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Abstract

Drug repositioning has received increased attention since the past decade as several blockbuster drugs have come out of
repositioning. Computational approaches are significantly contributing to these efforts, of which, network-based methods
play a key role. Various structural (topological) network measures have thereby contributed to uncovering unintuitive
functional relationships and repositioning candidates in drug-disease and other networks. This review gives a broad
overview of the topic, and offers perspectives on the application of topological measures for network analysis. It also
discusses unexplored measures, and draws attention to a wider scope of application efforts, especially in drug repositioning.
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Introduction
The recent COVID-19 pandemic is a convincing case for explor-
ing and expanding drug repositioning studies. Given the rapid
and massive scale spread of the pandemic, time was of essence,
and this pandemic saw concerted efforts to reposition anti-
viral, anti-malarial drugs to treat patients—take the example of
Remdesivir. One of the drugs included in the standard treatment
regimen of COVID-19 currently, it was developed as a broad-
spectrum anti-viral, which was repositioned for COVID [1]. In
the face of the world-wide spread and the extent of population
affected, the need for reliable treatment options in a short time
brought into focus the criticality of drug repositioning studies on
a larger scale.

Drug repositioning (or drug repurposing) is the use of drugs
approved for one condition in treating another condition that
may be related or unrelated to the original. History is peppered
with examples: discovery of DNA alkylating activity of nitrogen
mustard (used for warfare during World War II [2]), Sildenafil cit-
rate (Viagra, originally indicated for hypertension, repositioned
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for treating erectile dysfunction [3, 4]) and Tamoxifen (originally
designed as a contraceptive pill, now one of the leading drugs
for breast cancer [5]), are some of the better known examples.
In contrast with new chemical entities (NCEs), pharmaceuticals
already approved for one condition do not have to go through
extensive assessment of preclinical behavior, pharmacokinetics,
pharmacodynamics and toxicological profiling before they are
approved for a new indication. Availability of preliminary data
for drug repositioning candidates decreases the time required
for bringing them into clinical use for other conditions, reduces
the risk of failure in clinical studies and offers a vast cost benefit
to the health care system.

Indeed, time and cost have a direct impact on both the
producers and consumers, as a major challenge in pharmaceu-
tical industry is the large cost and extensive period required
for the development process. From initial lab scale experiments
through the three phases of clinical trials and final approval for
patient-use, it takes 10–15 years, and about 2–3 billion dollars
[6]. Approval rate for drugs entering clinical trials is about 10%
[7, 8]. Another concern is the high attrition rate in clinical trials.
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Drugs already approved for other indications would be less likely
to be rejected in Phase II and Phase III due to toxicity issues,
unless very high doses are required for the new indication; the
majority of drug failures in Phase III come from both, lack of
efficacy and safety issues (adverse events, toxicity issues that
were missed in animal models) [9–11]. Re-positioned drugs have
been contributing to a significant percentage of drug approvals
in recent times. It has been reported that, in comparison to new
entities, 30% of the repositioned candidates are approved [12, 13].
It is likely that repositioned drugs require a smaller sample size
for clinical trials as compared to NCEs. The size of the market
for repositioned drugs in 2020 was projected to be 31.3 billion
USD [12].

Over the past decade, various complex conditions, especially
cancer, have seen rise in targeted therapies. Cancer is char-
acterized by a very high level of heterogeneity in its cause,
prognosis and patient response profiles to therapies. Given the
diverse landscape of genetic variations in cancer, developing
specific drugs for mutations occurring in low frequencies may be
cost prohibitive. Even as newer therapies are being introduced,
their application may be limited over time due to resistance
setting in. Cost and time for development of targeted therapies
often out-weighs the time of its efficacy due to rapid resistance
development. Drug repositioning could lead to cost savings in
pharmaceutical industry and improved therapeutic choices for
patients. Some of the current chemotherapeutic drugs provide
minimal benefit in prolongation of survival, with a severely
reduced quality of life. Patients relying on such drugs are also
likely to benefit from alternatives.

400 million people worldwide are afflicted by conditions
known as orphan diseases [14]—rare conditions, occurring in
a very small percentage of population—and hence, very few
studies can be undertaken for such conditions. Drugs specifically
designed for these orphan diseases are usually unavailable, and
hence there is a need for drug repositioning efforts to treat such
diseases.

There are some other notable factors such as commercial
interests and intellectual property rights. Several insightful com-
mentaries are available on the subject [15–18].

Given the enormous quantity and varied types of data
generated, computational approaches have been designed
and indeed, have become the first set of tools being used for
identifying potential drug candidates for conditions of interest,
and vice-versa. A variety of approaches of drug repositioning
have been adopted, and several excellent reviews have covered
their development [6, 8, 13, 19–25]. Several conditions such as
Alzheimer’s, Parkinson’s and other neurological conditions,
various viral infections, conditions such as epilepsy, and cancer
have been explored in computational drug repositioning studies.

The networks formed by connections and interactions
among biological entities are being studied extensively for many
applications, including drug repositioning studies. Network
medicine leverages the fact that biological entities form
interaction networks, and perturbation in one part of such a
network creates systemic effects. Networks are a useful platform
not only for visualizing large scale, heterogeneous data on
one platform, but also for obtaining mechanistic insights and
predictive properties, using graph theory for analyzing their
structures and behaviors. Graph theory and other mathematical
methods of network analysis have been applied in diverse areas
such as sociology, ecology, linguistics, communication, logistics
and biology. The rise in ubiquity of the use of social media has
led to incredible quantities of data, and graph methods are being
specifically developed and applied to analyses of these platforms

such as Facebook, Twitter, YouTube, Instagram, etc. for extracting
and predicting-from marketing and voting preferences to likely
spread of infectious diseases. In biology, networks have seen
applications in studying spread of epidemics, predicting disease
genes, gaining mechanistic insights underlying various diseases,
etc. [26]. Interest for complex networks analysis and application
of different network measures also emerged from the need to
uncover brain structural and functional properties, trying to
understand the structure–function relationship [27]. Network
approaches are being integrated into computational pipelines
for drug discovery and drug repositioning to highlight previously
unknown connections among the interacting entities. In their
excellent review on the subject, Csermely et al. [28] provide a
comprehensive rationale, and in-depth discussion on the use of
networks in drug discovery and other drug-related topics, such
as drug repositioning and the study of side-effects. The purpose
of this review at hand is to supplement the existing literature
with an overview of some of the applications of networks to drug
repositioning, and in particular, to discuss different network
measures applied to drug repositioning.

This work, therefore, gives a brief overview of the network
measures that have been adopted in drug repositioning studies.
We will see how some of the measures have been frequently
applied in such studies, and that there is an argument for
broadening the set of measures used to analyze networks and
gain additional insights. We will also discuss some context to be
considered while leveraging networks for drug repositioning.

Overview: networks in brief, and networks for drug
repositioning

The two components of any graph are nodes and edges. Nodes
are the interacting entities. Edges are the interactions denoting
a relationship between two nodes. A network could be made of
a single data-type (and hence a single type of node), such as all
the interactions in a protein–protein interaction (PPI) network. It
could be bi-partite—drug-disease, drug-target—and also multi-
partite, with three or more types of nodes. Networks are either
directed (gene-regulatory networks consisting of transcription
factors and the genes they act upon, or signaling networks,
where signals have a defined direction of flow) or undirected
(PPI networks). They can also be weighted (edges have different
strengths of interactions) or unweighted (all edges have equal
strengths).

For drug repositioning, various types of networks can yield
insights. A drug–drug network with edges indicating shared
targets can suggest candidates for repositioning. A disease–
disease network can help indicate similarities and differences
between different conditions, and hence suggest candidates
based on disease similarity. However, some of the successfully
repositioned candidates have been found in case of very
diverse conditions, hence this approach has limitations. Another
limitation of this approach is that this approach cannot give
insights into required dosing for drugs. While the drug candidate
being repositioned may be common, diverse conditions may
have condition-specific quantitative and dynamic dosing
requirements. A drug–drug similarity network based on drug
structure can also offer insights into structural analogs, and
perhaps be a starting point for further investigations. Different
networks typically constructed for drug repositioning studies
are chemical compound networks, chemical reaction networks,
protein-structure networks, PPI networks, drug–drug interaction
networks, drug-target networks, disease–drug networks, etc.
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Another layer of complexity networks can present are enti-
ties with different edge types. While a simple graph has only one
edge connecting two nodes, edges of multiple types can exist,
leading to multi-edged graphs. For example, for a PPI network,
edges may denote physical interactions, but can also be used
to denote co-expression networks, or protein complexes and
their interactions [29]. Most methods that were used so far had
been for graphs homogenous edge types, however, recent efforts
have been focused on analyzing multi-edged graphs, or ‘multi-
graphs.’ For example, a multi-edged graph arose from imaging
and cognitive data in a study of autism and schizophrenia, on
which unsupervised clustering was performed to obtain subpop-
ulations [30]. Extraction of data from biomedical literature yields
multi-edged graphs or ‘Knowledge graphs’ [31, 32]. Increasing
attention to these multigraphs will bring in better insights into
the interplay between various interacting layers we encounter in
biology.

