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Targeted delivery by either systemic or local targeting of therapeutics to the bone is an
attractive treatment for various bone metabolism diseases such as osteoporosis,
osteoarthritis, osteosarcoma, osteomyelitis, etc. To overcome the limitations of direct
drug delivery, the combination of bone-targeted agents with nanotechnology has the
opportunity to provide a more effective therapeutic approach, where engineered
nanoparticles cause the drug to accumulate in the bone, thereby improving efficacy
and minimizing side effects. Here, we summarize the current advances in systemic or local
bone-targeting approaches and nanosystem applications in bone diseases, which may
provide new insights into nanocarrier-delivered drugs for the targeted treatment of bone
diseases. We envision that novel drug delivery carriers developed based on
nanotechnology will be a potential vehicle for the treatment of currently incurable bone
diseases and are expected to be translated into clinical applications.
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1 INTRODUCTION

Bone is one of the essential organs of the human body, which is composed of 60% inorganic minerals
and 30% organic matrix, as well as 10% cells and blood vessels ; the inorganic minerals are generally
known as hydroxyapatite (HA) (Ca10(PO4)6(OH)2), while the organic matrix includes collagens,
proteoglycans, and lipids (Shea and Miller, 2005; Chen et al., 2022). The skeleton performs many
functions in the body; one is that it supports the body structure, while the other is that it gives
protection to the organs inside the structure and also acts as the storage of minerals and involves in
the production of blood (Florencio-Silva et al., 2015). The highly specified dynamic tissue is
constantly being metabolized and remodeled throughout life to maintain a healthy skeletal
structure for these functions. Bone metabolism involves multiple basic bone cells that act as key
regulators, including osteocytes, osteoblasts, and osteoclasts, which either on their own or in
interaction keep the balance between bone catabolism and anabolism (O’Brien et al., 2013; Gao
et al., 2021). It begins with osteocytes stimulated by mechanosensory stimulation to initiate bone
remodeling, recruiting osteoclasts to the old or damaged bone surface which promote bone
resorption (the dominant event in the second phase), the mesenchymal stem cells and bone
progenitor cells are recruited to the site at the same time, followed by MSCs differentiating into
osteoblasts in the third phase to mediate the bone formation for a sustained time, and finally end with
the mineralization of the organic matrix called osteoid to form new bones (Crockett et al., 2011).
When cells or cytokines in any of these four phases are altered, it may result in bone metabolism
diseases (Rodan and Martin, 2000; Li et al., 2022).
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Common bone diseases include osteoporosis (OP), Paget’s
disease, osteoarthritis (OA), osteosarcoma (OS), and
osteomyelitis (Xue X. et al., 2021). These diseases are a public
health problem that cannot be ignored as it negatively affects the
regular functions of the skeleton, not only causing great suffering
to the patient which limits them from living a normal life but also
putting an enormous burden on the health care system (Harvey
et al., 2010; Kansara et al., 2014; Fang et al., 2021). With great
progress in bone biology research, there are currently several
different kinds of drugs available for therapeutic interventions,
but it is difficult to release the medicine into the tissue after an
oral or intravenous injection and most of it will be excreted from
the body before reaching the bone because of the dense and
occluded characteristics of the pathologic skeletal tissues, which
usually require higher or more frequent drug doses to ensure the
therapeutic effect (Hirabayashi and Fujisaki, 2003; Stepensky
et al., 2003). However, it is likely that higher drug
concentrations may also have toxic effects on other organs
and cause a series of adverse reactions (Khosla and Hofbauer,
2017). Therefore, the focus of the present research is to develop
well-targeted, hyperpermeable, sustained release, and less-toxic
bone-targeted drug delivery systems (Cheng et al., 2017).

In the past decades, for bone-targeting drug delivery,
researchers have proposed to use various nanomaterials as
carriers, such as polymeric nanoparticles, liposomes, micelles,
vesicles, dendritic macromolecules, and scaffolds (Shuai et al.,
2020; Cai et al., 2021; Zou et al., 2021; Liu et al., 2022b).
Nanomaterials usually have unique structures with adjustable
size, shape, and surface properties that have a crucial impact on
drug loading and release, cellular uptake, and blood circulation
metabolism, which have displayed the benefits of high loading
capacity, excellent biocompatibility, and ease of various surface
modifications for use in drug carriers (Singh et al., 2019). For
example, the broadly studied inorganic material mesoporous
silica nanoparticles (MSNs) have shown great applicational
advantages in antitumor therapy with good stability, high drug
loading, and high degree of customization for applicability (Baek
et al., 2015). The most common strategy is to use the unique
hydroxyapatite component of the bone, the pharmacokinetic
profile can be significantly enhanced and potentiate the
skeletal deposition of the drug by combining bone affinities
with therapeutic agents (Raina et al., 2020). Since 1986, when
the concept of “bone targeting” was put forward, bone targeting
research has advanced considerably (Pierce and Waite, 1987). In
1999, there was a study that demonstrated the unique properties
of bisphosphonate drugs for targeting organ and binding to the
bonematrix (Porras et al., 1999). In the meantime, the application
of nanotechnology for drug delivery can not only improve the
drug loading capacity, but also the stability, enable a sustained
and controlled release of drugs, prolong the retention time of
drugs in the body, and reduce the toxicity of drugs (Choi and
Kim, 2007). As mentioned previously, these nanotechnology-
based bone-targeting drug delivery strategies have shown great
potential for bone metabolic diseases.

In this review, we will summarize the bone-targeting
approaches and specific applications for therapeutic bone
diseases. First, we introduce the bone-targeting strategies,

which are essential for constructing bone-targeting
nanomaterials, we then conclude the applications of bone-
targeting nanomedicines in bone metabolic diseases, and make
a discussion of these delivery strategies, and finally, we propose a
prospect for the research directions and application prospects of
nanomedicines for bone-related diseases in the future.

