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Abstract

Fluorescence fluctuation methods have become invaluable research tools for characterizing the molecular-level physical
and chemical properties of complex systems, such as molecular concentrations, dynamics, and the stoichiometry of
molecular interactions. However, information recovery via curve fitting analysis of fluctuation data is complicated by limited
resolution and challenges associated with identifying accurate fit models. We introduce a new approach to fluorescence
fluctuation spectroscopy that couples multi-modal fluorescence measurements with multi-modal global curve fitting
analysis. This approach yields dramatically enhanced resolution and fitting model discrimination capabilities in fluctuation
measurements. The resolution enhancement allows the concentration of a secondary species to be accurately measured
even when it constitutes only a few percent of the molecules within a sample mixture, an important new capability that will
allow accurate measurements of molecular concentrations and interaction stoichiometry of minor sample species that can
be functionally important but difficult to measure experimentally. We demonstrate this capability using tFCS, a new
fluctuation method which uses simultaneous global analysis of fluorescence correlation spectroscopy and fluorescence
lifetime data, and show that tFCS can accurately recover the concentrations, diffusion coefficients, lifetimes, and molecular
brightness values for a two component mixture over a wide range of relative concentrations.
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Introduction

Modern scientific studies increasingly demand accurate char-

acterization of the spatial and temporal dynamics of specifically

identifiable molecules [1–3]. Fluorescence fluctuation spectroscopy

(FFS) methods have thus become important research tools as they

enable detailed investigations of the chemical and physical

properties of molecules or molecular systems in a variety of

complex environments [4–9]. When FFS data is analyzed

successfully, impressive resolution of sample composition and

dynamics is often achievable. This includes the unique capabilities

to measure dynamics over a wide range of time-scales, to

accurately measure molecular concentrations, and to directly

measure the stoichiometric composition of interacting molecular

species. On the other hand, there are a number of fundamental

challenges that can limit the overall capabilities of FFS methods,

notably, limited resolution, parameter stability during curve fitting,

and problems with fitting model verification. For example, the

second component of a two component sample can be challenging

or impossible to resolve if its concentration or molecular brightness

is significantly lower than the concentration or brightness of the

primary species. Also, in typical FCS measurements, it is generally

not possible to resolve two separate sample components by

diffusion analysis unless their diffusions coefficients differ by a

factor of approximately two [10]. In addition, FCS measurements

offer limited capability to discriminate between fitting models

when knowledge of the sample composition or physical dynamics

driving fluctuations is not available a priori, as is often the case for

measurements within living cells or other complex systems. These

types of limitations can leave detection of a large number of

potentially important molecular phenomena and interactions

outside current experimental capabilities. A variety of strategies

have been implemented to overcome some of these experimental

limitations, including multi-color FCS measurements and the

development of numerous molecular brightness based statistical

analysis approaches [5,11–21]. In addition to specific advances in

fluctuation methods, other approaches have also proved useful for

enhancing experimental resolution in fluorescence measurements.

Simultaneous analysis of the multiple spectral signatures acquired

using multi-parameter fluorescence detection (MFD) [22–25] can

greatly reduce false assumptions that commonly occur at the

resolution limits of the single techniques alone [26]. Global

analysis [27–33], i.e. curve fitting using global parameters ‘linked’

across multiple data sets, greatly constrains the fitting parameter

space that can fit all experimental data simultaneously, enhancing

resolution, and also improving model discrimination capabilities in

curve fitting routines.

Here we introduce a new conceptual approach to fluorescence

fluctuation microscopy that leverages the strengths of fluctuation

measurements, MFD, and global analysis, and significantly

enhances the broad capabilities of fluorescence fluctuation
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measurements. Specifically, we apply simultaneous acquisition of

fluorescence correlation spectroscopy (FCS) and fluorescence

lifetime data and use multi-modal global analysis to analyze both

data types simultaneously with common linked fundamental

parameters, an approach we refer to as tFCS. We demonstrate

that tFCS is remarkably successful in fully resolving the physical

properties of a two-component mixture for cases where previously

reported FFS methods would be unable to accurately determine

the sample composition and dynamics. We also discuss how this

new analysis approach improves model discrimination capabilities

and improves parameter stability in curve fitting procedures. We

note that FCS and lifetime measurements have previously been

implemented together [34,35], although the tFCS approach is

fundamentally different from the lifetime-filter based FLCS

method and has significantly less demanding requirements for

the measurement signal statistics, an important practical advan-

tage. Moreover, the fundamental strategy of combining multi-

parameter fluorescence acquisition with global analysis is easily

extended to other fluorescence measurement modes (e.g. anisot-

ropy, FRET) with minimal theoretical modifications, and should

thus be widely applicable in most experimental systems where FFS

measurements are used.