Drug repositioning efforts have often been serendipitous, but
markedly intentional in the recent times, driven by establish-
ment of several public databases catering to providing the kind of
qualitative and quantitative data required to drive these efforts.
Jin and Wang [13] have classified these methods as blinded (or
screening methods) where candidates are identified by-chance
or by their effect on phenotypes; Target-based screening for
entities binding to a target of interest used to screen for can-
didates; Knowledge-based methods; Signature-based methods;
Pathway/network-based methods, Targeted mechanism-based
methods. The starting point of drug repositioning is a known
feature. For example, if the drug structure is known, other drugs
with similar structure can be explored as repositioning candi-
dates. Or, in many cases, its mechanism of action is known. A
detailed understanding of mechanism of action and targets of
known drugs can help identify other targets near the pathways
involved. Thus, in an ‘on-target’ repositioning application, the
same mechanism of action is involved in selecting other targets.
One example is Digitoxin, which was prescribed for treatment of
heart failure and arrhythmia. Its mechanism of action is blocking
Na+/K+-ATPase pumps. This blocking mechanism is also pro-
posed to be effective in inducing apoptosis, thus suggesting a
role of digitoxin in cancer treatment [33]. An alternative mecha-
nism of action of a known drug may also lead to repositioning
opportunities, in what is known as ‘off-target repositioning.’
An old drug may be used for a different condition based on
the new mechanism. Thalidomide is such an example of off-
target repositioning [33]. Originally marketed as a sedative and
a drug to treat morning sickness in pregnant women due to
its observed anti-emetic effects, it was later withdrawn because
of its teratogenic effects causing severe birth defects. It is now
being used, because of its anti-angiogenic, anti-inflammatory
and anti-myeloma activities, to treat leprosy and myeloma [34].
Several databases are now recording gene expression signatures
of known/approved drugs to document the extent of drug action.
Some methods look for drugs that show gene expression signa-
ture reversals of those in diseased states, so as to turn the disease
phenotype into a healthy one [35]. Literature mining to build
relationship graphs [36], deep learning using gene expression
profiles on perturbagen treatments [37], using structural sim-
ilarity between proteins, drugs, molecular docking techniques
[25], pathway-based target identification [38], are among the
many approaches seen. The variety also comes from data used
to build networks (chemical structures, genetic data, proteomic
data, transcriptomic profiles, epigenetic and phenotypic data,
metabolic data, etc.). Permutations of methods and databases
have led to a wide range of literature on the topic [13, 24, 39–42].

Topological measures have been used as features for the analysis
of networks for drug repositioning research.

Before beginning a detailed discussion on various network
metrics, a brief discussion on evolving graph transformation
and analysis techniques is warranted. In the recent years, graph
and node embedding techniques are being explored for han-
dling large scale, complex and heterogenous networks. These
methods are interested in dimensional reduction of these large
networks, while aiming to capture both node information and
topology of the networks, mapping them to lower dimensional
spaces. Integration of the transcriptomic signatures across many
genes and experiments poses a dimensionality problem, which
can be addressed by finding low-dimensional latent represen-
tations of the compounds measured effects, with the assump-
tion that these embeddings display a useful structure that is
biologically meaningful. They can be computed in various ways.
For example, Iorio et al. [43, 44] extract embeddings from the
transcriptomic signatures of drugs across multiple experiments
by prioritizing the most often perturbated genes. In this case, the
embeddings are data-driven, weighted Prototype Ranked Lists
which have been used to build searchable databases for drug
repositioning [45]. Another approach is to use dimensionality
reduction techniques to learn a low-dimension latent vector
for each node. Various methods exist to find such embeddings,
notably neural networks [46–48], diffusion component analysis
[49] or simply matrix factorization [50]. This kind of method
has been used to classify chemotherapeutic compounds with
respect to their mechanism of action [51].

Increasingly, graph convolutions [52], a type of embedding
taking full advantage of the topological structure of multi-modal
graphs, have been used with different types of data sources
in an effort to repurpose drugs. By using a large knowledge
graph of drugs, diseases and biological entities, Sosa et al. [53]
leverage complex semantic relationships between compounds
to generate novel repositioning hypotheses. Similarly, Zong et al.
used DeepWalk [54] to predict novel drug-target associations,
based on a multi-modal network of drugs, diseases and target
genes [55]. The same embedding method has also been used to
infer disease-related miRNAs [56]. Graph convolutional neural
networks (GCNs) have also shown interesting results for the
problems of prediction of the side-effects of drug combinations
[57, 58] but also novel PPIs [59], drug-target interactions [60] or
gene function [61]. Given the pace of development of deep learn-
ing and graph embedding techniques in the fields of artificial
intelligence, it is likely that GCNs will be instrumental to drug
discovery and repositioning in the future.

As mentioned previously, graph theory provides the theoret-
ical foundation to analyze topological properties of networks.
The topology of a network refers to the placement or layout
of the nodes and their connecting edges [62]. Numerous stud-
ies across various disciplines have led to the development of
over 200 measures characterizing networks, in particular, high-
lighting important nodes, identifying sub-graphs (modules), and
uncovering key channels of network communication. Biological
networks encode information in their geometry, and several
biologically relevant inferences have been made based on topo-
logical network features. Some of the frequent measures seen
in literature are illustrated in Figure 1. Degree of a protein in a
protein–protein network is generally an indication of its essen-
tiality [63]. Various measures such as betweenness, closeness,
load, degree centralities, connectivity, etc. were used in a study
to stratify diseases [64]. Four-node motifs have been seen to
occur frequently in metabolic networks [65]. It was shown that
four-node motifs occurred in regions where nodes have high
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Figure 1. Some of the commonly used measures: degree (top, left)—describes the number of connections of a node, closeness centrality (top, right) highlights nodes

in the network closest to other nodes (and can be easily reached), betweenness centrality (bottom, left)—nodes which channel communication in the network, and

eigenvector centrality (bottom, right)—which is based on connections with highly connected neighbors.

betweenness centralities [65]. Tissue specific proteins have been
shown to have high betweenness centrality [66]. Zhang et al.
[67] analyzed the network of orphan diseases, and observed
that proteins mutated in orphan diseases tend to have higher
degree and betweenness centrality, but are not hub proteins
in the overall human PPI network. Based on an analysis of
human proteins targeted in viral infections, several hubs and
bridging proteins have been found to be targeted, and it has
been suggested that bridging proteins would make better targets,
from the side-effect point of view [68]. Mora et al. [69] commented
that using high-centrality targets for drugs may lead to more
drug withdrawals due to side-effects. Da Silva Lopes et al. [70]
applied four network measures (degree, betweenness, closeness
and Burt’s constraint) to analyze characteristics of drug targets
of failed versus approved drugs. They report that targets of failed
drugs have higher degree, and lower values of closeness and
Burt’s constraint, but no significant difference in betweenness.
Their analysis, which was based on protein-structure similarity
network and PPI network, also indicates that approved drugs
have specific structural domains that are less frequently seen in
others, while the targets of failed drugs contain domains that are
ubiquitous. The metrics degree and betweenness centrality were
also used to examine the addictive drugs network with their
targets [71], and proposes candidates for repositioning to treat
addictions. A few of the commonly found metrics are described
in Table 1.

Some examples of the application of network measures for
repositioning are described below in more detail.

How are network/centrality measures applied
for drug repositioning
In some of the approaches seen in literature, network measures-
based analysis is the key component of the method. In Udrescu
et al. [76], the authors built a drug–drug interaction network,
where the weighted edges denoted a link between two drugs

if they shared both a target and mode of action (agonist/an-
tagonist). The drug–drug similarity networks formed were sub-
jected to community clustering, and betweenness to degree ratio
was determined. They proposed that high degree nodes may
have saturated their potential for repositioning, while the high
betweenness but low degree nodes may show potential for repo-
sitioning. This study provides validation, in the way of molecu-
lar docking studies, of their predicted repositioning candidates,
and is an interesting integration of two computational areas of
networks and molecular docking simulations. The group had
previously used other similarity measure [77]—applying average
path length, clustering coefficient, degree distribution, network
density, modularity, closeness, PageRank and eigenvector cen-
trality—along with community clustering. They used topology
and modularity to identify nine clusters/communities of drug
classes. In this work, an overlap between anti-epileptic drugs
and immune system related drugs is indicated, thus, providing
an example of drug repositioning opportunities for the two
indications.