2 BONE-TARGETED STRATEGIES

There are two main types of bone-targeting strategies commonly
used today, which we classify as systemic targeting and local
targeting (Figure 1). Systemic targeting is often achieved through
tail vein injection of a drug delivery system, where the target
molecule binds to the hydroxyapatite in the bone and delivers the
drug to the bone for deposition to the lesion (Wang et al., 2005).
Bone-seeking moieties used in this method may include
bisphosphonates, tetracyclines, acidic oligopeptides, and
aptamers (Table 1), which have been validated and developed
in numerous studies and are sufficient to treat most diseases
including bone-related diseases (Perrin, 1965; Fujisawa et al.,
1996; Nimjee et al., 2005; Ossipov, 2015). However, bone diseases
are complex and diverse, and some of them may not be suitable
for targeted HA therapeutic strategies (Kargozar et al., 2020).
With the proposed concept of “microenvironment”, the focus on
targeted and sustained therapeutic agents has gradually shifted to
stimulate drug release in recent decades (Mura et al., 2013; Baek
et al., 2015). To accommodate weak acidity, abnormal enzyme
and redox levels, and localized heat and swelling in the
pathologically altered bone microenvironment, more precise
and sensitive response components are needed to achieve on-
demand, targeted drug release, thereby minimizing the possibility
of an abrupt or premature drug release and reducing the
likelihood of adverse effects (Lavrador et al., 2018; Hopkins
and Qin, 2020; Zhang et al., 2022). Scientists have developed
some novel local targeting systems over the past years, i.e.
stimulus-responsive drug delivery systems (Table 2). The drug
will be released at the target site only when stimulated so that it
enters the bone at an effective concentration (Xiong et al., 2019b).
To a large extent, the development of smart nanocarriers
responsive to bone microenvironment stimuli will accelerate
the progress of bone disease treatment in the future.

2.1 Systemic Bone-Targeted Strategies
2.1.1 Bisphosphonate
Bisphosphonates (BPs) are a class of compounds that are broad
and efficiently used in the treatment of bone metabolism-related
diseases, as they inhibit osteoclast differentiation and decrease
bone resorption (Coxon et al., 2006). The function of BPs largely
depends on the backbone structure of the two terminal phosphate
groups bound to the central carbon atom (P-C-P), which can
chelate with Ca2+ through electrostatic interactions and confers a
binding affinity to HA (Russell, 2007). Two covalent side chains,
R1 and R2, can be modified such that it may affect the affinity and
pharmacological activity of BPs, for example, N–BPs obtained by
nitrogen modification of the R2 side chain (e.g., alendronate,
zoledronate, ibandronate, etc.) show higher bone affinity
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compared with non-nitrogenous BPs, while non-nitrogenous BPs
will metabolize to ATP analogs that are cytotoxic and cause
osteoclast apoptosis, while N–BPs inhibit the bone resorption

function by reducing osteoclast activity, but they both result in
slowing bone loss in the end (Lin, 1996; Russell, 2007; Ebetino
et al., 2011). Moreover, the P-C-P chemical structure makes

FIGURE 1 | Schematic diagram of the molecules and groups used to modify the bone-targeted nanoparticle drug delivery system. Created with BioRender.com.

TABLE 1 | Summary of systemic bone-targeting moieties.

Agents Targeting site Limitations References

Bisphosphonates HA Adverse effects such as osteonecrosis of the jaw, atrial fibrillation, and
gastrointestinal ulceration; Long-term deposition in the skeletal tissue

Watts and Diab,
(2010)
McClung et al. (2013)

Tetracyclines HA Low affinity for pathological skeletal sites with severe bone loss; Tooth staining,
decreased tooth hardness, and damage to tooth enamel

Tam and Anderson,
(1980)
Peterson, (1984)

Oligopeptides HA Low affinity to the target site relatively leads to the possibility of off-target;
tendency to aggregate; and requires special storage conditions to maintain
stability

Sekido et al. (2001)
Cheng et al. (2017)

Aptamers、signaling
molecules

Cells (or cell surface receptors)/
signaling pathways

Poor in vivo stability; immunogenic; heterogeneity may exist at different sites Ye et al. (2012)
Wang et al. (2021)

TABLE 2 | Summary of stimulus-responsive strategies.

Stimulus Stimulire-sponsive linkages/groups Limitations References

pH Hydrazone, amide, acetal ketone, carboxylic acid, sulfonic acid,
amino, pyridine, imidazole

Lack of toxicity data; Low mechanical strength; the lesion location
may be similar to the surrounding normal tissue

Pang et al.
(2016)

Light Azobenzene, spiro-pyran, diaryl ethylene, triphenylmethane,
azidonaphthoquinone, cinnamic acid ester, coumarin

May cause tissue temperature to rise and damage the tissue; safety
and/or biodegradability require further verification

Dvir et al.
(2010)

Redox Disulfide bond (S-S), diselenide bond (Se-Se) Sensitivity is influenced by the ROS or GSH concentrations at
different sites

Liu et al. (2020)
Ren et al.
(2021)

Enzyme
Phospholipase, oxidoreductase, protease, glycosidase, lipase Possible hydrolysis; Not clear whether it causes side effects Chen et al.

(2021)
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bisphosphonates resistant to chemical and enzymatic hydrolyses
and can be deposited in the bone for the long term (which also
depends on the patient’s bone conversion rate and renal function)
(Russell et al., 2008). Studies have shown that in the treatment of
BPs, some of the drugs undergo a process of binding to the bone
and then releasing and re-binding to the bone. However, the
ability of it to resist bone resorption does not improve with time
(Watts and Diab, 2010). Although bisphosphonates have been
used in clinical treatments for many years, BPs still have adverse
effects such as osteonecrosis of the jaw, atrial fibrillation,
gastrointestinal ulceration, etc (McClung et al., 2013).

