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Abstract: To explore the spatiotemporal evolution of carbon sinks in Shaanxi Province, and their
impact mechanisms, this study used panel data from 107 counties (districts) in Shaanxi Province from
2000 to 2017. First, we conducted spatial distribution directional analysis and exploratory spatial
data analysis (ESDA). Then, we constructed a geographic spatial weight matrix and used the spatial
panel Durbin model to analyze the driving factors of carbon sink changes in Shaanxi Province, from
the perspective of spatial effects. The results showed that: (1) The temporal evolution of carbon sinks
during the study period showed an overall upward trend, but the carbon sinks of counties (districts)
differed greatly, and the center of gravity of carbon sinks, as a whole, showed the characteristics of
“south to north” migration. (2) The carbon sinks of Shaanxi Province have a significant positive global
spatial autocorrelation in geographic space. The local spatial pattern was characterized by low-value
agglomeration (low-low cluster) and high-value agglomeration (high-high cluster), supplemented by
high-value bulge (high-low outlier) and low-value collapse (low-high outlier). (3) The result of the
spatial measurement model proved that the spatial Durbin model, with dual fixed effects of time and
space, should be selected. In the model results, factors such as population, per capita gross domestic
product (GDP), local government general budget expenditure, and local government general budget
revenue all reflect strong spatial spillover effects. Accordingly, in the process of promoting “carbon
neutrality”, the government needs to comprehensively consider the existence of spatial spillover
effects between neighboring counties (districts), and strengthen the linkage-management and control
roles of counties (districts) in increasing carbon sinks.

Keywords: carbon sinks; spatiotemporal evolution; ESDA; spatial panel Durbin model; driving factors

1. Introduction

The Paris Agreement, signed at the Paris Climate Conference, set a goal of limiting
the global average temperature rise to within 2 ◦C by controlling carbon emissions [1]. The
recent summit, Cop 26, in Glasgow, also proposed a goal; to “secure global net zero by
mid-century and keep 1.5 degrees within reach” [2]. Countries are being asked to come
forward with ambitious 2030 emission reduction targets that align with reaching net zero
by the middle of the century. Additionally, countries need to accelerate the phase-out of
coal, curtail deforestation, protect and restore ecosystems, and build collaboration between
governments, businesses, and civil society to achieve these goals. Facing the problems
brought by the urgent mitigation of climate change and the upgrading of industrial struc-
ture, China has made a commitment to the world to achieve carbon neutrality by 2060,
before reaching the peak of carbon emissions [3]. In a 2021 government report, “carbon
peaking and carbon neutrality” was listed as one of the key tasks this year [4]. This means
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that China’s carbon emissions will be zeroed in 2060 [5], and the traditional energy struc-
ture will face major changes. Among them, the proportion of the fossil energy industry
will decrease, and the proportion of clean energy, such as photovoltaics and wind energy,
will increase significantly. Moreover, the country should increase the popularity of electric
vehicles and transition to the goal of zero-emission vehicles [2], as well as encourage
investment in renewable energy, promote the proportion of green energy in China, and
promote high-quality economic development.

From the perspective of many European developed countries, the time interval be-
tween China’s carbon peak and its carbon neutrality target is relatively short, which
requires us to consider increasing carbon sinks while limiting carbon emissions. However,
controlling carbon emissions and increasing carbon sinks will limit the speed of China’s
economic development [6]. Therefore, it is very necessary to explore methods of achieving
the goal of “dual carbon” at the lowest cost. The nature-based approach is currently the
most cost-effective way to increase carbon sinks, and at the same time promotes the high-
quality development of forests [7]. However, as a national policy goal, “carbon neutrality”
relies heavily on policy support and government investment. In addition, it may limit the
economic development of local and neighboring regions. Therefore, analyzing the influenc-
ing factors of carbon sinks at the county level is related to government decision-making
and the coordinated development of various regions.

Research on the impact mechanism of carbon sinks mostly focuses on the perspective
of natural science under the forestry field [8]. Based on small-scale observations, these
studies investigate the impact of forest stand structure, stand density [9], atmospheric
nitrogen deposition [10], and forest management [11,12] on carbon sink levels [13]. This
type of research mostly uses simply measures, and describes the impact of these factors on
carbon sinks in a small range; there is a possibility of reduced accuracy in a large range.
Large-scale research fields are more extensive. From a macro perspective, researchers use
the InVEST model [14,15] to investigate the relationship, and results of interaction, between
carbon sinks and climate change [16], land use change [17,18], landscape design [19], and
carbon footprint [20]. However, due to their spatial relevance and heterogeneity, existing
studies have not incorporated spatial factors into carbon sink impact mechanism research.

In view of this, this paper drew on existing research and collected panel data on the
socio-economic status and carbon sinks of 107 counties (districts) in Shaanxi Province from
2000 to 2017. We used the exploratory spatial data analysis (ESDA) method to analyze the
global and local pattern characteristics of carbon sinks, and explore the spatiotemporal
evolution trends of carbon sinks in various counties (districts) in Shaanxi Province. Then,
the spatial Durbin model was used to parametrically estimate the spatial spillover effects
of carbon sinks, and the partial differential decomposition method was used to decompose
and analyze the spatial effects of various driving factors of carbon sinks in Shaanxi Province.
This was expected to provide suggestions for increasing carbon sinks between counties
(districts) and promote the realization of the regional “carbon neutral” goal.