A network proximity measure has been defined based on
proximity between a drug target and disease protein (average
shortest path and average closest path) [78]. Based on net-
work proximity, the authors made several observations: effective
drugs to be those targets are close to disease genes, and there
were some drugs for which the effect could not be explained
by proximity, possibly because of incomplete network structure.
They also explained the link between two conditions, type 2
diabetes and Alzheimer’s disease, based on a common pathway
between two drugs indicated for each condition. This approach
was used to suggest associations between several approved
drugs and diseases, validating two of them via patient records
and in vitro experiments [79]. A similar approach was used by
Guney [80], to analyze side-effect modules, and for predictions
of side-effects not present in the database SIDER. The PageRank
score and an algorithm, Netscore, were also used to analyze
the side-effect modules. Such systematic observations on side-
effects are important resources for drug repositioning efforts.
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Table 1. Some of the most commonly found network measures in literature applied to biological networks

Measure Explanation Reference

Degree Number of connections of a node in a network. Boccaletti et al. [72]
Betweenness centrality For a given node in the network, the fraction of shortest paths through

the node.
Newman [73]

Closeness centrality For a node in the network, inverse of the average distance from all
other nodes.

Boccaletti et al. [72]

Eigenvector centrality Eigenvector centrality of a node is its weight in the network, based on
its connections to other important nodes (i.e. their connectivity in
the network).

Lohmann et al. [74]

PageRank PageRank of a node is determined by the number and quality of its
connections. Variant of eigenvector centrality, applicable to directed
networks.

Liu et al. [75]

Clustering coefficient Also known as transitivity, refers to proportion of connected triangles
in the network.

Boccaletti et al. [72]

Zhou et al. [81] used the same approach to investigate host–virus
interactome for drug repositioning suggestions for COVID-19.
They used 119 known human interactors of corona viruses (from
four previous outbreaks), to identify 47 human proteins (GSK3B,
DPP4, SMAD3, PARP1 and IKBKB, among others), which could be
targets of an approved or experimental drug. The application of
this method to a variety of different networks and datasets is
an asset, especially given the heterogeneity inherent in different
types of network building strategies adopted in various studies.
However, since calculation of z-score assumes normal distribu-
tion of data, a brief discussion on the applicability of the method
to the underlying data vis-à-vis validity of the assumptions for
the method would be useful to the readers.

Cancer has been a key focus area of drug repositioning
studies. For drug repositioning for triple negative breast cancer
(TNBC), Vitali et al. [82] constructed a PPI network around
disease proteins, and used bridging centrality to highlight target
proteins since the expectation is that these bridging nodes are
structurally important nodes with low degrees and thus would
make better targets. Hubs were discarded as they are genes
with higher connectivity, and thus can introduce more side-
effects. Drugs against these targets were obtained from CTD and
DrugBank. Boolean models were built using disease specific
pathways, and were simulated to test the effect of selected
drugs, using a Monte-Carlo approach to assign missing values for
nodes in the Boolean network. This work suggests repositioning
several drugs such as Imatinib for TNBC. While the integration of
network analysis and Boolean methods looks to be a promising
approach, one additional step may perhaps strengthen this
particular study. The study looks into genes that show changes
in expression and take the causal drugs into consideration as
interesting candidates. For cancer studies, the effect of the drug
on the growth of the cell will still be an additional assessment
criterion, which is not inherent in the computational pipeline.

Network measures are also used in combination with other
approaches. Jadamba and Shin [83] used degree centrality,
betweenness centrality and PageRank to analyze the topological
features of a drug–gene network for breast cancer. They reason
that using only gene expression profiles of drug perturbations
may include not just drug activity, but also off-target, non-
specific perturbations. Hence, their approach was to build
a network using disease specific pathways based on gene
expression profiles, and drugs associated with these pathways
as determined by drug-perturbed gene expression profiles in the
Connectivity Map. They then used a semi-supervised algorithm

with network propagation for repositioning unmapped drugs to
predict 17 candidates, out of which 10 were already reported to
be in use. To computationally validate the seven new candidates,
they constructed a network consisting of drug–drug, drug-target
gene and gene–gene interactions. Based on the highest degree
centrality and PageRank scores, they validated three high scoring
drugs as the strongest candidates for repositioning. Using both
network-based and literature-based validation, four of the new
candidates were recommended for further investigation. One
of the assumptions in this study is that drugs approved for the
same disease target most of the same pathways (and hence
molecular targets). This is a strong assumption, and could use
more justification.

Analysis of a cancer co-expression network (for seven types
of cancers) with degree, betweenness and closeness centrality
was undertaken by Bourdako and Spyrou [84] for comparison to
a method called ‘Informed walks’ developed by them. They used
their algorithm to identify mechanism specific sub-networks,
identify driver genes for the sub-network and employed a drug-
repositioning pipeline to suggest potential drugs for the iden-
tified drivers. They subsequently showed that their informed
walk approach identified a higher number of significant genes as
compared to the three centrality measures. Identifying specific
sub-networks for each cancer has important applications from
the perspective of which of them show specific markers, and
thus, are likely to respond to treatments. Community classifi-
cation also offers opportunities to study some of the less well-
known genes in such clusters, and derive better insights into
cancer-specific signatures.

An example of centrality measures used in the context of
cardiovascular diseases is Huang et al’s. [85] study to analyze
a gene association network of vascular smooth muscle cells
(VSMC). They used a set of topological measures (closeness
centrality, degree centrality, eccentricity centrality, betweenness
centrality, bridging centrality, clustering coefficient, brokering
coefficient, local average connectivity). In an effort to investigate
repositioning of cancer drugs to cardiovascular diseases caused
by the effect of stress on VSMCs, these topological features were
used to help identify a set of differentially expressed genes
(DEGs) based on the time course study on VSMCs. Interestingly,
in this study, they also used statistical tests, and cluster analysis,
and identified a set of DEGs using all three approaches to obtain
a combined final set of DEGs. This study is an excellent exam-
ple of the complementary role topological analysis can play in
identification of targets. This study went on to predict 30 drugs
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as potential candidates for CVD, confirming the activity of three
via in vitro experiments.

Along with closeness and betweenness, Mortezaei et al. [86]
used a measure called control centrality to characterize nodes
that control sub-networks in a network of somatic and germline
mutant genes and drug targets involved in neurodegenerative
diseases (ND). They demonstrated that drug targets have the
highest closeness and betweenness centralities. Control cen-
trality analysis of the network revealed that the drug targets
displayed a higher control centrality, followed by somatic muta-
tions, and then the germline mutations. This analysis allowed
them to propose candidates for repositioning for ND. One of
the significant point in their study is the specificity of their
results, which they obtain by comparing their ND network to
degree-preserved random networks.

While studying and highlighting some novel pathways
involved in schizophrenia, Gaspar and Green [87] used between-
ness centrality to identify some of the hub genes that have been
known to affect the nervous system and behavior. Some of the
novel pathways to which the implicated genes belong to, that
show enrichment, offer opportunities for drug repositioning.

Other examples include using degree and betweenness cen-
trality to analyze a network of proteins involved in Alzheimer’s
disease, to highlight the hubs and central nodes such as EGFR,
JUN and YAP1 [88]. They also analyzed subnetworks which
yielded Ubiquitin C (UBC) and YAP1 as hubs for identified
modules. These gene signatures were used as inputs to different
drug repurposing tools. The study goes on to propose 27 reposi-
tioning candidates for Alzheimer’s. This study utilizes multiple
datasets, differential gene expression analysis methods, and
multiple drug repurposing tools, to select the final list of drugs.
However, from our own experience, we find many of the genes
highlighted in this study (as Alzheimer’s associated genes) being
highlighted in other conditions such as metabolic diseases.
Given the complexity of these neurodegenerative conditions,
such studies need to be expanded to factor in features such as
epigenetic changes, etc. to get a more comprehensive picture.
Currently, very few therapeutic options are available for treating
Alzheimer’s disease, and several candidates have failed over the
years.

Repositioning drugs for Alzheimer’s disease was also demon-
strated by McGarry et al. [89] using their tool called RESKO (REpo-
sitioning drugs using Side-Effects and Knowledge from Ontolo-
gies). They used closeness centrality and clustering coefficient,
among other considerations, to rank drugs. Out of 77 potential
candidates, 25 were examined. For each of the 25 drugs, its inter-
action network was built and analyzed for hubness, closeness
and betweenness. Also, studying the PPI interactions of proteins
in enriched pathways, it was observed that the disease genes in
these networks have a high degree but low clustering coefficient.

Lv et al. [90] used network measures to suggest repositioning
candidates for Autism. Drugs, drug interactions and hierarchical
anatomical therapeutic chemical classification codes from lit-
erature were used to construct networks for centrality analysis.
Drug associations in these networks were found using weak
component analysis. Shortest path algorithm was used to find
connections occurring between entities of the resulting drug
similarity networks. For the drug network, cliques were iden-
tified using the clique percolation method yielding 34 cliques,
and PageRank was used to identify 10 significant drugs in each
clique.