Moreover, with the direct use of BPs as therapeutic agents, one
can selectively deliver drugs to the bone by combining them with
nanoparticle drug delivery systems. Previous studies have
demonstrated that nanoparticles composed of alendronate
(Aln) as a targeting agent, co-modified with the hydrophilic
component of poly (oxyethylene) (PEG) to the surface of poly
(lactic-co-glycolic acid) (PLGA), an FDA-approved and
commonly used drug delivery system, had excellent and
specific adsorption to HA, and the NPs can also be loaded
with estrogen as a therapeutic for osteoporosis, which avoids
estrogen acting on tissues other than the bone that may cause side
effects like intrauterine hemorrhage or even endometrial and
breast cancers (Choi and Kim, 2007). Subsequent studies have
also performed hemocompatibility and cytotoxicity studies on
these PLGA–ALE NPs, and the results confirm that NPs may be
considered suitable for intravenous administration (Cenni et al.,
2008), given that nanodiamonds (NDs) have an excellent alkaline
phosphatase (ALP) activity and can enhance the proliferation and
differentiation of osteoblasts. Ryu et al. modified NDs with oleic
acid to obtain nanoparticles with good dispersion properties, and
then conjugated them with alendronate through carboxyl groups
on the surface of NDs to form Aln-NDs. Compared with the
unmodified NDs, the Aln-NDs showed preferential affinity for
osteoblasts, and the ALP activity was 2.2 folds higher than that of
the Aln group and 1.6 folds higher than that of the NDs group
after 7 days. The results of the in vivo experiments showed that
nanoparticles are highly aggregated in bone tissue and can be
used as a bone-targeted drug carrier for osteoporosis treatment,
which opens the door for the research of nanomaterials for
osteoporosis treatment (Ryu et al., 2016). Enhancing drug
half-life and reducing the possibility of off-targeting are
essential objectives in the development of bone-targeted
nanosystems, Hoque et al. modified hyaluronic acid
methacrylate (HA-MA) by introducing Aln molecules via
coupling reaction, and the obtained nanocarriers were loaded
with adenosine molecules by dialysis. In vivo imaging system
(IVIS) results showed that there was higher aggregation in bone
tissue after systemic administration of Aln-ND, and it had a
therapeutic effect in promoting bone formation and delaying
bone loss in an ovariectomized model of osteoporotic mice
(Hoque et al., 2021).

2.1.2 Tetracycline
Tetracycline, discovered in the 1940s, is a broad-spectrum
antibiotic drug (Kunin, 1968). Tetracycline has the effect of
inhibiting bacterial growth at high concentrations and has

been used extensively in prevention and treatment of
infections in humans and animals (Nguyen et al., 2014). In
1957, one study noticed that tetracycline showed the ability to
bind rapidly and specifically to the bone for a considerable period
after administration, it could be deposited in the bone tissue and
incorporated into the new bone (Milch et al., 1957). Later,
tetracycline was developed as a target labeling vehicle due to
its fluorescence under UV light (Tam and Anderson, 1980). The
osteoaffinity of tetracycline depends on whether it can be
complexed with hydroxyapatite in the bone. Spectroscopic
experimental data indicated that the phenolic ß-diketone
group is attached to carbons 10, 11, and 12 playing a major
role in forming complexes with calcium and other metal ions
(Perrin, 1965; Shea and Miller, 2005). Due to the high affinity of
tetracycline for HA, it should be avoided in pregnant or lactating
women, and developing children, because it might cause
permanent tooth staining and may lead to decreased tooth
hardness and damage to tooth enamel (Sánchez et al., 2004).

Neale et al. synthesized a novel bone-targeting medicine which
was modeled after the tricarbonyl methane grouping of ring A of
tetracycline, then conjugated with estradiol resulting in a bone-
targeted estrogen (BTE2-A1) that showed an increase in its ability
to bind to HA. The pharmacological and toxic effects of the
osteotropic estradiol delivery system were evaluated in the OVX
rat model and showed positive results (Neale et al., 2009).
Another attempt to synthesis the amphiphilic copolymer
PEG–PLGA micelles modified with TC to encapsulate
hydrophobic atorvastatin (ATO) for the targeted treatment of
osteoporosis. Mice femur showed strong fluorescence after a 24 h
intravenous injection of fluorescent probe Dir-loaded micelles,
and after 12 weeks of treatment, the femur BMD (bone mineral
density), a critical parameter for evaluating fracture risk in OVX
rat receiving TC-PEG-PLGA/ATO micelles, exhibited significant
therapeutic efficacy (Figure 2A) (Xie et al., 2017). Fan’s team
combined the traditional bone-affinity agent tetracycline with a
novel concept of smart response to develop a tetracycline surface-
functionalized nanoliposome for encapsulating the alkaline
compound sodium bicarbonate (NaHCO3). The introduction
of tetracycline-enriched NaHCO3 on the bone surface in large
amounts counteracted the acidification of the bone
microenvironment caused by osteoclasts with an acid-base
neutralization strategy, thereby postponing osteoporosis (Lin
et al., 2020).

