical thickness, which varied by brain sub-region,

compared to controls with orthopedic injury highlights the

complexity of using neuroimaging techniques to predict

TBI outcomes.137 Brain imaging has been explored in the

prediction of post-TBI behavioral deficits.138 In addition,

several metabolites detected during brain imaging have

been examined for their applicability as biomarkers of TBI,

including N-acetyl aspartate, creatine, choline, lactate, and

myoinositol.139-142

Although CT scans are becoming increasingly common in

head injury cases, physicians must consider the risk of un-

necessary exposure to radiation, which is especially dangerous

for children.143,144 AlthoughMRI provides a better resolution

of brain structure and function compared to CT, this tech-

nique has its own challenges in the pediatric population,

including lack of proper child-sized equipment, increased

movement-related artifacts, and the use of sedatives.145 The

goals of brain imaging are 2-fold and include detecting injuries

that may require surgical or therapeutic intervention, as well as

determining the prognosis of rehabilitative therapy or other

long-term treatment plans. However, brain imaging tech-

niques can be expensive, risky, and provide minimal infor-

mation for targeting patient treatment or an assessment of

patient prognosis. A biological fluid biomarker or panel of

markers can provide a potentially faster, less expensive, and

less stressful option to identify targeted therapeutic options for

TBI patients. For the purposes of this review, we will briefly

discuss some of these biomarkers that have been explored in

TBI-defined pediatric clinical samples.

Some of the most commonly measured brain-specific

biomarkers include neuron-specific enolase (NSE), S100

calcium-binding protein B (S100B), myelin basic protein

(MBP), glial fibrillary acidic protein (GFAP), and ubiquitin

carboxyl-terminal hydrolase L1 (UCH-L1). The outcomes

of pediatric clinical studies using these markers are listed in

Table 1. Many nonspecific markers for inflammation,

damage, degeneration, and changes in metabolism have also

been explored, and these are listed in Table 2. Since TBI can

result in long-term cognitive changes or deficits, it is also

important to explore brain biomarkers that may help to

predict these differences. Wilkinson et al. found that the

combination of high levels of NSE and low soluble neuron

cell adhesion molecule (sNCAM) may be used to predict

children at risk of attention and functioning issues following

TBI.146 Brain-derived neurotrophic factor (BDNF), a

protein with many roles in the maintenance and regeneration

of neurons, is decreased following brain injury and is as-

sociated with abnormalities seen on a head CT and 6-month

recovery prognosis.147 Lo, Jones, and Minns found that the

prognostic pairing of inflammatory mediators and brain-

specific proteins yields better unfavorable outcome predictive

values in pTBI than using individual markers.148 Likewise,

combining GCS and serum biomarker concentrations im-

proves outcome prediction, including increased specificity

and sensitivity.149 A combination of markers will likely be

required to best diagnose or determine outcome prediction

measurement for pTBI. For an in-depth discussion on the

relevance of pTBI biomarkers, the reader is referred to this

excellent review.150

A Putative Role for the Gut-Brain Axis (GBA) in
pTBI Pathophysiology
The gut microbiome plays an important role in pediatric health

and disease, with strong evidence suggesting an influential part

of the microbiome in maintaining brain function, homeostasis,

and stress responses through the brain-gut axis.151 This

complex mutualistic ecosystem encompasses a diverse collection

of microbial genomes that outnumber the cells in the human

body.152 Several studies have shown both intrinsic and extrinsic

factors can shape the composition of the microbiome.153-155 For

instance, children have a higher degree of interpersonal variation

in their microbiome composition, especially within the first 3

years of life compared to adults. Additionally, the host’s geo-

graphical location also tends to have a significant effect on gut

microbiome composition, with pronounced differences seen

between individuals from different geographical and cultural

backgrounds.153,155 Other factors that shape the gut micro-

biome include sex, genetics, lifestyle, and medications.153 These

factors should be considered when examining the bi-directional

underpinnings of the gut-brain axis in maintaining overall

health.

Disruption of the microbiome has been implicated in many

neurodegenerative diseases, including Parkinson’s disease (PD),

Alzheimer’s disease (AD), and multiple sclerosis (MS).156-160

Furthermore, recent studies have highlighted the role of the gut

microbiome in maintaining healthy brain function.161 For

example, Braniste et al. showed that germ-free mice, beginning

with intrauterine life, are prone to increased BBB permeability

compared to pathogen-free mice with normal gut flora.

However, the re-introduction of microbes to these germ-free

mice decreased BBB permeability and improved cognitive

outcomes.162 Additionally, there is a growing body of preclinical

and clinical evidence supporting microbiome dysbiosis in the

pathogenesis and progression of aTBI.163-167 However, studies

investigating the relationship between gut microbiome dys-

function and TBI progression in the pediatric population re-

main scarce.

The intestinal epithelium is a mechanical barrier that pre-

vents commensal bacteria and pathogenic microbe translocation

from the gut lumen into the bloodstream. However, following

TBI, the permeability of the intestinal epithelium increases,

providing a mechanism for bacterial translocation into systemic

circulation.166,168-171 The translocated microbes are then pro-

pelled through blood vessels, ultimately gain access to other

6 Journal of Central Nervous System Disease
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organs, and may usher in post-TBI complications such as sepsis,

which in turn increases BBB permeability, promotes neuro-

inflammation, and worsens cognitive outcomes.95 Furthermore,

damage to the intestinal epithelium following TBI may lead to

gastrointestinal ischemia, stress ulcers, and intestinal

dysautonomia.165,172 Moreover, intestinal damage has been

shown to correlate with the severity of brain injury and may be

associated with TBI-related morbidity.166 Furthermore, some

studies have demonstrated in models of aTBI that specific

bacterial species such as Lactobacillus acidophilus and Clostridium

butyricum may be beneficial for post-TBI recovery.173,174

The pediatric microbiome is functionally and compositionally

different from the adult microbiome152; yet, to our knowledge,

there are no preclinical studies that have examined the gut-brain

axis in pTBI despite numerous aTBI studies demonstrating a

promising role for gut dysbiosis in disease progression. Thus,

preclinical and clinical studies that will examine microbiome

dysbiosis in pTBI are urgently needed and could provide insights

into the development of therapies that mitigate pTBI associated

long-term neurological sequelae in children.175-236

Conclusion
Traumatic brain injury poses a significant economic and public

health crisis. Despite the considerable advances in studying TBI in

the adult population, fewer studies have examined the patho-

physiology and progression of TBI in the pediatric population.

Given the considerable differences in CNS development and

cerebrovascular function between children and adults, as high-

lighted in this review, newer studies must investigate pTBI

pathophysiology separate from aTBI. Furthermore, the diagnostic

and prognostic value of neuroimaging and clinical biomarkers in

pTBI needs to be explored. Ideally, optimal biomarkers should be

easily accessible, minimally invasive, and rely on objective mea-

sures. Equally important is the emerging role of the microbiome in

TBI pathophysiology. While some studies have examined the role

of the microbiome in aTBI, to our knowledge, no studies have

elucidated a role for the microbiome in pTBI. Taken together, this

review addresses the current gaps in the pathophysiology of TBI in

the pediatric population. Furthermore, we emphasize the im-

portance of distinguishing between aTBI and pTBI in preclinical

and clinical TBI research.
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