Topological network analysis has also been applied to inves-
tigate skin conditions and tropical diseases. A network-based
repositioning study for psoriasis was described by Manczinger

et al. [91]. They used a support vector machine learning model on
intracellular PPI network. They predicted 51 drugs, and closely
examined 3 for which in vitro/in vivo data were available. To
identify most effective targets in the PPI/drug-target network,
they used betweenness centrality, which highlighted TNF-α and
NFκB as top-ranking nodes in the network. Further in vitro exper-
iments targeting these nodes via varying dosages of the three
drugs confirmed the inhibitory effects of the drugs on the NFκB
activity, and on TNF induced cytokines, thus highlighting the
potential of the drugs in psoriasis treatment. They also carried
out in vivo studies. This study proposed a novel algorithm to
simulate drug effects on PPI networks. It also demonstrated the
workflow from computational predictions to in vivo validation.
The authors mention the drawback that the method is limited
to drugs that interact with proteins.

Borba et al. [92] used a repositioning strategy using kinome
network map to prioritize genes and propose seven drugs to treat
the tropical disease Leishmaniasis. In analyzing the network,
they used two approaches: essentiality-based approach (identi-
fying essential genes via RNAi-based validations), and centrality-
based approach: closeness and betweenness centrality to high-
light 30 targets. 11 of these 30 targets were found to be targeted
by 42 drugs, 15 of which had been reported as being in use
for Leishmaniasis, and 27 were novel candidates. To repurpose
drugs to treat sepsis, Han et al. [93] used degree and betweenness
centrality to identify important nodes in the sepsis network.

While several of the above described methods attempt to
improve upon the previously reported literature in the field,
some of the common problems in these studies is the reliance on
a single database, different methods of network reconstruction
and data selection making it difficult to compare methods. Sev-
eral of the networks covered in these studies are small networks,
and particularly vulnerable to missing or inaccurate data. Pertur-
bation studies and a confidence interval for different kinds of
network measures would help gain insight into the effect of bias
and noise present in the data in the analyses. Much of the data
and literature have been collected for cancer studies, and hence
there is a heavy bias, while literature for other rarer diseases
such as tropical diseases is limited.

Considerations
While the studies described above are some relevant examples,
and this coverage is not exhaustive, they provide an overview
of the specific application of topological network measures for
drug repositioning. Networks can be an extremely useful plat-
form for integrating a wide variety of data. They can be a vital aid
in making unintuitive connections, and helping converge diverse
observations into a hypothesis building exercise. However, there
are several considerations that need to be kept in sight.

Accuracy of computational predictions depends heavily
on the underlying data

Quality of the data is crucial for the development of reliable
hypotheses. Many different types of experiments have been
reported over the years, and databases, even manually curated
ones, depend heavily on these experimental reports as sources
for the data they include. Differences in experimental condi-
tions, experimental artifacts and non-reproducible observations,
inconsistent/non-standardized nomenclature, add to noise.
Changing technology has overcome several challenges in
experimental data collection, however, the data reported
using old methods remain a part of literature, and in our
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databases. Additions to literature are being incorporated into
databases on continuous basis—some of the databases are
updated monthly—however, propagation of new information,
especially where manual curation efforts are required, becomes
a bottleneck. While multiple databases have been established
for various data-types, there has been limited overlap of
information between them. Thus, there is also an element
of dataset bias in studies. Efforts are ongoing to address
these concerns. For example, network building and reinforcing
algorithms have been designed for drug repositioning, which
use literature confirmation from multiple sources to build a
consensus network [94]. Nevertheless, incomplete databases
will mean that we would have to keep reviewing and updating
findings to feed back into the knowledge web.

While biological networks have been seen as scale-free (few
nodes with very high connectivity, while a majority of them with
low connections), study biases result in disproportionate distri-
bution of literature, especially in intensively studied diseases
like cancer. In rare diseases, less frequently studied genes may
also link to major hubs, and thus drive complex conditions, and
could be drug targets. Uncovering the missing links remains cru-
cial. The issue of missing data and bias directly impacts quanti-
tative evaluation of networks, causing cases of class imbalance
commonly seen in applications of machine learning for drug
classification/repositioning [70]. Some of the network measures
have been shown to be very sensitive to network structure.

It would be useful to bear in mind that while these compu-
tational approaches are extremely helpful in gaining insights
into connections and patterns—spread across literature, from
different studies, different assays and different contexts—it will
not produce new discoveries out of nothing. For drug reposition-
ing, computational efforts are based on existing information. To
maximize knowledge discovery, prior information must be built
on accurate data.

Building networks-different strategies, different
outcomes

Several different approaches to construction of networks
are seen in literature. One aspect is scope of networks. One
could build cell-specific, tissue-specific, organ-specific, system-
specific network, or consider a whole PPI network for analysis. If
a cell-specific network is built, systemic effects would be missed.
Since biological entities have to be in proximity to interact,
network perturbation studies would require specific networks
for predictive analyses. A network perspective of the successful
and withdrawn/failed drugs has drawn attention in the recent
times. Several observations regarding network properties of such
drugs have been made based on their drug target and side-
effects data [66, 70]. In one of the studies, the authors highlight
that tissue specific proteins are underused as therapeutic targets
[66]. These are desirable targets as far as fewer side-effects
are expected, however, these proteins are not as conserved as
more ubiquitous proteins. Their network analysis results show
that these tissue-specific proteins have higher betweenness
centrality values. Biological networks contain modules formed
by groups of functionally linked entities. Indeed, as Kitano [95]
points out, modularity is an excellent mechanism that limits
spread of perturbations in the system, and addresses the local
environment. However, in certain cases, such as targeting viral
proteins, a more systemic effect of drugs would be preferred.
Hence, network building requires context specificity, though it
might make generalization/comparison of different approaches
difficult. Based on whether local or global topological measures

are being used for drug repositioning analysis, applications will
need consideration. Another aspect is different network building
strategies for network expansion. Starting with the known
information, for example, a set of mutated genes in cancer,
networks can be expanded by including only the first neighbor
interactions, or several step neighbors, or using propagation
algorithms. For the former, a drawback would be that peripheral
genes are known to play a role in disease propagation, and
would be missed, while for the latter, the fact that non-specific
interactions would add to noise.

Reliable predictions of drug repositioning for known drugs
and conditions based on network measures require a reliable
network, in terms of data quality and size of the underlying
network. Network building considerations directly affect conclu-
sions and predictions of analyses. Mora et al. [69] explored the
role of network size and completeness in evaluating drug target
predictions, based on degree and betweenness centrality. They
show that using degree as a reporting measure for drug targets
is unreliable, as it heavily depends on the choice of dataset.
They also reported that using subsets of data, in their specific
study, to use a subnetwork of PPIs based on different types of
reliability scores/criteria, reduces the reliability of using degree
or centralities (they investigated betweenness and closeness)
as predictors of drug targets. Indeed, there are practical diffi-
culties in balancing quality and quantity of information used
to build reliable networks. Data selection criteria can have a
direct impact on the topology of the network constructed, and
thus directly influence the outcomes of analyses and predictions
(Figure 2). There are some excellent studies on the impact of
network sampling, edge deletions, node deletions/additions on
centrality measures [97–100]. Thus, any missing or additional
data in the network will affect the outcomes; the extent to which
it affects the accuracy of predictions depends on the network.

Integrating different approaches for network building in
view of data-availability

As Jin and Wong discuss in their work [13], several methods
of varying levels of complexity and sophistication have been
proposed over the years, which can be integrated into efficient
pipelines depending upon the condition of interest and data
available. Several conditions, such as cancer, are well studied,
and studies have generated a multitude of datasets of different
data-types. However, for diseases such as cardiovascular dis-
eases, the amount of data and data-types available, is currently
limited. Hence, methods requiring several data-types may not
work for such conditions. While topological analysis is highly
context dependent, and may require extensive computational
assessment for its application to diverse networks, it could prove
helpful in such scenarios, where other data-types are unavail-
able. It would be a cost-effective first-approach in using available
data to obtain insights on repositioning opportunities, based
on shared molecular mechanisms, or shared genes/pathways
between rare and well-studied diseases. In cases of limited
patient numbers, or diseases such as cancer where certain pop-
ulations are generally responsive to treatments, other kinds of
data such as electronic health records (EHR) can be integrated.
Based on EHRs and omics profiles, clustering and sub-population
identification can help recruit patients most likely to respond,
and would allow to better transition from computational predic-
tions to clinical trials.

Benchmarking efforts for reliability of network measures in
context of their network structures can add confidence to efforts
of applying these measures for predictive analysis. Given the



8 Badkas et al.

Figure 2. Effect of data selection on network topology: seen here are the networks of the protein insulin with different criteria for selection of its interactions, built

using the STRING [96] database. While one can chose interactions with lower confidence to allow scope for exploration of possible links, it leads to a denser structure. As

more stringent criteria is applied, while the quality of interactions is higher, possibilities of discovering potentially novel interactions decreases. The effect on topology

is prominent, and would directly affect analysis and prediction based on these different networks.

vast amount of data and several approaches/measures, the num-
ber of permutations that can be attempted may be constrained.
Advances in machine learning/artificial intelligence may lead
to more concerted efforts in this space. One of the applications
is, of-course, biomedical data extraction and network creation.
Another area where advances in ML/AI could help is to learn to
assess quality and quantity of input data, and choose/combine
different methods depending on the data available. Different
methods have their own strengths and weaknesses. Given the
variations in both the data available and the number of meth-
ods/metrics proposed, manually running these permutations
may not be feasible. Advances in ML/AI techniques for deci-
sion making and implementation of these methods may help
researchers explore various dimensions of data available, and
establish comprehensive analyses.