2.1.3 Oligopeptides
Given that hydroxyapatite, which is not present in soft tissues,
exists as a specific component in bones and teeth, targeting HA
may be a promising method for selective bone-targeted drug
delivery (Oliveira et al., 2017; Rotman et al., 2018). Several results
demonstrate that non-collagenous proteins in the bone matrix
(bone sialoprotein and osteopontin, etc.) have affinity to
hydroxyapatite and affect osteogenic mineralization. These
proteins have repetitive acidic amino acid sequences of
L-aspartic acid (L-Asp) and L-glutamic acid (L-Glu) (Oldberg
et al., 1986; Butler, 1989; Rotman et al., 2018). Previous research
has established that the affinity of the peptides for HA will be
increased when there are repeated Asp or Glu units in the amino
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acid sequence. For instance, Kasugai et al. designed a conjugated
(Asp)6 to fluorescein isothiocyanate (FITC). FITC was unable to
bind to HA, however, fluorescence was not observed in any
tissues other than bones and teeth at 24 h after systemic
administration of (Asp)6-FITC into rats (Kasugai et al., 2000).
In another work, a novel pro-drug constructed by estradiol

conjugated with L-Asp-hexapeptide showed a potent anti-
osteoporotic therapeutic effect in OVX mice (Yokogawa et al.,
2001).

Liposomes are the only drug delivery system currently
approved by the FDA for clinical application. In 2012,
researchers designed an osteogenic siRNA delivery system to

FIGURE 2 | Systemic targeting strategies. (A) Tetracyclines bind to the bone. (i) Synthesis of TC-PEG-PLGA. (ii) Modification of TC mediates the
enrichment of drug-loaded micelles in the femur (Xie et al., 2017), Copyright 2017, TAYLOR & FRANCIS LTD. (B) The preparation procedure of the drug delivery
system (Ap-SAL-NP) by using CD133 as an aptamer and conjugating with salinomycin-loaded PEGylated PLGA nanoparticles (Ni et al., 2015), Copyright 2015,
Dove Medical Press.
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specifically target bone-formation surfaces, which is (AspSerSer)6
linked with a DOTAP-based cationic liposome. The resultant
liposomes were bound to the bone-forming surface more than to
the bone-resorbing surface. Targeted delivery resulted in greater
enrichment of siRNA in osteoblasts, which promoted bone
formation in OVX rats by intervening in bone anabolism
(Zhang et al., 2012). Alternatively, a five-amino acid motif
oligopeptide Ser-Asp-Ser-Ser-Asp (SDSSD) was obtained via
phage display screening technique, which was directly and
specifically targeted to osteoblasts by binding to periostin, and
then is conjugated to polyurethane (PU) surfaces to obtain a
nanomicellar vector. The SDSSD-PU complex was loaded with
siRNA/microRNA by electrostatic interaction and showed a
superior bone targeting delivery ability in both in vivo and
in vitro experiments (Sun et al., 2016).

Together, these studies indicate that modifying
nanoparticles for targeted delivery using acidic
oligopeptides as bone-seeking agents has great prospects.
Moreover, compared with peptides and other proteins,
oligopeptides have the advantages of high stability, good
tissue permeability, and low immunogenicity due to their
lower molecular weight, and compared with BPs, which have
a short half-life and can be metabolized to non-toxic
substances in vitro (Sekido et al., 2001; Cheng et al., 2017).

2.1.4 Others
There are several other molecules that can be used to target bones
apart from those mentioned previously.

Conceptually, aptamers are a class of single-stranded DNA/
RNA oligonucleotide molecules with high affinity and strong
targeting characteristics similar to antibodies (Nimjee et al.,
2005). However, unlike antibodies, aptamers are produced
through a selection process known as the Systematic Evolution
of Exponentially Enriched Ligands (SELEX) in vitro which is
chemically synthesized and hence can be specifically modified in
structure to bind to specific targets in a complementary form as
one prefers (Sefah et al., 2010). It has been widely used to
recognize various targeted sites, such as small molecules of
antibiotics, short peptides, metal ions, and organic dyes, as
well as a wide variety of proteins with complex multimeric
structures, also including cells, viruses, and bacteria (Wang
et al., 2015). Aptamers have been used for diagnosis, detection,
and targeted therapy due to their easy acquisition and great
targeting ability (Chinnappan et al., 2021). In addition, the
high stability of aptamers, their low toxicity and
immunogenicity, and their chemical modification to confer
controlled or periodic denaturation and renaturation have
expanded the flexibility of aptamer use in various biomaterials
(Ye et al., 2012). One study by Ni et al. designed a drug delivery
system (Ap-SAL-NP) for the targeted treatment of osteosarcoma
by using CD133, a cancer stem cell (CSCs) marker for
osteosarcoma, as an aptamer and conjugating with
salinomycin-loaded PEGylated PLGA nanoparticles
(Figure 2B). In vitro and in vivo demonstrate that aptamer-
modified NPs not only have a specific killing effect on CD113+

osteosarcoma cells, but also have a targeted therapeutic effect on
osteosarcoma xenograft mice (Ni et al., 2015).

Recently, a large and growing body of studies has
demonstrated that biomimetic delivery vehicles have shown
great potential for drug delivery, targeted therapies, and
bioimaging (Meyer et al., 2015; Fang et al., 2018). As naturally
derived nanoparticles, the membrane surface of exosomes
contains transmembrane and membrane-anchored proteins
that may enhance endocytosis, which facilitates the delivery of
contents in terms of drug delivery (Wu et al., 2020; Liu et al.,
2022a). The chemical composition and membrane structure of
exosomes exhibit a similar biological property to biological
surfaces and, in some cases, even have an innate targeting
ability (Jiang et al., 2022). For example, Song et al. published
an article on bone-targeting delivery via vascular endothelial cell
(EC)-derived exosomes (EC-Exos). EC-Exos loaded with a
fluorescent probe Dil was injected into mice by tail vein
injection, and a clear fluorescent signal was observed in the
skeleton after 8 h. Detection of differentially expressed proteins
in different exosomes by mass spectrometry had a higher
expression of pregnancy zone protein (PZP) in EC-Exos
relative to other exosomes of bone-associated cell origin,
which means PZP probably has a proactive effect on the bone
targeting feature of EC-Exos. In addition, EC-Exos is
biocompatible in vivo, demonstrating further use as a
nanocarrier for the delivery of different therapeutic agents to
the bone tissue (Song et al., 2019). Alternatively, we can improve
their targeting by genetically engineering modifications. Several
studies have revealed that the relationship between C-X-C motif
chemokine receptor 4 (CXCR4) to stromal cell-derived factor 1
(SDF1), and the high levels of SDF1 expression in bone marrow
have a recruiting effect on CXCR4+ hematopoietic stem cells
(HSCs) and promote bone metastasis of CXCR4+ tumor cells.
Based on the aforementioned, Hu et al. conducted a series of trials
in which they genetically engineered NIH-3T3 cells to highly
express CXCR4, and extracted CXCR4-expressing exosomes that
were hydride with liposomes bearing antagomir-188 to obtain
bone-targeting nanoparticles with the ability to modulate bone
metabolism. The hybrid NPs showed a significantly higher bone
mass reservation in OVX mice which is a prospective concept for
the treatment of age-related bone loss (Hu et al., 2021b).