2. Study Area, Data and Methods
2.1. Study Area

Shaanxi Province is located in the hinterland of western China, between 105◦29′ E–
111◦15′ E, 31◦42′ N–39◦35′ N. As the Qinling Mountains on the boundary between the
north and south of China traverse the entire province, the climate between the north and
the south of Shaanxi Province is quite different [21]. Along the Great Wall in northern
Shaanxi, which is a semi-arid region, there is a moderately temperate climate. Guanzhong
and most parts of northern Shaanxi have a warm temperate climate, and southern Shaanxi
has a northern subtropical climate. The terrain is generally high in the north and south,
and low in the middle. The average annual precipitation is 340–1240 mm, and the average
annual temperature is 7–16 ◦C. Both precipitation and temperature decrease from south
to north [22]. Natural geographical factors affect the area of forest coverage and the
distribution area of forest species. The southern part of Shaanxi Province is dominated by
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economic forests and natural forests, and there are many artificial ecological forests in the
north, to provide the functions of windbreak and sand fixation, as well as soil and water
conservation. As one of the main bodies of carbon sequestration, forests are closely related
to the distribution of carbon sinks [23,24].

To cope with climate change and promote implementation of “carbon peaking and
carbon neutrality”, Shaanxi Province is actively responding to the two aspects of carbon
emissions and carbon sinks. On the one hand, by adjusting industrial structure, optimizing
energy structure, promoting green transportation, and building green buildings. On the
other hand, by developing green agriculture, continuing to increase green agriculture, and
promoting bioenergy with carbon capture and storage (BECCS) pilot demonstrations [25].
A response system has been formed that includes pilot norms in multiple fields, extensive
social participation, and gradual improvements in systems and mechanisms. The location
map of Shaanxi Province is shown in Figure 1.
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2.2. Variable Selection and Data Sources
2.2.1. Variable Selection

To study the spatiotemporal evolution and influencing factors of carbon sinks at the
county scale, this paper takes the carbon sinks of each county (district) as the explained
variable. When selecting influencing factors, considering that carbon peaking and carbon
neutrality are closely related to social and economic development, our model mainly
examines the impact of social and economic factors in counties (districts) on carbon sinks.

First, considering that the increase in carbon sinks in counties (districts) mainly comes
from woodlands and bodies of water, the increase in carbon sinks in grassland and arable
land is relatively small. In areas with more woodland and water, the scope of human
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life is smaller, so there should be a negative correlation between population and carbon
sinks. On the other hand, although the increase in carbon sinks requires a large amount of
financial investment, it will also drive local employment. For example, the advancement of
carbon sink afforestation, the Sloping Land Conversion Program (SLCP), and the Natural
Forest Protection Project (NFPP) have created a large number of employment opportunities.
Moreover, forest maintenance measures, such as thinning, have brought a large amount
of timber output and income, and promote the development of downstream companies
related to wood products; the maintenance of bodies of water and forests will bring part of
the tourism income, and stimulate the economic development of the region. However, it
may lead to the outflow of labor into neighboring areas, and the slowdown of economic
development. Therefore, in the spatial measurement model, the impact of per capita GDP
(agdp) on carbon sinks should be examined.

Secondly, measures to increase carbon sinks, such as afforestation, tending, and forest
quality improvement, are highly dependent on local fiscal revenues and expenditures.
Therefore, this paper takes local government general budget revenue (income) and local
government general budget expenditure (outcome) into the consideration range of the
spatial measurement model. Additionally, to intuitively reflect the consumption demand in
the region, measure the level of regional development, and reflect the impact of economic
prosperity on carbon sinks, this paper incorporates the total retail sales of consumer goods
in each county (district) into the model. To reduce possible heteroscedasticity in the
model, the three variables of county (district) income, outcome, and retail are taken using
logarithms, which are recorded as lnincome, lnoutcome, and lnretail.

2.2.2. Data Sources

The carbon sink data comes from the “scientific data” database (https://doi.org/10.1
038/s41597-020-00736-3, accessed on 2 July 2021). This data was the vegetation net primary
productivity (NPP), calculated based on the MOD17A3 product, provided by the National
Aeronautics and Space Administration (NASA), multiplied by the conversion factor. The
land-vegetation carbon sink value was then calculated based on the previously studied
carbon sink conversion coefficient (1.62/0.45). Data included evergreen needleleaf forest
(ENF), evergreen broadleaf forest (EBF), deciduous needleleaf forest (DNF), deciduous
broadleaf forest (DBF), mixed forests (MF), closed shrublands (CShrub), open shrublands
(OShrub), woody savannas (WSavanna), savannas (Savanna), grasslands (Grass), and
croplands (Crop) [26]. Finally, the county (district) carbon sink value was obtained by
cutting through the 2015 county-level vector diagram.

Socioeconomic data: first, the per capita GDP and population data of the counties
(districts) in Shaanxi Province were all from the “Shaanxi Statistical Yearbook”, “Shaanxi
County Statistical Yearbook” and “Shaanxi Regional Statistical Yearbook”. Second, the
data of 107 administrative boundaries in Shaanxi Province came from the basic geographic
database (http://www.webmap.cn, accessed on 5 July 2021), and the area of each county
(district) was calculated through the administrative boundary data.

Figure 1 uses ArcGIS 10.7 software and data from the Resource and Environmental
Science and Data Center of the Chinese Academy of Sciences (http://www.resdc.cn/,
accessed on 6 July 2021). Figures 2 and 5 use Excel and data from the “scientific data”.
Figures 3 and 4 use ArcGIS 10.7 software (Esri, Redlands, CA, USA) and data from the
“scientific data”. Tables 1–6 use MATLAB software (MathWorks Corporation, Middlesex,
MA, USA) and data from the “Shaanxi Statistical Yearbook”, “Shaanxi County Statistical
Yearbook”, “Shaanxi Regional Statistical Yearbook”, and “scientific data”.