Exploring other network measures—opportunities and
risks

While several measures have been proposed, very few measures
have been applied in these numerous studies. For example,
betweenness centrality has been used extensively, the rationale
being that these nodes are crucial for communication between
modules. Some of the other frequently seen measures are
degree, closeness centrality, PageRank, eigenvector centrality
and clustering coefficient. However, these represent a small
percentage of the proposed measures. Whether there are other
measures that can be applied to such networks that also
yield insights into key nodes as drugs/drug targets should be
systematically explored. For example, motif-based centrality
has been applied to gene-regulatory networks [101]. If analysis
of such motifs in network structures provides insights into
side-effects/toxicity information for drug targets, it could help
anticipate adverse reactions. Indeed, network topology has
been reported to influence synergistic/antagonistic effects of
drug combinations [102]. The study reported, among other
observations, that motifs that are involved in positive feedback,
and are also drug targets, could be involved in antagonistic
(buffering) effects of drug combinations. A wider range of
topological measures can be applied to drug repositioning
studies to highlight unintuitive relationships between drugs,
targets and various conditions.

However, the type of network under consideration should
be contextualized. Are all measures applicable to all types of
networks? Several points emerge and should be consciously
analyzed such as applying a measure designed for an undi-
rected network to directed ones. For example, one would need
to assess if motif-based centrality or PageRank centrality yield
similar interpretations for gene-regulatory, protein–protein and
metabolic networks. In a gene regulatory or a metabolic net-
work, where reaction specificity is seen between specific sub-
strates and enzymes, explicit interpretation of random walk-
based centrality may be required. It would be helpful to know
under which conditions certain measures can be applied, and
in which ones they cannot. Robustness of these measures over
different networks is also a consideration. If a measure is a
predictive feature for one kind of network, would it be a reliable
feature for other networks? The nature of underlying network
(field of study, degree distribution, topological characteristics)
becomes significant in order to apply these metrics. Dependence
of network measures on the size, type and topology of the net-
works is well documented [99, 103]. In the context of analyzing
brain connectivity datasets, Rubinov and Sporns differentiate
between anatomical and functional networks, and highlight the
differences in applying and interpreting such measures to them
[27]. Comparison of different networks becomes difficult. The
same measure can yield different outcomes in different net-
works, which was the case in the study presented by Wang et al.
[101]. They reported applying in-degree, out-degree, total degree,
PageRank and betweenness to five different directed biological
networks, and found a lack of robustness in these measures
in identifying nodes that occur frequently in motifs (and thus
assumed to be important) across the networks, and indeed, pro-
posed a newer, more robust measure based on frequency of node
appearances in motifs, in their paper. Betweenness centrality,
which is one of the most frequently seen measure in literature,
was shown also to be unstable [104]. While addressing the reli-
ability of centrality measures for drug repositioning, Da Silva
Lopes et al. [70] conclude, based on their study, that centrality
measures can be used to classify problematic drugs based on
protein-structure similarity networks and PPI networks, though
with lower reliability. However, they used a limited number of
measures, hence similar studies will have to be carried out for
other measures to generalize this statement. Indeed, their study
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included the successfully repositioned drug Thalidomide, which
the study found difficulty to classify. Udrescu et al. [77] found
modularity (clustering) to be a better predictor of drug proper-
ties than topology-based clustering. Given the heterogeneity of
networks and measures, some studies have proposed integrated
measures such as ‘integrated hubness score’ [105] to overcome
the limitations of using a single metric. Thus, perhaps such
an integrated score considering centralities that may reflect
specific centrality scores for assessing re purposing potential
can be devised.

Theoretical foundation of different centrality measures may
be different, but may yield the same outcomes. Correlations
among these measures are dependent on the topology of the
underlying network. For example, on the basis of a study
analyzing 212 networks from different fields, Oldham et al. [103]
observed correlations between 17 centrality-based measures.
They showed presence of clusters across networks that showed
high correlations between random-walk closeness centrality
and information centrality, and between Katz centrality and
total communicability centrality, but showed that participation
coefficient and bridging centrality had the lowest average
correlation with other measures. However, besides these core
clusters, other clusters across network showed a wide variation,
indicating network specific roles. In general, all studies have
indicated that there is yet to be consensus on several aspects
of application of network measures across different fields,
most studies alluding to the dependence on the underlying
network. This affects the applicability of topological analysis.
Take the case of machine learning, where topological measures
are used as features. It is likely that across different networks,
the machine learning algorithm will be required to vary the
features it deems useful/redundant, thus introducing a layer of
variability, for example, for patient-specific network analysis.
While it may not necessarily be a disadvantage, the variability in
application of network measures is certainly a detail one should
keep in sight.

While designing these measures, several assumptions are
made about the networks, depending on the nature of nodes
and edges, the nature of their interactions, the kind of external
inputs received. One must ensure these assumptions are com-
parable while applying measures from one field to the other.
For example, communication in social networks may not be
comparable to a biological input in the form of a ligand binding
to a receptor, given that ligands have finite quantities, while
speech has no such limitations. Bringmann et al. [106] ques-
tioned, recently, the applicability of betweenness centrality and
closeness to psychological networks, and cautioned against the
use of one type of network measure in a context where it
may not be applicable. Take the simplest case of betweenness
centrality. The underlying assumption of the nodes being cen-
tral because a high fraction of shortest paths pass through
them could be evaluated through the lens of biological con-
text. Does the assumption hold ground? It is unlikely that bio-
logical entities interact only via ‘shortest distances’ or direct
interactions, indeed because of redundancies encoded in bio-
logical systems, there are usually several layers to interactions
between two entities. Other versions of betweenness centrality
(the random walk betweenness centrality, flow betweenness
centrality, communicability betweenness centrality) have been
proposed to overcome the shortest path restriction. The question
of which one would better apply to the biological system under
study must be evaluated. Another application of graph meth-
ods under study today is link prediction to determine possible
connections between entities. But for a case of drug–protein
interaction, it would be useful to bear in mind the biological

constraints: conditions such as proximity (presence of a protein
in nucleus, cytoplasm or in the cell membrane), active transport
of drug into the system, lysosomal degradation, drug solubility,
presence of competitive inhibitors, structural integrity of the
drug and the protein, active efflux of drugs out of the cell,
etc. Thus, while social networks today are unconstrained by
absence of physical connections between potential interactors,
the degree of freedom available for applying methods directly
from social network analysis to biological networks may be
much more restricted. The nature of flow of information, per-
turbations and their effects on the neighboring nodes in diverse
networks (social, communication networks such as internet and
telephone, transport and logistics, and biological) need to be
evaluated before such methods can be used between disciplines.

There is indeed scope and need for identifying specific
topological features that can be applied to drug/target/disease
networks from among hundreds of measures proposed. For
example, topological coefficient gives the number of neighbors
shared between two nodes. For a drug target network in the case
of cancer, this could help identify other candidates in the neigh-
borhood of the original target, in case resistance sets in. Applying
this analysis to patient-specific gene expression/protein-
interaction networks could help personalize treatment, and
thereby increase the possibility of patient response to alternative
therapies. Another interesting measure is Burt’s constraint.
Briefly put, it is an indication of the influence of position in
accessing information. It is related to another concept of ‘weak
ties’ or positional advantage in social networks. Nodes which
are in a position to exchange non-redundant information are
valuable [107]. Higher values of Burt’s constraint would imply,
for drug repositioning studies, identifying drugs working on
targets sharing stronger connections. Estrada et al. [108] had
proposed bipartivity for identifying essential proteins in a
protein-interaction network, which is the membership of a
protein in two or more clusters. While essentiality would require
low values of bipartivity, perhaps applying this measure to
drug networks may help identify drugs with a high co-efficient
participating in multiple clusters, and thus, candidates with
higher repositioning potential.

While some measures may not be relevant or applicable,
literature bias toward a select few metrics makes it difficult to
discuss or compare the potential of some of the other proposed
metrics in topological analysis. Many of the classical measures
such as betweenness centrality have been explored further and
alternative metrics have been proposed to overcome some of the
inherent limitations of these metrics. Many of these measures
remain unexplored, and thus, opportunities for exploring these
measures can indeed be helpful to the community by studying
them and generating literature for comparison in line with the
popular metrics in the field.