2.2 Local Responsive Bone-Targeted
Strategies
2.2.1 pH Response
Among the various responsive materials, pH-sensitive materials
have generated research interest mainly owing to their relevance
to the specific endogenous stimuli (Xiong et al., 2019a). The
delicate changes in environmental and physiological pH values
have an important influence on human health. Healthy tissues
have a pH of approximately 7.4, while under pathological
conditions, most tissues show a decrease in pH, such as
inflammatory tissues (pH = 6.5) and tumor sites (pH =
6.5–7.2), and especially, the lysosomes of bone tissue cells can
even reach below 6 (Pang et al., 2016). These differences in the
microenvironment provide a pre-requisite for regional delivery or
targeted treatment with pH-responsive nanocarriers. When the
pH reaches a certain critical value, it will trigger intermolecular
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forces such as electrostatic interaction, hydrogen bonding, or
covalent bonding on the nanocarrier to release the drug (Lavanya
et al., 2020).

Celastrol (CSL) is a drug extracted from Radix Rehmanniae
and has been extensively used for OA treatment due to its potent
anti-inflammatory and antioxidant efficacy (Cui et al., 2020).
However, the drug toxicity and low solubility of CSL have limited
its clinical application. Thus, Jin et al. designed a highly soluble
pH-responsive nanomaterial medicine that used hollow
mesoporous silica nanoparticles (MSN) as nanocarriers to
carry CSL and encapped with chitosan to confer a pH-
responsive property for intra-articular injection therapy of
osteoarthritis (Figure 3). The CSL@HMSNs-Cs present a high
biocompatibility and extraordinary therapeutic efficacy (Jin et al.,
2020). In addition to the acidic environment of osteoarthritis, an
acidic microenvironment also exists in osteoporotic joint sites.
Dou et al. proposed a cerium oxide bone-targeted pH-stimulated
nanomaterial for the bone resorption void microenvironment in
response to acidification of mature osteoblasts (mOCs) (pH =
3–4). By controlling the surface Ce3+:Ce4+ ratio of the cerium
nanosystem (CNS), they were guided into the acidic extracellular
microenvironment, where the antioxidative nanoparticles were
stimulated to convert to oxidative state further increasing the
accumulation of intracellular ROS and calcium oscillations,
which decreased the viability of mOCs significantly, preserved
the anabolic capacity of preosteoclasts (pOCs), and resisted
excessive bone loss in the treatment of osteoporotic
ovariectomized mice (Dou et al., 2021).

Polymeric hydrogels are attractive tissue repair materials
(Kurian et al., 2022). Biological scaffold materials constructed
from hydrogels can interact with surrounding tissues, modulate
the activity of cells and growth factors, and induce osteogenesis
and angiogenesis (Siddiqui et al., 2021). Recently, Zhao and his
co-workers prepared a hybrid nanoparticle (CMCh-ACP) by
mixing carboxymethyl chitosan (CMCh) and amorphous
calcium phosphate (ACP) and doping glucono d-lactone
(GDL) into it by alkaline hydration. In this system, the change
of pH on the surface of the hybrid nanoparticles can trigger the
self-assembly of the hydrogel to form the scaffold, and ACP is a
biological precursor of calcium phosphate, which can induce
osteogenesis by adsorbing cells to the surface of the scaffold, and
further enhance the osteogenic effect by promoting BMP9 (Zhao
et al., 2019).

2.2.2 Photoresponse
Light is a powerful stimulus in nature as a source of energy for
living systems, has been extensively studied as an external
stimulus for intelligent responsive materials (Bansal and
Zhang, 2014). As early as 2006, Mayer and Heckel came up
with the design concept of “optical switch” (Mayer and Heckel,
2006), which made it possible to construct photoresponsive
systems by modifying various photochromic components,
including photoisomerization, e.g., azobenzene, spiropyran
(SP), and 2-diazo-1,2-naphthoquinone (DNQ), photocross-
linking/-decross-linking, e.g., coumarin and cinnamoyl,
photocleavage, e.g., coumarinyl ester, o-nitrobenzyl (ONB),