2.3. Research Methods
2.3.1. Analysis of Spatial Distribution Directionality

The spatial distribution directional analysis refers to the outline and dominant direc-
tion of the observed variable in the spatial distribution. Standard deviation ellipse (SDE) is
a spatial statistical method used to reveal the spatial distribution characteristics of elements.

https://doi.org/10.1038/s41597-020-00736-3
https://doi.org/10.1038/s41597-020-00736-3
http://www.webmap.cn
http://www.resdc.cn/
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This method mainly uses the measurement and calculation of the center of gravity, major
axis, minor axis, azimuth angle, and other parameters of the spatial distribution ellipse of
geographic elements to quantitatively describe the spatial distribution characteristics of
the observed variables in the study area. The definition formula is as follows:

Center of gravity coordinates: X̄w = ∑n
i=1 wixi/ ∑n

i=1 wi; Ȳw = ∑n
i=1 wiyi/ ∑n

i=1 wi (1)

tan θ =

(
∑n

i=1 w2
i x̃2

i −∑n
i=1 w2

i ỹ2
i
)
+
√(

∑n
i=1 w2

i x̃2
i −∑n

i=1 w2
i ỹ2

i
)2

+ 4 ∑n
i=1 w2

i x̃2
i ỹ2

i

2 ∑n
i=1 w2

i x̃i ỹi
(2)

x-axis standard deviation: σx =
√

∑n
i=1(wi x̃i cos θ − wi ỹi sin θ)2/ ∑n

i=1 w2
i (3)

y-axis standard deviation: σy =
√

∑n
i=1(wi x̃i sin θ − wi ỹi cos θ)2/ ∑n

i=1 w2
i (4)

In the above formula: X̄w and Ȳw represent the weighted average center of each
observation variable; (xi, yi) represents the spatial coordinates of the observed variable;
wi represents the spatial weight; θ is the azimuth angle of the SDE, that is, the main trend
direction of the data distribution; σx and σy, respectively, represent the standard deviation
of the x-axis and y-axis of the ellipse; x̃i and ỹi, respectively, represent the coordinate
deviation of each observed variable to the weighted average center.

2.3.2. Global Moran’s I

Global spatial autocorrelation was used to explore the overall spatial correlation
degree and significance of carbon sinks. Global Moran’s I is the most widely used spatial
autocorrelation statistic, which was chosen to test the spatial attributes of carbon sinks in
Shaanxi Province [27]. The spatial weight selects a weight matrix based on geographic
distance, and the specific calculation formula is as follows:

Moran′s I =
N
S0

∑N
i=1 ∑N

j=1 wij(yi − ȳ)(yi − ȳ)

∑N
i (yi − ȳ)2 (5)

In the above formula, N represents the number of spatial units (the number of obser-
vations); S0 represents the sum of all elements of the spatial weight matrix; yi represents
the observation value of the variable y in the spatial unit i; wij represents the element in the
spatial weight matrix; and the definition formula of S0 is:

S0 =
N

∑
i=1

N

∑
j=1

wij (6)

The value range of Moran’s I statistic is [−1, 1]. A positive value represents a positive
spatial autocorrelation, or spatial agglomeration phenomenon, and a negative value repre-
sents a negative spatial autocorrelation, or spatial dispersion [28]. A value of 1 indicates
complete spatial agglomeration, a value of 0 indicates a random distribution in space, and
a value of −1 indicates complete spatial dispersion.

2.3.3. Local Moran’s I

Local autocorrelation statistics can decompose the global spatial autocorrelation
Moran’s I statistics, and can be used to discover the contribution of each spatial unit
observation value [29]. The definition formula of local Moran’s I statistic is:

Local Moran′s I =
yi − ȳ

S2
i

N

∑
j=1,j 6=i

wij(yi − ȳ) (7)
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S2
i is defined as:

S2
i =

∑N
j=1,j 6=i wij

N − 1
− ȳ2 (8)

2.3.4. Spatial Durbin Model
Spatial Weight Matrix

Based on the above analysis of global and local autocorrelation, there are different
degrees of regional correlation in carbon emissions among different counties in Shaanxi
Province. Therefore, ordinary econometric models cannot investigate and deal with the
analysis of spatial interaction (spatial autocorrelation) and spatial structure (spatial inho-
mogeneity). Therefore, according to the first law of geography, the relationship between
regions will decrease with the increase of geographic distance, thus constructing a spatial
weight matrix [30,31].

The paper used ArcGIS 10.7 software to construct a spatial weight matrix, and then
used MATLAB software to convert it into a standardized spatial weight matrix in the
county (district) format of 107 × 107, which was used as a model of spatial econometrics.
The form is as follows:

W =


W11 W12 · · · W1n
W21 W22 . . . W2n

...
...

...
Wn1 Wn2 . . . Wnn

 (9)

Spatial Durbin Model

Spatial measurement model refers to the processing of spatial interaction (spatial auto-
correlation) and spatial unevenness of panel data in the regression model [32]. Commonly
used spatial panel measurement models include SLM, SEM, and SDM. Spatial Durbin
model is a general form of a spatial error and spatial lag model. The spatial panel Durbin
model incorporates both explanatory variables and the spatial effects of explanatory vari-
ables into the econometric model setting, and also includes endogenous interaction effects
(WY) and exogenous interaction effects (WX) [33,34]. Considering that carbon sinks and
their influencing factors have strong spatial correlation, this paper chose the spatial Durbin
model to estimate. The code used in the spatial Durbin model comes from Elhorst’s spatial
econometrics MATLAB toolbox. The model data in this paper is the panel data of 107
counties (districts) in Shaanxi Province from 2000 to 2017.

carbonsinkit = ρWyit + Xitβ + WXitθ + εit (10)

In the above formula, carbonsinkit is the observed value of the explained variable
carbon sink; Xit is the observed value of the explanatory variable, and in this paper is the
various influencing factors that affect the change of the explained variable; ρ is the spatial
regression coefficient of the explained variable; θ is the spatial regression coefficient of
the explanatory variable; β is the regression coefficient of the explanatory variable; εit is
a random error term that obeys independent and identical distribution, indicating other
factors that are not included in the measurement model; W is the spatial weight matrix
constructed by the above method.