As the quantity of available data, and therefore network
size increases, computational resources and time also add con-
straints [103], and thus influence which measures would be
preferred. Computational cost has also prompted researchers to
propose alternate metrics, which offer reduced computational
times, an example being that of localized bridging centrality
(LBC) in place of bridging centrality [109]. LBC can be computed,
according to its authors, using parallel processing.

Caveats: limitations, experimental design biases and
on the importance of definitions

Topological analysis may help highlight previously unknown
relationships between targets, drugs, diseases computation-
ally, and indeed, provide a sound theoretical grounding for
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experimental/clinical validations for repositioning candidates.
However, in practice, additional considerations may hamper
repositioning efforts. While the main advantage of repositioning
may be the availability of pre-clinical data, different dosing
may be required to observe the effect of a known drug in a
different disease setting. In case of higher dosing requirements,
toxicity issues may lead to unsuccessful repositioning attempts.
Hence, while a network-based analysis may indicate previously
unconsidered links, additional dosage/toxicity assessment may
add limitations.

In order to control for experimental/methodological biases,
the design and selection of appropriate control graphs is an
important aspect. As in experimental biology, which uses
untreated/wild-type controls, random graphs are used as
controls in network biology to determine specificity/significance
of the observations. Considering the noise present in data,
identifying disease/drug/target specific effects improves the
translatable potential of predictions, and reduces the risk of
off-target effects.

One of the serious challenges is the inconsistent use of terms
in the field of topological network analysis. Originally, graph
theory evolved from the solution to the problem of the seven
bridges of Königsberg, and had geometrical basis. Its applica-
tion to sociological research led to the development of a host
of measures, and terminologies changed contexts in different
disciplines. For example, in most cases, ‘hubs’ are taken to
be nodes with high degree, but at times, loosely taken to be
highly central/topologically important nodes. The resource Cen-
tiserver [110], lists several measures on their website (https://
www.centiserver.org/centrality/) such as betweenness centrality
and bottleneck, bridgeness, bridgeness centrality and bridging.
Betweenness is defined based on shortest paths, while bridging
is described as nodes connecting high degree connections, and
bridging centrality takes into account both communicability
and degree. Thus, nodes with high bridging centrality connect
highly connected modules. However, in practice, betweenness
centrality is often used interchangeably with bridging/bridging
centrality. Hence, adapting definitions from various field with
appropriate changes to ensure correct interpretation with con-
text specificity is important, especially when the predictions
are applied to complex fields such as the drug discovery and
repositioning.

Perspective/conclusions
This discussion of network measures for repositioning focuses
on computational insights into new relationships between
drugs/diseases. It does not consider other ways of repositioning,
such as changes in formulation, changes in route of administra-
tion or new combinations of previously known drugs. In essence,
drug re positioning is a broad topic, and several terminologies
and use cases exist—coming from pharma companies, doctors
and health care professionals, patients and regulatory bodies.

Drug repositioning has an enormous potential and could
result in large benefits, especially for patients at the end of the
healthcare chain. While tremendous leaps have been made in
computational approaches to drug repositioning, the interplay
between experimental, clinical data and optimal computational
methods for network building will need to be a continuous,
iterative process for some time to come.

Networks have the potential to offer non-intuitive insights
for drug repositioning. They enable exploration of large-scale,
dependent, heterogeneous data that are especially useful in biol-
ogy, given that this data represent dynamic, interacting layers

of a living and evolving system. Several methods and mea-
sures exist that aim at understanding the key nodes, important
interactions, structure and communication in networks. The
field of drug repositioning has also leveraged biological net-
work analysis via different network measures to explore new
opportunities. Several studies have mentioned using various
measures for analysis and prediction of candidates for reposi-
tioning. There remains much to explore, in terms of the types
of measures used, and a thorough understanding of context of
applicability of these measures across diverse network types.
However, because the applicability and predictive abilities of
different measures are heavily dependent on the topology of the
underlying network, there is an element of variability inherent
to the approach. Finally, despite having good quality inputs,
and sound analysis methodology, candidates proposed may not
actually be viable for a given condition. Patient specific genetics,
food habits and environment, response to specific drugs, and
incomplete understanding of causality are a few variables that
may not be accounted for, and end up having an un-anticipated
effect on the predicted candidates. A prediction may also be an
artifact due to the use of limited or conflicting data, or a single
data-type. An example is the case where a repositioned drug
was suggested as a therapeutic for irritable bowel disease (IBD),
but the drug has diarrhea as a side-effect, which is a symptom
of IBD [111, 112]. Thus, even after such predictions are avail-
able, additional feasibility analyses need to be included in the
repositioning pipeline. Existing safety and efficacy data should
be revisited, so that drugs already in use for other conditions
can benefit from availability of patient records which can be
analyzed to assess safety and efficacy outcomes, and check for
indications of efficacy for new conditions (from side-effects data,
for example). If patient data are available, simulation on patient
specific networks may be attempted. Multiple computational
methods based on diverse data inputs should be combined for
robust predictions. New technology (mobiles, fitness monitoring
apps, etc.) is being leveraged to collect real-time data and con-
duct virtual trials. These approaches can help identify specific
patient populations, and monitor the outcomes of prescribing
repositioned drugs. Thus, computational predictions need to be
integrated with in vitro, in vivo, and patient data to assess feasi-
bility and efficacy of the proposed candidate. Such combination
of approaches will allow us to better address the gap between
predictions and clinical trial success of candidates.

While limitations in this approach do exist, it is nevertheless
useful in establishing connections between diverse datasets, and
providing new insights using available data, which make it a
pertinent approach for drug repositioning studies.

Key Points
• Drug repositioning efforts have been contributing to

a number of successful drug approvals in the past
decade.

• Network analysis using graph theory principles offers
insights by integrating diverse data types, large
amounts of data and several sophisticated metrics
highlighting important nodes and connections.

• Drug repositioning studies have seen inputs using
several popular metrics such as node degree, between-
ness and closeness centrality, PageRank and eigenvec-
tor centralities, etc.

• A large number of measures exist, coming from a
variety of fields. However, only few have been applied

https://www.centiserver.org/centrality/
https://www.centiserver.org/centrality/


Topological network measures for drug repositioning 11

to biological networks, and especially in drug reposi-
tioning studies.

• A wider, systematic exploration of different measures,
with a comprehensive discussion on their dependence
on network topology and applicability in drug reposi-
tioning, may contribute to drug repositioning studies
and its clinical translation.

References
1. Eastman RT, Roth JS, Brimacombe KR, et al. Remdesivir: a

review of its discovery and development leading to emer-
gency use authorization for treatment of COVID-19. ACS
Cent Sci 2020;6:672–83.

2. Falzone L, Salomone S, Libra M. Evolution of cancer phar-
macological treatments at the turn of the third millennium.
Front Pharmacol 2018;9:1300.

3. Galiè N, Ghofrani HA, Torbicki A, et al. Sildenafil citrate
therapy for pulmonary arterial hypertension. N Engl J Med
2005;353:2148–57.

4. Papapetropoulos A, Szabo C. Inventing new therapies with-
out reinventing the wheel: the power of drug repurposing.
Br J Pharmacol 2018;175:165–7.

5. Quirke VM. Tamoxifen from failed contraceptive pill to
best-selling breast cancer medicine: a case-study in phar-
maceutical innovation. Front Pharmacol 2017;8:620.

6. Pushpakom S, Iorio F, Eyers PA, et al. Drug repurposing:
progress, challenges and recommendations. Nat Rev Drug
Discov 2018;18:41–58.

7. Akhondzadeh S. The importance of clinical trials in drug
development. Avicenna J Med Biotechnol 2016;8:151.

8. Yella JK, Yaddanapudi S, Wang Y, et al. Changing trends
in computational drug repositioning. Pharmaceuticals
2018;11:57.

9. Hwang TJ, Carpenter D, Lauffenburger JC, et al. Failure
of investigational drugs in late-stage clinical develop-
ment and publication of trial results. JAMA Intern Med
2016;176:1826–33.

10. Fogel DB. Factors associated with clinical trials that fail
and opportunities for improving the likelihood of success:
a review. Contemp Clin Trials Commun 2018;11:156–64.

11. Mak IW, Evaniew N, Ghert M. Lost in translation: animal
models and clinical trials in cancer treatment. Am J Transl
Res 2014;6:114–8.

12. Hernandez JJ, Pryszlak M, Smith L, et al. Giving drugs a
second chance: overcoming regulatory and financial hur-
dles in repurposing approved drugs as cancer therapeutics.
Front Oncol 2017;7:273.

13. Jin G, Wong STC. Toward better drug repositioning: pri-
oritizing and integrating existing methods into efficient
pipelines. Drug Discov Today 2014;19:637–44.

14. Vanhaelen Q, Mamoshina P, Aliper AM, et al. Design of
efficient computational workflows for in silico drug repur-
posing. Drug Discov Today 2017;22:210–22.