FIGURE 3 | Synthetic route of CSL@HMSNs-Cs and the molecular mechanism of the local injection for OA treatment. Firstly, sSiO2 nanocore was constructed by
the excellent Stöber method, and ethyl orthosilicate was covered on the surface by surfactant CTAB, followed by etching out the hollow structure of nanoparticles with
aqueous sodium salt solution, removing CTAB and obtained hollowMSN, and chitosan encapsulation after celastrol diffusion into nanoparticles. The acidic environment
in the arthritic joint cavity stimulated chitosan collapse, thus releasing the drug, inhibiting the NF-κB signaling pathway, reducing the expression level of inflammatory
factors, and improving the pathological manifestation of osteoarthritis (Jin et al., 2020), Copyright 2020, Springer Science and Business Media LLC.
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and near-infrared (NIR) light (Dvir et al., 2010; Hansen et al.,
2015; Zhou et al., 2018). Nanocarriers can either release cargos
directly upon light stimulation or generate intermediate reactions
that can produce intermediate signals/molecules (heat, reactive
oxygen species (ROS), gas molecules, etc.) to promote cargo
release by cascade conversion (Rapp and DeForest, 2021).
Light as a type of electromagnetic wave, when irradiated on
the photoresponsive material, is able to transfer some of its energy
to the object, and the transferred energy accordingly triggers
certain property changes such as chemical bonds, chemical
groups, conformation, and polarity of the object, thus
releasing or activating the carriers (Barhoumi et al., 2015;
Fernandez and Orozco, 2021). It is easy to see that the light-
responsive material has highly controllable characteristics of
time, space, wavelength, and density, and using it as a drug
delivery system can deliver the drug to the right location at the
right time and maintain the therapeutic state for a certain time.

As we all know, chemotherapy is one of the most common
methods to treat bone tumors, but it can also bring serious
side effects along with the treatment. While NIR light-
mediated photothermal therapy (PTT) and photodynamic
therapy (PDT) can penetrate deep into the tumor site with
almost negligible phototoxicity, which is a promising strategy
to achieve precise bone tumor treatment (Markman et al.,
2013), Tong with co-workers combined two anticancer drugs
based on a thioketal (TK) linkage to synthesize pro-drugs,
which were loaded in mesoporous silica nanoparticles
modified with biphosphate moiety and the photosensitizer
chlorin e6 (Ce6), to develop a pro-drug-loaded functional
MSN for combined photodynamic therapy (PDT) and
enhanced the chemotherapy effect for osteosarcoma. After
the nanoparticles were uptaken by tumor cells, Ce6 was
lasered to generate intracellular ROS, meanwhile, TK
linkage was disrupted and DOX/DOXY were released at
the bone tumor site sustainably to accelerate the
production of ROS, triggered ROS burst, therefore leading
to the enhancement of tumor cell inhibition and apoptosis
(Tong et al., 2020).

The functions of NIR light in penetrating tissues, warm
therapy, and targeted release can also be applied in
osteoarthritis treatment. Xue et al. used hollow mesoporous
copper sulfide nanoparticles (CuS NPs) as the core of a drug
delivery nanosystem, modified with a composite membrane of
neutrophil and erythrocyte membranes, for the delivery of
dexamethasone sodium phosphate (Dexp). The nanoparticles
were loaded with fluorescent probes, and in vivo fluorescence
imaging demonstrated that the coverage of neutrophil
membranes conferred the ability to target inflamed joints, and
the introduction of erythrocyte membranes conferred the long
retention effect of the nanoparticles. The therapeutic strategy of
drug release from D-CuS@NR NPs in response to 1,064 nm NIR
light reduced the expression of inflammatory factors in OA
mouse joints and alleviated the damage to the cartilage matrix.
The aforementioned findings suggest that this drug delivery
system may be a new platform for the treatment of OA (Xue
et al., 2022).

2.2.3 Multi-Responses
Although the aforementioned single stimulus-responsive types
can be used as a separate carrier for controlling drug release,
multi-stimulus-responsive drug vehicles are becoming a research
hotspot appearing in recent years, in order to achieve better bone-
targeting and flexibility to match the many influencing factors in
the skeleton, such as pH/MMP, pH/redox, and pH/temperature
(Han et al., 2015; Kalhapure and Renukuntla, 2018; Chen et al.,
2019).

Matrix metalloproteinases (MMP) are critical regulators of
changes in the bone and joint microenvironment (Chen et al.,
2021). Lan et al. developed a pH/enzyme-responsive nano-
micelle based on a poly (2-ethyl-2-oxazoline)-poly (ε-
caprolactone) (PPL) core that was grafted with a specific
collagen type II-targeting peptide and coupled with black hole
quencher-3 (BHQ-3) via amide reaction to target articular
cartilage and respond to metalloproteinases-13 (MMP-13).
This nanoplatform was further employed as the carrier to load
psoralidin (PSO) for protection against cartilage damage as a
target nanotherapeutic agent for osteoarthritis (Lan et al., 2020).

Due to the changes in glutathione (GSH) levels caused by
metabolic changes, we can design targeted drug systems using
high gradient levels of GSH at tumor sites. Li et al. designed
another reduction/pH dual responsive nanocarrier for
osteosarcoma therapy. The NP-PTX-DOX synthesized by self-
assembling micelles of PEGylated-PαLA copolymer mPEG-PαLA
in water, which encapsulated paclitaxel (PTX) and doxorubicin
(DOX) by electrostatic and hydrophobic interactions. The PαLA
backbone containing disulfide bonds and carboxyl groups
controls the targeted release of the drug in the reducing and
acidic microenvironment, and the drug is enriched in the
osteosarcoma tissue. The targeted nanosystem exhibits
improved OS inhibition compared to the drug-treated control
group and reduces the toxicity to normal cells due to the targeting
effect (Li et al., 2020).