3. Results and Analysis
3.1. Spatiotemporal Analysis of Carbon Sequestration

To reflect the differences in carbon sinks of different counties (districts) in each year,
in the spatial scope, the spatiotemporal evolution of carbon sinks in 107 counties (districts)
in Shaanxi Province during the study period was comprehensively sorted out. First, we
use Excel to draw a graph of the temporal evolution of carbon sinks (Figure 2). Then,
we use ArcGIS 10.7 to connect with the county (district) location, select the natural break
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point method to classify the carbon sinks in 2000, 2005, 2010, and 2017, and visualize them
(Figure 3a–d).
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Figure 2. Temporal evolution of carbon sinks in Shaanxi Province.

The temporal changes of carbon sinks in Shaanxi Province showed an overall upward
trend, in Figure 2. The total carbon sink amounts in 2000, 2005, 2010, and 2017 were
241.4398, 290.0709, 335.2216, and 344.5110 million tons, respectively. In 2017, carbon sinks
increased by 42.69% compared to 2000.

From the perspective of counties, the carbon sinks of the counties (districts) in Shaanxi
Province are quite different, and the overall regional distribution of carbon sinks is charac-
terized by “southern Shaanxi the most, northern Shaanxi second, and less in the middle”,
as shown in Figure 3. Southern Shaanxi (Hanzhong City, Ankang City, Shangluo City)
contains Ningqiang County, Liuba County, Yang County, Foping County, Xixiang County,
Zhenba County, Shiquan County, Langao County, Xunyang County, Zhashui County,
Shangluo County; the carbon sinks of these 11 counties (districts), including prefectures
and districts, are at the highest level. The main reason for this is that southern Shaanxi
has more precipitation, better initial resource endowment, stronger natural background
restoration ability, and a higher survival rate of trees. As a result, the quality of forest
stands is better, the stock of forest per unit area is higher. Moreover, the amount of carbon
collection is higher under the implementation of key forestry projects. Although the initial
carbon sinks in northern Shaanxi (Yan’an City and Yulin City) were relatively low, they
were mostly in semi-arid areas with few natural forests. However, due to the strong im-
plementation of key forestry projects, investment in the SLCP in northern Shaanxi alone
reached 13.892 billion yuan from 2000 to 2015. Among all counties, Zhidan County, Wuqi
County, Zichang County, Ansai County, and other counties invested more than 876 million
yuan, and most of them are ecological forests. Therefore, although northern Shaanxi has
low rainfall and poor resource endowments, its carbon sinks grew at a faster rate. Among
the norther counties, Fuxian, Hengshan County and most counties in Yan’an City grew
rapidly, and their total carbon sink amount reached the level of some counties (districts) in
southern Shaanxi.

3.2. Analysis of Spatial Distribution Direction

To calculate the center-of-gravity migration trajectory of the carbon sinks in Shaanxi
Province, this paper used the spatial statistical tools in ArcGIS 10.7 software to visualize
the center-of-gravity migration trajectory from 2000 to 2017 (Figure 4). The statistical
parameters of the SDE of carbon sinks in each county (district) each year were calculated
(Table 1).
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Table 1. Changes in the SDE of carbon sinks.

Year Shape Area/km2 Center X/m Center Y/m XStdDist/m YStdDist/m Rotation/◦

2000 123,265.80 326,788.56 3,672,245.62 140,605.88 279,080.44 15.39
2001 123,746.70 326,640.94 3,674,453.67 140,804.95 279,773.16 15.02
2002 124,630.18 328,875.28 3,687,475.04 139,086.02 285,254.27 14.98
2003 123,204.19 329,356.78 3,689,104.61 138,433.44 283,319.66 15.61
2004 123,547.09 330,222.57 3,689,850.28 138,095.94 284,802.87 15.44
2005 123,267.13 327,009.68 3,685,458.52 139,221.28 281,859.85 15.46
2006 122,141.66 331,506.39 3,689,306.27 138,636.00 280,465.41 15.15
2007 122,771.62 330,504.07 3,688,084.10 138,584.97 282,015.99 15.30
2008 123,186.31 330,686.29 3,691,118.70 138,260.35 283,633.29 15.18
2009 123,733.75 330,065.74 3,692,530.05 138,043.11 285,342.43 15.17
2010 124,208.95 330,459.81 3,696,991.01 137,204.39 288,189.98 15.29
2011 124,051.09 329,424.10 3,696,805.91 137,287.04 287,650.31 15.64
2012 123,814.28 331,733.14 3,702,979.71 136,466.94 288,827.02 15.44
2013 125,449.62 328,801.24 3,703,514.55 136,436.06 292,708.72 15.47
2014 126,039.59 330,626.75 3,708,144.62 135,562.50 295,981.25 15.30
2015 123,252.07 330,368.15 3,696,889.53 137,147.83 286,087.45 15.33
2016 126,644.75 332,152.13 3,708,693.15 136,511.19 295,335.08 15.18
2017 125,673.21 331,553.43 3,707,378.05 135,999.24 294,172.67 15.34