15. Oprea TI, Bauman JE, Bologa CG, et al. Drug repurpos-
ing from an academic perspective. Drug Discov Today Ther
Strateg 2011;8:61–9.

16. Oprea TI, Mestres J. Drug repurposing: far beyond new
targets for old drugs. AAPS J 2012;14:759–63.

17. Kato S, Moulder SL, Ueno NT, et al. Challenges and perspec-
tive of drug repurposing strategies in early phase clinical
trials. Onco Targets Ther 2015;2:576–80.

18. Cha Y, Erez T, Reynolds IJ, et al. Drug repurposing from the
perspective of pharmaceutical companies. Br J Pharmacol
2018;175:168–80.

19. Swamidass SJ, Lu ZY, Agarwal P, et al. Computational
approaches to drug repurposing and pharmacology. Pac
Symp Biocomput 2014;110–3.

20. Li P, Fu Y, Wang Y. Network based approach to drug discov-
ery: a mini review. Mini-Reviews Med Chem 2015;15:687–95.

21. Park K. A review of computational drug repurposing. Transl
Clin Pharmacol 2019;27:59–63.

22. Delavan B, Roberts R, Huang R, et al. Computational drug
repositioning for rare diseases in the era of precision
medicine. Drug Discov Today 2018;23:382–94.

23. Li J, Zheng S, Chen B, et al. A survey of current trends in com-
putational drug repositioning. Brief Bioinform 2015;17:2–12.

24. Xue H, Li J, Xie H, et al. Review of drug repositioning
approaches and resources. Int J Biol Sci 2018;14:1232–44.

25. March-Vila E, Pinzi L, Sturm N, et al. On the integration of
in silico drug design methods for drug repurposing. Front
Pharmacol 2017;8:298.

26. Liu C, Ma Y, Zhao J, et al. Computational network biology:
data, models, and applications. Phys Rep 2020;846:1–66.

27. Rubinov M, Sporns O. Complex network measures of
brain connectivity: uses and interpretations. Neuroimage
2010;52:1059–69.

28. Csermely P, Korcsmáros T, Kiss HJM, et al. Structure and
dynamics of molecular networks: a novel paradigm of
drug discovery: a comprehensive review. Pharmacol Ther
2013;138:333–408.

29. Pavlopoulos GA, Secrier M, Moschopoulos CN, et al. Using
graph theory to analyze biological networks. Bio Data Min
2011;4:10.

30. Ingalhalikar M, Smith AR, Bloy L, et al. Identifying sub-
populations via unsupervised cluster analysis on multi-
edge similarity graphs BT-medical image computing and
computer-assisted intervention–MICCAI. 2012; 254–61.

31. Percha B, Altman RB. A global network of biomedical rela-
tionships derived from text. Bioinformatics 2018;34:2614–24.

32. Nicholson DN, Himmelstein DS, Greene CS. Expanding a
database-derived biomedical knowledge graph via multi-
relation extraction from biomedical abstracts. bioRxiv
2020;730085.

33. Würth R, Thellung S, Bajetto A, et al. Drug-repositioning
opportunities for cancer therapy: novel molecular targets
for known compounds. Drug Discov Today 2016;21:190–9.

34. Vargesson N. Thalidomide-induced teratogenesis: his-
tory and mechanisms. Birth Defects Res C Embryo Today
2015;105:140–56.

35. Ferguson LB, Harris RA, Mayfield RD. From gene networks
to drugs: systems pharmacology approaches for AUD. Psy-
chopharmacology (Berl) 2018;235:1635–62.

36. Gramatica R, Di Matteo T, Giorgetti S, et al. Graph theory
enables drug repurposing–how a mathematical model can
drive the discovery of hidden mechanisms of action. PLoS
One 2014;9:e84912.

37. Donner Y, Kazmierczak S, Fortney K. Drug repurposing
using deep embeddings of gene expression profiles. Mol
Pharm 2018;15:4314–25.

38. Tan SK, Jermakowicz A, Mookhtiar AK, et al. Drug reposi-
tioning in glioblastoma: a pathway perspective. Front Phar-
macol 2018;9:218.

39. Li YY, Jones SJM. Drug repositioning for personalized
medicine. Genome Med 2012;4(3):27.



12 Badkas et al.

40. Tang J, Aittokallio T. Network pharmacology strategies
toward multi-target anticancer therapies: from compu-
tational models to experimental design principles. Curr
Pharm Des 2014;20:23–36.

41. Zhang P, Wang F, Hu J. Towards drug repositioning: a
unified computational framework for integrating multiple
aspects of drug similarity and disease similarity. AMIA
Annu Symp Proc 2014;2014:1258–67.

42. Sanseau P, Koehler J. Editorial: computational methods for
drug repurposing. Brief Bioinform 2011;12:301–2.

43. Iorio F, Tagliaferri R, Di Bernardo D. Identifying network of
drug mode of action by gene expression profiling. J Comput
Biol 2009;16:241–51.

44. Iorio F, Bosotti R, Scacheri E, et al. Discovery of drug
mode of action and drug repositioning from transcriptional
responses. Proc Natl Acad Sci USA 2010;107:14621–6.

45. Carrella D, Napolitano F, Rispoli R, et al. Mantra 2.0: an
online collaborative resource for drug mode of action
and repurposing by network analysis. Bioinformatics
2014;30:1787–8.

46. Abdolhosseini F, Azarkhalili B, Maazallahi A, et al. Cell
identity codes: understanding cell identity from gene
expression profiles using deep neural networks. Sci Rep
2019;9:2342.

47. Filzen TM, Kutchukian PS, Hermes JD, et al. Represent-
ing high throughput expression profiles via perturba-
tion barcodes reveals compound targets. PLoS Comput Biol
2017;13:e1005335.

48. Donner Y, Kazmierczak S, Fortney K. Drug repurposing
using deep embeddings of gene expression profiles. Mol
Pharm 2018;15:4314–25.

49. Cho H, Berger B, Peng J. Compact integration of multi-
network topology for functional analysis of genes. Cell Syst
2016;3:540–8.e5.

50. Taroni JN, Grayson PC, Hu Q, et al. MultiPLIER: a
transfer learning framework for transcriptomics reveals
systemic features of rare disease. Cell Syst 2019;8:
380–94.e4.

51. Wang S, Huang E, Cairns J, et al. Identification of path-
ways associated with chemosensitivity through network
embedding. PLoS Comput Biol 2019;15:e1006864.

52. Henaff M, Bruna J, LeCun Y. Deep convolutional networks
on graph-structured data. ArXiv:1506.05163v1 [cs.LG] 2015;
abs/1506.0.

53. Sosa DN, Derry A, Guo M, et al. A literature-based knowl-
edge graph embedding method for identifying drug repur-
posing opportunities in rare diseases. Pac Symp Biocomput
2020;25:463–74.

54. Perozzi B, Al-Rfou R, Skiena S. Deepwalk: online learning of
social representations. In: Proc. 20th ACM SIGKDD Int Conf
Knowl Discov data Min. 2014; pp. 701–10.

55. Zong N, Kim H, Ngo V, et al. Deep mining heterogeneous
networks of biomedical linked data to predict novel drug–
target associations. Bioinformatics 2017;33:2337–44.

56. Chen Z, Wang X, Gao P, et al. Predicting disease related
microRNA based on similarity and topology. Cells.
2019;8(11):1405.

57. Zitnik M, Agrawal M, Leskovec J. Modeling polypharmacy
side effects with graph convolutional networks. Bioinfor-
matics 2018;34:i457–66.

58. Feng Y-H, Zhang S-W, Shi J-Y. DPDDI: a deep predic-
tor for drug-drug interactions. BMC Bioinformatics 2020;21:
419.

59. Xiao Z, Deng Y. Graph embedding-based novel protein
interaction prediction via higher-order graph convolutional
network. PLoS One 2020;15:e0238915.

60. Eslami Manoochehri H, Nourani M. Drug-target interac-
tion prediction using semi-bipartite graph model and deep
learning. BMC Bioinformatics 2020;21:248.

61. Fan K, Zhang Y. Pseudo2GO: a graph-based deep learning
method for pseudogene function prediction by borrowing
information from coding genes. Front Genet 2020;11:807.

62. Hu JX, Thomas CE, Brunak S. Network biology con-
cepts in complex disease comorbidities. Nat Rev Genet
2016;17:615–29.

63. Ashtiani M, Salehzadeh-Yazdi A, Razaghi-Moghadam
Z, et al. A systematic survey of centrality measures
for protein-protein interaction networks. BMC Syst Biol
2018;12:80.

64. Pournoor E, Elmi N, Masoudi-Sobhanzadeh Y, et al. Dis-
ease global behavior: a systematic study of the human
interactome network reveals conserved topological fea-
tures among categories of diseases. Informatics Med Unlocked
2019;17:100249.

65. Piraveenan M, Wimalawarne K, Kasthurirathn D. Centrality
and composition of four-node motifs in metabolic net-
works. Procedia Comput Sci 2013;18:409–18.