3 BIOMEDICAL USES OF THE
BONE-TARGETED DRUG DELIVERY
SYSTEM
3.1 Osteoporosis
Osteoporosis (OP) is a systemic metabolic bone disease
characterized by reduced bone mass and abnormal bone tissue
microstructure, leading to increased bone fragility and fracture
susceptibility (Seeman and Delmas, 2006). Epidemiological data
show that the number of people suffering from osteoporosis in
China is on the rise with the aging of the population, which also
results in increased medical expenses (Wang et al., 2009).
According to its etiology, OP can be divided into two types:
primary and secondary, of which primary is the more common
type, including old age and post-menopause (Li et al., 2021). The
case of postmenopausal osteoporosis, which is mainly due to
estrogen deficiency, leads to bone resorption more than bone
formation, resulting in bone loss and high conversion
osteoporosis. Estrogen is frequently used to maintain bones’
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FIGURE 4 | Application of the bone-targeted nanoparticle drug delivery system in bone diseases. (A)Bone-targeted engineered exosome platform BT-Exo-siShn3
enhanced osteogenic differentiation and promoted H-type vessel formation for OP treatment (Cui et al., 2022), Copyright 2022, Elsevier BV. (B) Scheme of the synthesis
and mechanism of TMA/Sim, which provides calcium for bone structure (Tao et al., 2021), Copyright 2020, Elsevier BV. (C) Collagen-II targeting peptide and MOF-
modified MPDA NIR-responsive dual delivery system (RB@MPMW) for rapamycin-targeted cartilage delivery in OA (Xue S. et al., 2021), Copyright 2021, Elsevier
BV. (D)CaCO3 crosslinked HA nanoparticles to deliver DOX sensitivity to the acidic tumor microenvironment and release DOX for therapy of osteosarcoma (Zhang et al.,
2018a), Copyright 2018, Springer Nature.
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mineral density. However, this therapy is associated with breast
congestion and edema and, more importantly, with increased
rates of endometrial hyperplasia and breast cancer (Prestwood
et al., 1995; Black and Rosen, 2016). Therefore, to reduce the risk
of these side effects and improve treatment results, the
exploitation of bone-targeted therapies for osteoporosis is a
popular research topic today.

The application of gene therapy to bone metabolic diseases is
still not translated into clinical applications owing to the absence
of suitable targeted delivery systems to ensure the safety and
efficacy of the treatment. In 2015, Liang et al. developed the first
aptamer-functionalized liposome nanosystem, in which they
selected osteoblast-specific aptamer CH6 by cell-SELEX, and
the ligand-modified PEGylated liposome was mainly via
macropinocytosis, to achieve the targeted release of the
osteogenic Plekho1 siRNA, which promotes silencing of a
negative regulator of bone formation genes in osteoblasts and
increases bone formation, as evidenced by increased bone mass
and improved bone microarchitecture in OVX rats (Liang et al.,
2015). In addition, Cui et al. constructed an exosome-loaded
Shn3 gene siRNA delivery system BT-Exo-siShn3 as a novel OP
treatment (Figure 4A). The bone-targeting peptide was anchored
to the exosome membrane by hydrophobic interaction
modification, which conferred exosomes the ability to deliver
siRNA to osteoblasts. The Shn3 gene-silencing reduced RANKL
expression in osteoblasts and enhanced osteogenic
differentiation, while inhibiting osteoclast activity, and
prevented OVX-induced bone loss, promoted H-type vessel
formation and bone mineralization (Cui et al., 2022). The
aforementioned bone-targeting nanoparticles provide a forceful
concept for the research of delivering siRNA to treat osteoporosis.

Calcium supplements are a clinically indicated agent for the
basic therapy of osteoporosis, which can reduce bone loss and
improve bone mineralization possibly, but typically requires high
and repeated doses of administration, and the lack of targeting
leads to poor treatment outcomes. Tao et al. reported an oral bone-
targeted and OP microenvironment (water/pH) responsive carrier
for in situ calcium supplements (Figure 4B). An amorphous
calcium carbonate (ACC) platform was synthesized as the core
skeleton of the drug delivery system (TMA), modified with
tetracycline (Tc) and coated with monostearin (MS), further
loaded with simvastatin (Sim) to construct a bone-targeted drug
delivery system (TMA/Sim). Combining in situ calcium
supplementation and targeted administration of simvastatin
could deliver a promising OP therapy, which could be a
hopeful therapeutic regime possibly (Tao et al., 2021).

3.2 Osteoarthritis
Osteoarthritis (OA) is a chronic arthropathy characterized by
degenerative destruction of articular cartilage, local inflammation,
subchondral bone sclerosis, and osteophytes, commonly diagnosed
in the elderly (Hunter and Bierma-Zeinstra, 2019; Hu et al., 2021a).
It is mainly due to the imbalance between the normal degeneration
and formation of articular cartilage, extracellular matrix, and
subchondral bone caused by mechanical and biological factors
(Karsdal et al., 2014). Although a large number of clinical and
animal studies have been conducted, the pathogenesis and

progression of OA are not yet well understood. So, the basic
purpose of OA treatment is to relieve symptoms, improve
functions, and delay the process (McAlindon and Bannuru,
2018). Drug delivery in OA is a clinical challenge because of the
specific avascular, dense, and occlusive tissue structure (Bijlsma
et al., 2011). Based on the continuous development of conventional
drugs (NSAIDS, glucosamine), the use of nanoparticles to deliver
drugs for targeted therapy has contributed to a qualitative leap in
enhancing drug penetration and sustained release in OA (Brown
et al., 2019).

Osteoarthritis is often localized in specific joints, thus intra-
articular (IA) injection is a more effective way to obtain
therapeutic doses with minimal systemic side effects than
systemic administration. However, the drug may be removed
rapidly once it enters the joint, so a targeted delivery strategy can
be more effective. Zheng’s team applied mangostemonin (FMN)
as a therapeutic agent, a drug with extremely poor water solubility
and low bioavailability, and prepared cartilage-targeting
nanomicrospheres (PCFMN) by PEGylation of FMN followed
by coupling with cartilage-targeting peptide (CollBP). Compared
with FMN, PEGylation of FMN had higher drug solubility and
CollBP increased drug accumulation in the joint site. A variety of
inflammation-related factors decreased significantly after
treatment, which also ameliorated ACLT-induced cartilage
destruction, and ultimately achieved an effective OA retarding
effect (Xiong et al., 2021). Xue et al. affixed a type II collagen-
targeting peptide to a mesoporous polydopamine (MPDA) dual
drug delivery system (RB@MPMW) modified with a metal
organic backbone (MOF). After nanoparticle stimulation with
a near-infrared (NIR) laser, bilirubin (Br) was released for rapid
ROS scavenging, and rapamycin’s (Rap) release further boosted
autophagy activation and chondrocyte protection (Figure 4C).
The targeted release of both drugs at cartilage sites effectively
delayed cartilage degeneration in the ACLT rat model (Xue S.
et al., 2021).