From 2000 to 2017, the center of gravity of carbon sinks in Shaanxi Province showed
a characteristic of “south to north” migration, and the center of gravity of carbon sinks
moved 35.89 km to the south. Among them, the distance moved significantly in 2000–2002
and 2008–2014, and the center of gravity in the two periods moved 16.66 km and 17.01 km,
respectively. From 2000 to 2017, the area of the carbon sink ellipse showed a fluctuating
upward trend. The overall area of the carbon sink ellipse increased by 2407.41 km2, with
a growth rate of 1.95%. The area of the ellipse reached its maximum value in 2016 at
126,644.75. The results of the shift in the center of gravity and the area of the ellipse
were consistent with the results of the aforementioned analysis of the spatiotemporal
evolution of carbon sinks in Shaanxi Province. First, the result from the above-mentioned
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spatiotemporal evolution was that the carbon sinks in northern Shaanxi increased in both
value and speed. Therefore, the center of gravity of carbon sinks in Shaanxi moved to the
north. The main reasons are that the SLCP in northern Shaanxi and the NFPP were heavily
invested in; additionally, the basic carbon sinks in northern Shaanxi are relatively low, and
there is more room for increasing carbon sinks. Second, due to the increase in the overall
vegetation coverage of Shaanxi Province, the overall area of the ellipse is showing signs
of increase.

Specifically, from 2014 to 2017, the area of the carbon sink SDE fluctuated slightly, and
the area of the ellipse decreased in 2014–2015 and 2016–2017. The possible reason for this is
that from the perspective of the growth cycle of the trees, the annual net productivity of
the main afforestation tree species, such as pine and acacia, showed an increase first, and
then a downward trend after reaching the maximum. Therefore, it may cause a decline
in regional carbon sinks. The length of the short axis of the Shaanxi carbon sink SDE
was continuously shortening, while the length of the long axis constantly increased. The
standard deviation of the X-axis decreased year by year, and decreased by 5.02% from
2000 to 2017; the standard deviation of the Y-axis increased year by year, increasing from
279,080.44 m in 2000 to 294,172.67 m in 2017.

Overall, the effect of increasing carbon sinks in Shaanxi Province was obvious, and the
trajectory of the overall carbon sink’s center of gravity shifted northward. However, in the
latter part of the study period (2014–2017), the area of the SDE of carbon sinks decreased,
and the center of gravity of carbon sinks moved slightly to the south.

3.3. Analysis of Spatial Pattern Characteristics

(1) It can be seen from Table 2 that the global Moran’s I index of carbon sinks in Shaanxi
Province from 2000 to 2017 showed an overall upward trend, ranging from 0.635 to
0.772, and all passed the 1% significance level test. It shows that the carbon sinks of
Shaanxi Province are not randomly distributed in geographical space, but have signif-
icant positive global spatial autocorrelation. Specifically, there were small decreases in
2003, 2005, 2011, 2015, and 2017, indicating that the global spatial correlation of carbon
sinks in Shaanxi Province gradually increased during the study period, though there
is a small degree of volatility. Through the results of the global spatial autocorrelation
test, it was found that the basic assumptions, based on the mutual independence of
samples in traditional research, are not consistent with reality, and spatial effects need
to be incorporated into the model.

Table 2. Moran’s I test results.

Year Moran I Z-Score p Value

2000 0.635 11.942 0.000
2001 0.640 12.047 0.000
2002 0.697 13.072 0.000
2003 0.684 12.848 0.000
2004 0.708 13.288 0.000
2005 0.676 12.701 0.000
2006 0.702 13.168 0.000
2007 0.702 13.170 0.000
2008 0.713 13.380 0.000
2009 0.718 13.471 0.000
2010 0.736 13.805 0.000
2011 0.733 13.737 0.000
2012 0.746 13.987 0.000
2013 0.753 14.110 0.000
2014 0.772 14.465 0.000
2015 0.732 13.722 0.000
2016 0.770 14.425 0.000
2017 0.767 14.353 0.000
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(2) According to the analysis in Figure 5, the characteristics of the local spatial pattern of
carbon sink levels in Shaanxi Province from 2000 to 2017 can be classified into four
categories. The first type is the high-value agglomeration type (HH); this type indi-
cates that the local county (district) has a high carbon sink level, and its surrounding
counties (districts) also have a high carbon sink level, showing a spatially associated
agglomeration state of “high center and high surroundings”. The second type is the
high-value convex type (HL); this type means that the local county (district) has a
high carbon sink level, but its surrounding counties (districts) have a low carbon sink
level, showing the characteristics of “high in the center and low in the surrounding
area”, and it is a state of spatial non-equilibrium correlation aggregation. The third
type is the low-value collapse type (LH), which means that the local county (district)
has a low carbon sink level, but its neighboring counties (districts) have a high carbon
sink level, showing the characteristics of “low center and high surroundings”, and it
is a state of spatial non-equilibrium correlation aggregation. The fourth type is the
low-value agglomeration type (LL); this type indicates that the local county (district)
has a low carbon sink level, and its neighboring counties (districts) also have a low
carbon sink level, showing the characteristics of “low center and low surroundings”,
and it is a low-level average spatial correlation agglomeration state.
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Figure 5. The evolution characteristics of the local spatial pattern of carbon sinks.

Specifically, the carbon sink level of each county (district) in Shaanxi Province dur-
ing the study period is mainly low-value agglomeration and high-value agglomeration,
supplemented by high-value bulges and low-value subsidence. The trends of the four
types of agglomeration have strong path dependence, and there are roughly parallel trends,
with small fluctuations, among the types. As the carbon sinks of the counties (districts) in
Shaanxi Province have neighboring peer effects and spatial spillover effects in geographic
space, it is easier to form a local spatial pattern feature of “lower is always low, and higher
is always high”.

3.4. Analysis of Influencing Factors of Carbon Sinks
3.4.1. Spatial Measurement Model Inspection and Selection

The spatial measurement model includes three models: spatial error model (SEM),
spatial lag model (SLM), and spatial Durbin model (SDM). Each model can correspond
to no fixed effect, a space fixed effect, a time fixed effect, and a space-time double fixed
effect. However, in actual use, a series of tests are required to select a model that matches
the research question.