66. Ryaboshapkina M, Hammar M. Tissue-specific genes as
an underutilized resource in drug discovery. Sci Rep
2019;9:7233.

67. Zhang M, Zhu C, Jacomy A, et al. The orphan disease
networks. Am J Hum Genet 2011;88:755–66.

68. de Chassey B, Meyniel-Schicklin L, Aublin-Gex A, et al.
New horizons for antiviral drug discovery from virus–host
protein interaction networks. Curr Opin Virol 2012;2:606–13.

69. Mora A, Donaldson IM. Effects of protein interaction data
integration, representation and reliability on the use of
network properties for drug target prediction. BMC Bioinfor-
matics 2012;13:294.

70. Da Silva Lopes TJ, Shoemaker J, Matsuoka Y, et al. Identify-
ing problematic drugs based on the characteristics of their
targets. Front Pharmacol 2015;6:186.

71. Sun J, Huang L-C, Xu H, et al. Network-assisted pre-
diction of potential drugs for addiction. Biomed Res Int
2014;2014:258784.

72. Boccaletti S, Latora V, Moreno Y, et al. Complex networks:
structure and dynamics. Phys. Rep. 2006;424:175–308.

73. Newman MEJ. A measure of betweenness centrality based
on random walks. Soc. Networks 2005;27:39–54.

74. Lohmann G, Margulies DS, Horstmann A, et al. Eigenvector
centrality mapping for analyzing connectivity patterns in
fMRI data of the human brain. PLoS One 2010;5:e10232.

75. Liu C, Ma Y, Zhao J, et al. Computational network biology:
data, models, and applications. Phys. Rep. 2020;846:1–66.

76. Udrescu L, Bogdan P, Chiş A, et al. Uncovering new drug
properties in target-based drug-drug similarity networks.
Pharmaceutics 2020, 12(9), 879.

77. Udrescu L, Sbârcea L, Topîrceanu A, et al. Clustering drug-
drug interaction networks with energy model layouts:
community analysis and drug repurposing. Sci Rep 2016;6:
32745.

78. Guney E, Menche J, Vidal M, et al. Network-based in silico
drug efficacy screening. Nat Commun 2016;7:10331.

79. Cheng F, Desai RJ, Handy DE, et al. Network-based approach
to prediction and population-based validation of in silico
drug repurposing. Nat Commun 2018;9:2691.



Topological network measures for drug repositioning 13

80. Guney E. Investigating side effect modules in the interac-
tome and their use in drug adverse effect discovery. Springer
Proc Complex 2017;239–50.

81. Zhou Y, Hou Y, Shen J, et al. Network-based drug repur-
posing for novel coronavirus 2019-nCoV/SARS-CoV-2. Cell
Discov 2020;6:14.

82. Vitali F, Cohen LD, Demartini A, et al. A network-based
data integration approach to support drug repurposing and
multi-target therapies in triple negative breast cancer. PLoS
One 2016;11:e0162407.

83. Jadamba E, Shin M. A systematic framework for drug
repositioning from integrated omics and drug pheno-
type profiles using pathway-drug network. Biomed Res Int
2016;2016:7147039.

84. Bourdakou MM, Spyrou GM. Informed walks: whispering
hints to gene hunters inside networks’ jungle. BMC Syst Biol
2017;11:97.

85. Huang C-H, Ciou J-S, Chen S-T, et al. Identify potential drugs
for cardiovascular diseases caused by stress-induced genes
in vascular smooth muscle cells. Peer J 2016;4:e2478.

86. Mortezaei Z, Cazier J-B, Mehrabi AA, et al. Novel putative
drugs and key initiating genes for neurodegenerative dis-
ease determined using network-based genetic integrative
analysis. J Cell Biochem 2019;120:5459–71.

87. Gaspar HA, Breen G. Drug enrichment and discovery from
schizophrenia genome-wide association results: an analy-
sis and visualisation approach. Sci Rep 2017;7:12460.

88. Siavelis JC, Bourdakou MM, Athanasiadis EI, et al. Bioin-
formatics methods in drug repurposing for Alzheimer’s
disease. Brief Bioinform 2015;17:322–35.

89. McGarry K, Graham Y, McDonald S, et al. RESKO: reposi-
tioning drugs by using side effects and knowledge from
ontologies. Knowledge-Based Syst 2018;160:34–48.

90. Lv Y, Ding Y, Song M, et al. Topology-driven trend analysis
for drug discovery. J Informet 2018;12:893–905.

91. Manczinger M, Bodnár VÁ, Papp BT, et al. Drug repurpos-
ing by simulating flow through protein–protein interaction
networks. Clin Pharmacol Ther 2018;103:511–20.

92. Borba JVB, Silva AC, Ramos PIP, et al. Unveiling the kinomes
of Leishmania infantum and L. braziliensis empowers the
discovery of new kinase targets and Antileishmanial com-
pounds. Comput. Struct. Biotechnol J 2019;17:352–61.

93. Han H-W, Hahn S, Jeong HY, et al. LINCS L1000 dataset-
based repositioning of CGP-60474 as a highly potent anti-
endotoxemic agent. Sci Rep 2018;8:14969.

94. Nam Y, Kim M, Chang H-S, et al. Drug repurposing with
network reinforcement. BMC Bioinformatics 2019;20:383.

95. Kitano H. A robustness-based approach to systems-
oriented drug design. Nat Rev Drug Discov 2007;6:202–10.

96. Szklarczyk D, Morris JH, Cook H, et al. The STRING
database in 2017: quality-controlled protein–protein asso-

ciation networks, made broadly accessible. Nucleic Acids Res
2016;45:D362–8.

97. Costenbader E, Valente TW. The stability of central-
ity measures when networks are sampled. Soc Networks
2003;25:283–307.

98. Borgatti SP, Carley KM, Krackhardt D. On the robustness of
centrality measures under conditions of imperfect data. Soc
Networks 2006;28:124–36.

99. Smith JA, Moody J. Structural effects of network sam-
pling coverage I: nodes missing at random. Soc Networks
2013;35:652–68.

100. Naujokaitis-Lewis IR, Rico Y, Lovell J, et al. Implications of
incomplete networks on estimation of landscape genetic
connectivity. Conserv Genet 2013;14:287–98.

101. Wang P, Lü J, Yu X. Identification of important nodes in
directed biological networks: a network motif approach.
PLoS One 2014;9:e106132.

102. Yin N, Ma W, Pei J, et al. Synergistic and antagonistic
drug combinations depend on network topology. PLoS One
2014;9:e93960.

103. Oldham S, Fulcher B, Parkes L, et al. Consistency and differ-
ences between centrality measures across distinct classes
of networks. PLoS One 2019;14:e0220061.

104. Segarra S, Ribeiro A. Stability and continuity of central-
ity measures in weighted graphs. IEEE Trans Signal Process
2016;64:543–55.

105. Salavaty A, Ramialison M, Currie PD. IHS: an integrative
method for the identification of network hubs. bioRxiv
2020.02.17.953430 (Preprint).

106. Bringmann LF, Elmer T, Epskamp S, et al. What do centrality
measures measure in psychological networks? J Abnorm
Psychol 2019;128:892.

107. Ramadan E, Alinsaif S, Hassan MR. Network topology mea-
sures for identifying disease-gene association in breast
cancer. BMC Bioinformatics 2016;17:274.

108. Estrada E. Protein bipartivity and essentiality in the
yeast protein−protein interaction network. J Proteome Res
2006;5:2177–84.

109. Nanda S, Kotz D. Localized bridging centrality for dis-
tributed network analysis. In: Proc. 17th Int. Conf. Comput.
Commun. Networks 2008; 2008; pp. 1–6

110. Jalili M, Salehzadeh-Yazdi A, Asgari Y, et al. CentiServer:
a comprehensive resource, web-based application and R
package for centrality analysis. PLoS One 2015;10:e0143111.

111. Dudley JT, Sirota M, Shenoy M, et al. Computational reposi-
tioning of the anticonvulsant topiramate for inflammatory
bowel disease. Sci Transl Med 2011;3:96ra76.

112. Deftereos S. Is a single type of data sufficient for accu-
rate computational drug repositioning? Sci Transl Med
2011. Letter to the editor, https://stm.sciencemag.org/conte
nt/3/96/96ra76/tab-e-letters.

https://stm.sciencemag.org/content/3/96/96ra76/tab-e-letters
https://stm.sciencemag.org/content/3/96/96ra76/tab-e-letters

	Topological network measures for drug repositioning
	Introduction
	Overview: networks in brief, and networks for drug repositioning

	How are network/centrality measures applied for drug repositioning
	Considerations
	Accuracy of computational predictions depends heavily on the underlying data
	Building networks-different strategies, different outcomes
	Integrating different approaches for network building in view of data-availability
	Exploring other network measures---opportunities and risks
	Caveats: limitations, experimental design biases and on the importance of definitions

	Perspective/conclusions
	Key Points