3.3 Osteosarcoma
Osteosarcoma (OS) is a malignant bone tumor that is the most
prevalent as primary sarcoma in kids and adolescents. The
characteristics of aggressiveness, malignancy, and poor
prognosis make it a serious threat to human health (Kansara
et al., 2014). Early treatment of OS is based on amputation, which
causes physical and psychological damage to patients; with the
progress of medicine, the current treatment paradigm of OS is
preoperative neoadjuvant chemotherapy, surgical resection, and
postoperative adjuvant chemotherapy, and the 5 year survival
rate of the disease has risen from 20% to about 60% (Isakoff et al.,
2015; Gill and Gorlick, 2021). Whereas, the state of the clinical
application suggests that the problems of tumor resistance, non-
targeted drug delivery, and the high cost and side effects of
chemotherapy have not improved the efficacy in essence,
especially for patients with metastasis or recurrence (González-
Fernández et al., 2017). With the era of precision medicine, the
development of targeted drug delivery systems may be an
effective means to raise survival rates (Jurek et al., 2017).

Chen’s team has developed two nanoplatforms for the targeted
treatment of osteosarcoma. One is cisplatin (CDDP)-crosslinked
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hyaluronic acid nanogels loaded with DOX (CDDPHANG/
DOX). CDDP not only acts as an anti-cancer drug but also
serves as a crosslinking agent, which prevents premature drug
release and more accumulation in the tumor. The second is
calcium carbonate (CaCO3) crosslinked hyaluronic acid
nanoparticles to deliver DOX, and calcium crosslinking also
ensures the stability of the nanoparticles (Figure 4D). Both
nanosystems exhibit sensitivity to the acidic tumor
microenvironment, prolonged blood circulation time, and
good biocompatibility (Zhang et al., 2018a; Zhang et al., 2018b).

In another study in which bisphosphonates were used as
targeting ligands, the coupling of alendronate (ALN) with
CD44’s ligand hyaluronic acid (HA) was affixed with DSPE
PEG2K-COOH via a bioreduced disulfide bond (-SS-) to give
the functionalized lipid ALN-HA-SS-L, which was linked to
liposomes loaded with the anticancer drug DOX. In vitro
experiments verified that the responsive liposomes released the
drug after disassembled in glutathione-rich cancer cells, showing
high cytotoxicity and a rapid cellular uptake rate against human
OS MG-63 cells, and a significant growth inhibitory effect was
observed in the in situ OS mouse model with an improved
survival rate in mice (Feng et al., 2019). Overall, the assembled
dual-targeting redox-sensitive liposomes for bone and CD44
showed promising results for OS.

4 CONCLUSION AND OUTLOOK

The increasing prevalence of bone diseases has received a great deal
of attention. While conventional drug therapies can provide some
relief, a series of limitations in drug delivery and adverse effects have
also kept the research of bone diseases at bay. Finding low-toxicity,
stable, and osteotropic compounds or carriers for targeted drug
delivery is the key to the study of bone disease treatment. In recent
years, many scholars have used targeted molecules to directly affix
drugs to form pre-drugs that can specifically direct therapeutic
drugs to the bone, but because of the inconsistent stability of the
covalent bonding of pre-drugs, releasing drugs at the appropriate
time remains a problem. In the last few decades, nanomedicine has
been introduced which seems to solve this problem, mainly
depending on the multifunctionality of nanomaterials, as
nanoparticles can be loaded with drugs for bone-targeted
therapeutics through functionalized modification of bone-
targeting moieties or stimulatory response functional groups.
Bone targeted delivery enables drugs to accumulate specifically
in the diseased skeleton and target cells, improving the
pharmacokinetics of the drug and enhancing therapeutic efficacy.

The current review summarizes systemic/local bone-targeting
approaches and their application in bone metabolic diseases.
Although these strategies have shown promising outcomes in
vivo in orthopedic disease studies, it is rare that drug delivery
nanosystems modified with bone-targeting moieties have been
successfully translated into clinical applications. This is limited by
the drug loading rate of the nanosystem, storage stability, ability
to dissociate and release the drug, blood circulation, and in vivo
metabolism; all of these issues still await further study. Even
research has shown that most nanomaterials have minimal
toxicity, and only a very small number of nanomedicines have
been approved for marketing by the FDA, which suggests that we
still need to further investigate their safety in order to make them
safe for long-term use and achieve maximum clinical efficacy.
Therefore, in future research, the effects of nanoparticles on cells
need to be explored more comprehensively and systematically to
improve drug loading and release, and bone-targeting
mechanisms should also be explored further to find more
specific targeting ligands. In addition, communication and
cooperation between orthopedic surgeons and researchers
should be strengthened to design nanosystems oriented to
clinical problems.

Despite achieving clinical translation of bone-targeted
therapies is still a long way off, there is no doubt that the
development of bone-targeted drug delivery NPs is a highly
promising research and these ongoing studies will offer a basis
for further improvement of the properties and selectivity of these
systems. We look forward to more ideal targeting ligands and
carriers to be developed in the bone-targeting research efforts to
make clinical applications of bone-targeting possible.
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