(1) LM test: examine the LM and test results without fixed effects, spatial fixed effects,
temporal fixed effects, or spatio-temporal double fixed effects. It can be seen from Table 3
that in the LM test, both the LM-lag and LM-error tests passed the 1% significance level
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test. However, in robust LM test, the LM-lag test failed the 10% significance level test
(p = 0.269), while the LM-error test passed the 1% significance level test. This indicates
that the spatial lag model and the spatial error model may exist at the same time, and the
spatial Doberman model is preferred.

Table 3. LM test results.

Model
No Space Lag No Spatial Error

LM
(p-Value)

R-LM
(p-Value)

LM
(p-Value)

R-LM
(p-Value)

No fixed effect 1016.0244
(0.000)

22.2761
(0.000)

1022.5884
(0.000)

28.8401
(0.000)

Spatial fixed effects 1420.3354
(0.000)

13.6961
(0.000)

1900.4270
(0.000)

493.7877
(0.000)

Time fixed effect 958.7425
(0.000)

29.0455
(0.000)

978.6383
(0.000)

48.9413
(0.000)

Space-time dual fixed effect 1216.0203
(0.000)

1.2198
(0.269)

1454.4090
(0.000)

239.6086
(0.000)

(2) LR-Wald test and Hausman test: The LR-Wald test is to examine whether the
spatial Doberman model can be degenerated into a spatial lag model or a spatial error
model [33]. The results are shown in Table 4. The LR test and Wald test both reject the null
hypothesis that the spatial Durbin model can be degenerated into a spatial lag model and a
spatial error model at the 1% significance level. Therefore, we should choose the spatial
Durbin model. At the same time, the Hausman test rejects the null hypothesis of random
effects at the 1% significance level, so the fixed-effect spatial panel Durbin model should
be selected.

Table 4. Results of diagnosis and selection test of spatial measurement model.

Testing Method Spatial Fixed Effects Time Fixed Effect Space-Time Dual Fixed Effect

LR test spatial lag 30.6405 *** 129.4123 *** 31.9249 ***
Wald test spatial lag 29.2109 *** 132.9749 *** 30.7833 ***

LR test lag spatial error 45.0008 *** 103.1242 *** 19.0978 ***
Wald test spatial error 42.7525 *** 105.1958 *** 15.9113 ***

Hausman 7193.5316 *** 545.3648 *** -

Note: *** indicates significance at the significance level of 1%.

(3) Selection of the spatial panel Durbin model: Table 5 shows the estimated results of
the spatial panel Durbin model under space fixed effects, time fixed effects, and space-time
double fixed effects. The analysis shows that the spatial regression coefficient ρ of the
explained variable is positive under the three fixed effect estimates, all passed the 1%
significance level test, and the results are relatively robust. This proves that the carbon
sinks in Shaanxi Province have a significant positive spatial spillover effect, and the carbon
sinks of each county (district) have a significant positive impact on the carbon sinks of
other neighboring counties (districts). It further shows that it is reasonable and necessary
to incorporate spatial effects into the measurement model when analyzing the influencing
factors of the carbon sinks of the counties (districts) in Shaanxi Province.

The optimal fixed effects model was selected by comparing the R-squared, log-
likelihood, and sigma2 values of the three models. The criteria for selecting the model were
the largest R-squared and log-likelihood values, and the smallest sigma2 value. Among
them, the R2 of the space-time dual fixed effects was 0.9910, which was greater than
the other two models; the maximum value of log-likelihood was 112.44549, which cor-
responded to the space-time dual fixed effects model. However, the minimum value of
sigma2 was 0.0470, which corresponds to the spatial fixed-effects model. After comparison,
the sigma2 value of the space-time dual fixed effects model was only 0.0001 higher than
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that of the space fixed effect, but the log-likelihood value was approximately 20.85 higher
than that of the space fixed effect model. Based on the above test results, this paper finally
chose the space-panel Durbin model, with double fixed effects in space and time. However,
the coefficients of the explanatory variables in the spatial Durbin model in Table 6 do not
directly represent marginal effects, nor do they represent direct effects or spatial spillover
effects. Therefore, this was different from the traditional method of analyzing regression
coefficients of non-spatial models, which have no actual economic meaning.

Table 5. Estimation results of the spatial panel Durbin model.

Variable
Spatial Fixed Effects Time Fixed Effect Space-Time Dual Fixed Effect

Coef. t-Stat. Coef. t-Stat. Coef. t-Stat.

population 0.0006 0.5071 0.0183 *** 7.9808 −0.0001 −0.0928
agdp 0.0267 *** 5.4137 0.1166 *** 4.8157 0.0256 *** 5.1676

lnincome 0.0351 * 1.8029 −0.4142 *** −5.9704 0.0459 ** 2.3188
lnoutcome −0.0269 −1.0169 1.0349 *** 11.9747 −0.0463 * −1.7067

lnretail −0.0173 −1.5148 −0.4262 *** −7.8622 −0.0191 * −1.6518
W × population −0.0019 −0.9821 −0.0360 *** −7.7888 −0.0049 ** −2.3762

W × agdp −0.0318 *** −4.6103 −0.1515 *** −4.3364 −0.0311 *** −4.3880
W × lnincome −0.0013 −0.0470 0.5904 *** 5.5074 0.0541 1.5907

W × lnoutcome 0.0431 1.3908 −0.9540 *** −5.9891 −0.1408 *** −2.6438
W × lnretail 0.0315 1.5265 0.1050 1.0820 0.0157 0.7076

ρ 0.7790 *** 52.4570 0.6560 *** 34.0420 0.7427 *** 45.3354
sigma2 0.0470 2.1810 0.0471

Log-likelihood 91.591922 −3595.055 112.44549
R-squared 0.9909 0.5580 0.9910

Note: ***, ** and * indicate significance at the significance level of 1%, 5% and 10% respectively.

Table 6. Spatial effect decomposition results of the spatial panel Durbin model.

Variable
Direct Effect Spillover Effect Total Effect

Coef. t-Stat. Coef. t-Stat. Coef. t-Stat.

population −0.0015 −1.0570 −0.0180 ** −2.5108 −0.0195 ** −2.4440
agdp 0.0220 *** 4.3596 −0.0434 ** −2.2226 −0.0214 −1.0135

lnincome 0.0700 *** 3.1070 0.3157 *** 2.6820 0.3857 *** 2.9770
lnoutcome −0.0945 *** −2.9547 −0.6211 *** −3.3572 −0.7155 *** −3.5022

lnretail −0.0179 −1.2069 0.0084 0.1020 −0.0095 −0.1029

Note: *** and ** indicate significance at the significance level of 1% and 5% respectively.

3.4.2. Spatial Effect Decomposition Analysis

Table 6 shows the decomposition results of the spatial effects of various influencing
factors of carbon sinks based on the spatial panel Durbin model under the dual fixed effects
of time and space.

(1) The direct population effect coefficient was −0.0015, but it did not passed the signifi-
cance test. The population spillover effect coefficient was −0.0180, and it passed the
5% significance level test. This shows that the increase of local population level has
not yet formed a significant promotion effect on the increase of local carbon sinks, but
it limits the increase of carbon sinks in neighboring areas through negative spillover
effects. The main reason for this is that the increase in local population may have a
siphon effect on neighboring counties (districts) [35]. That is, as the local population
increases, the population of neighboring counties (districts) flows out accordingly.
Corresponding resources and policies tilt towards the local area, and the forestland
management intensity and carbon sink demand of neighboring counties (districts) is
reduced, which limits the level of carbon sinks in neighboring counties (districts).

(2) The direct effect coefficient of per capita GDP on carbon sinks was 0.0220, and the
spillover effect coefficient was −0.0434, and both passed the 1% significance level test.
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This shows that an increase of local GDP per capita promotes the increase of local
carbon sink level, but restrains the increase of carbon sinks in neighboring counties
(districts) through negative spillover effect. The main reason for this is that the
improvement of the economic level of the region manifests as an increase of income
and an increase in people’s requirements for quality of life. Therefore, the need to
improve the environment and improve the greening rate increases. At the same time,
some ecological projects of Zenghui attract and create employment opportunities,
promote the development of tourism, improve local employment levels, and increase
income. Therefore, there is a virtuous circle between the two. However, there is
also a siphon effect in neighboring areas, which limits the level of carbon sinks in
neighboring counties (districts).

(3) The direct effect coefficient of local government general budget revenue on carbon
sinks was 0.0700, and the spillover effect coefficient was 0.3157, and both passed
the 1% significance level test. This shows that an increase in the general budget
level of local governments not only promotes the improvement of local carbon sinks,
but also promotes the increase of carbon sinks in neighboring counties (districts)
through positive spillover effects. Increasing forest area and improving forest quality
require financial support from the local government. The advancement of projects,
such as the SLCP and NFPP, also requires continuous investment of government
funds. Therefore, the increase of carbon sinks needs to rely on financial subsidies
from the local government to a certain extent, so an increase in the general budget
revenue of local governments has a positive effect on local carbon sinks. Additionally,
due to the comparison of environmental performance assessment and evaluation
among county (district) governments, it has a certain incentive effect on surrounding
counties (districts).

(4) The direct effect coefficient of local government general budget expenditures on car-
bon sinks was −0.0945, and the spillover effect coefficient was −0.6211, and both
passed the 1% significance level test. This shows that the increase of local govern-
ment’s general budgetary expenditure limits the level of local carbon sinks, and re-
strains neighboring counties (districts) from increasing carbon sinks through negative
spillover effects. An increase in general budgetary expenditures of local governments
in the study area may be used for education, social security and employment, medical
and health care, urban and rural community affairs, and transportation. Therefore,
the urbanization development of the region is accelerated, and the space for new
forestation is restricted.

(5) The direct effect coefficient of total retail sales of social consumer goods carbon sink
was−0.0179, and the spillover effect coefficient was 0.0084, but neither of them passed
the significance level test. The reason for these insignificant results may be that the
total retail sales of consumer goods mainly reflects the consumption needs of residents
in the region. The increase in carbon sinks is mainly related to government policies
and has no obvious direct correlation with residents’ consumption levels.

4. Discussion

This paper used panel data from 107 counties (districts) in Shaanxi Province from 2000
to 2017. First, we comprehensively used ESDA, spatial distribution directional analysis,
and the spatiotemporal evolution of carbon sinks to analyze the distribution pattern and
evolution of carbon sinks in Shaanxi Province, to explore the internal mechanisms. Then,
the spatial Durbin model was selected to investigate the influencing factors of carbon sink
changes. Analysis of the results showed that the increase or decrease of carbon sinks in
Shaanxi province’s counties (districts) was affected by population, per capita GDP, local
government general budget expenditures, and local government general budget revenues.
The main differences from previous studies were:

(1) Visualization of the increase and decrease of carbon sinks in each county (district) in
Shaanxi Province in time and space, so as to facilitate dynamic analysis.
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(2) Visualization of the migration trajectory of the center of gravity of carbon sinks in
Shaanxi Province from 2000 to 2017, and use of the SDE to reflect the changes in its
spatial distribution pattern.

(3) Use of ESDA to analyze the global and local spatial autocorrelation of carbon sinks,
and construction of a spatial weight matrix to use the spatial Durbin model, avoiding
the endogenous problem of model settings.

The main significant aims of this paper were to analyze the impact mechanism of
carbon sinks at the county level, and construct a spatial weight matrix to incorporate
geographic factors into the research system. At the same time, the spatiotemporal evolution
of carbon sink distribution in Shaanxi Province was visualized to the greatest extent. The
research results provided a decision-making basis for the allocation of funds by county
(district) governments regarding high-quality forest development and the realization of
the goal of “carbon neutrality” in the region.

During the study period, the temporal changes of carbon sinks in Shaanxi Province
showed an overall upward trend. The possible reason for this lies in the implementation
of the SLCP and the NFPP in Shaanxi Province. In 1999, the SLCP was implemented as
a pilot in Shaanxi Province. As of 2018, total investment in the SLCP has exceeded 500
billion yuan, and the SLCP has increased the area of forestland by 3346.67 × 104 hm2,
accounting for 42.5% of the planted forest area. So far, Shaanxi Province has completed
the SLCP with an area of 24,370 km2 [36]. The NFPP has been implemented in Shaanxi
Province for two phases since 1998. Each phase reduced the consumption of forest resources
by more than 5.5 million m3 each year. As of 2010, the forest resource consumption in
Shaanxi Province was reduced from 9.466 million m3 to 2.376 million m3, a decrease of
74.9%, and the forest coverage rate in Shaanxi Province increased from 30.92%, before the
implementation of the two projects, to 43.06% [36]. The increase in large-scale forestry area
and the decrease in forest resource consumption greatly improved the overall forest carbon
sequestration capacity.

Previous research methods did not consider the spatial interaction and spatial uneven-
ness of the panel data in the model. Moran’s I statistics showed that the spatial distribution
of carbon sinks in the counties (districts) of Shaanxi Province was not random, but that
there was a significant positive global spatial autocorrelation. Therefore, the use of tradi-
tional measurement models would cause the endogenous problems of the model to cause
errors in the estimation results, and fail to provide effective policy recommendations [37].
This paper analyzed the results of the spatial panel Durbin model of the dual fixed effects
of carbon sinks in time and space. The existence of the spatial spillover effect of carbon
sinks determined that county-level governments should not only consider the situation
in their jurisdictions in the process of increasing carbon sinks. In the context of regional
integrated development, the spatial interaction between neighboring regions in the region
should be considered comprehensively, and the linkage-management and control roles of
counties (districts) in increasing carbon sinks should be strengthened.

Of course, our research also has limitations. Our research area was limited to Shaanxi
Province, and the research results have specific policy significance for 107 counties (dis-
tricts). However, due to regional heterogeneity, whether the spatial measurement model is
applicable to carbon sinks in other regions, and whether the impact mechanism of carbon
sinks is consistent in other regions, remains unverified. Future research should explore
the path of regional carbon neutrality, and seek the most cost-effective carbon neutral path
based on the principle of cost-effectiveness.

5. Conclusions

This paper used the panel data of 107 counties (districts) in Shaanxi Province, from
2000 to 2017, as the research sample. First, we conducted spatial distribution directional
analysis and ESDA of carbon sinks. Then, we constructed the geographic spatial weight
matrix, and used the spatial panel Durbin model to analyze the driving factors of carbon
sink changes in Shaanxi Province from the perspective of spatial effects.
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The main conclusions of the study were:

(1) The temporal change of carbon sinks in Shaanxi Province showed an overall upward
trend. In 2017, carbon sinks increased by 42.69%, compared with 2000. Counties
(districts) differed greatly in carbon sinks, showing the characteristics of “southern
Shaanxi is the most, northern Shaanxi is the second, and the middle is few”.

(2) The center of gravity of carbon sinks in Shaanxi Province as a whole showed the
characteristics of “south to north” migration, and the center of gravity of carbon sinks
moved 35.89 km to the south, as a whole. The area of the carbon sink SDE showed a
fluctuating upward trend, and the growth rate from 2000 to 2017 was 1.95%. Among
them, the area of the SDE from 2014 to 2017 fluctuated slightly.

(3) There was a significant positive global spatial autocorrelation of carbon sinks in
Shaanxi Province in geographic space. The overall Moran’s I index showed a sig-
nificant upward trend, though there were small fluctuations. The local pattern was
characterized by low-value agglomeration and high-value agglomeration, supple-
mented by high-value bulge and low-value collapse. The trends of the four types of
agglomeration had strong path dependence, and there were roughly parallel trends
with small fluctuations among each type.

(4) Per capita GDP and general budget revenue of local governments had a positive
direct effect on the level of local carbon sinks. The general budget expenditures of
local governments had a negative direct effect on the level of local carbon sinks. The
general budget revenue of local governments had a positive spillover effect on the
carbon sink level of neighboring counties (districts). Population, GDP per capita, and
general budget expenditures of local governments had a negative spillover effect on
the carbon sink level of neighboring counties (districts).

We propose the following policy suggestions according to the research conclusions:
First, the government should start from the source of pollution and strengthen the control
of carbon emissions from key industries. Enterprises should use technological innovation
as a means to promote the renewal and upgrade of environmental protection equipment
in heavily polluting enterprises. Second, in the process of advancing the realization of
“carbon neutrality”, the spatial interaction between neighboring areas in the region should
be comprehensively considered. Counties (districts) should cooperate with each other in
the process of policy formulation and implementation to ensure the environmental benefits
of various forestry projects. Third, the government should seek the most cost-effective
way to increase carbon sinks. Both short-term and long-term goals need to be taken into
consideration, as well as the coordination and unity of environmental benefits, economic
benefits, and social benefits to promote regional sustainable development.
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