Theory

Simultaneous global fitting of both lifetime and FCS data

requires that the theory for each be written in terms of common

linkable parameters. Traditionally, lifetime theory is written in

terms of the excited state lifetime values and fractional intensities

of each molecular species, with no direct link to the concentration

or molecular brightness values that are used in FFS theory. We

thus introduce a complete theory, derived from basic fluorescence

principles, describing fluorescence lifetime decay histograms in

terms of the molecular concentrations and molecular brightness

parameters used in FFS. Fluorescence lifetime measurements

require pulsed laser excitation sources, and thus tFCS theory

describes pulsed laser excitation, spans picosecond to second time

scales, and incorporates effects due to finite fluorescence lifetimes

[36–40]. To completely describe fluorescence dynamics under

pulsed excitation in terms of common fluorescence parameters we

must consider both micro- and macro-time scales. Micro-time (ps

to ns) is used to describe the excited state dynamics of fluorescent

molecules following pulsed excitation, and resets to zero after each

incident laser pulse. Macro-time (ms to s) describes longer time

scale behavior, such as fluorescence fluctuations due to physical or

chemical dynamics, and is continuous from the start of the

experiment. The theory presented below is for two-photon laser

excitation [37,38,40–44], as used in the reported experiments,

although the details could be easily applied for single photon

excitation with only minor modifications.

Two-photon fluorescence measurements
Considering the micro-time photodynamics of a single molec-

ular species treated as a simple two state model, we previously

derived an expression describing the steady state probability,

N1a rð Þ, that a molecule will occupy the excited state immediately

after a laser pulse passes through the sample [38,41,44], with:

N1a rð Þ~
1{e{2W rð Þa� �

2 1{e{2W rð Þae{C=fp
� � ð1Þ

Here, W (r) represents two-photon molecular excitation rate

[44] for pulsed laser excitation that includes saturation and finite

lifetime effects, with a spatial dependence determined by the

spatial profile of the focused laser excitation source. The laser

pulse repetition rate is fp, and for simplicity the temporal pulse

profile is assumed to have constant amplitude with pulse width a,

an assumption that has no important consequences for this work.

The parameter C is the spontaneous relaxation rate of excited state

molecules. For a molecular concentration C r,tð Þ, we expect

fluorescence emission of Ce{Ct0C r,tð ÞN1a rð Þ photons per unit

volume per unit time following each laser pulse. The measured

instantaneous fluorescence signal, Finst t0,tð Þ, is the integrated

signal from the full sample volume given by:

Finst t0,tð Þ~kCe{Ct0
ð

C r,tð ÞN1a rð Þdr ð2Þ

where k is a sample and equipment dependent constant that

incorporates all parameters describing the excitation and optical

collection efficiencies, such as absorption cross sections, quantum

yields, and detector efficiencies.

Equation (2) contains two distinct time variables that charac-

terize the micro- (t0) and macro-time (t) variations in the

fluorescence signal. To measure fluorescence lifetimes, we are

interested in the micro-time behavior, and in principle, Eq. (2)

represents the fluorescence decay curve following each laser pulse.

However, in practice, limited photon numbers require that

fluorescence lifetime measurements are performed over millions

of excitation pulses, with macro-time averaged histograms

accumulated to give the micro-time resolved average fluorescence

signal:

SFinst t0ð ÞT~
1

T

ðT
0

Finst t0,tð Þdt~kCSCTe{Ct0
ð

N1a rð Þdr ð3Þ

where the total acquisition time, T, is sufficiently long that the

spatial and temporal concentration fluctuations are averaged out.

Alternatively, for FFS measurements we are primarily interested

in the macro-time variations in fluorescence and can instead

average out the micro-time behavior. The macro-time averaged

fluorescence signal thus depends explicitly on the time dependent

concentration and can be written as:

F tð Þ~fp

ð1=fp

0

Finst t0,tð Þdt0~kfp 1{e{C=fp
� � ð

dr C r,tð ÞN1a rð Þð4Þ

While F tð Þ averages out the micro-time dynamics we omit the

angular brackets indicating temporal averaging to avoid notational

confusion when presenting FCS theory below. One can of course

average over both micro- and macro-times to find the average

fluorescence intensity:

SFT~kfp 1{e{C=fp
� �

SCT
ð

N1a rð Þdr ð5Þ

For purposes of notation consistency with FCS measurements, it

is convenient to rewrite the fluorescence signal in terms of an

‘‘effective’’ molecular excitation rate, SWeff rð ÞT, that describes the

time-average number of excitation events per second at position r.

Multi-Method Global Analysis
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The effective excitation rate has a simple relationship with

the average fluorescence intensity given by SFT~

kSCT
Ð

SWeff rð ÞTdr [40,41]. Comparison with Eq. (5) indicates

that SWeff rð ÞT~N1a rð Þfp 1{e{C=fp

� �
. Using this notation, we

can rewrite Eqs. (3) and (4) above as:

SFinst t0ð ÞT~
kCe{Ct0

fp 1{e{C=fp
� � SCT

ð
SWeff rð ÞTdr ð6Þ

and

F tð Þ~k

ð
dr C r,tð ÞSWeff rð ÞT ð7Þ

Writing the fluorescence signals in terms of SWeff rð ÞT allows for

direct comparison with standard FFS notation. In particular, FFS

measurements often refer to an ‘‘observation volume’’ [40,45]

which is defined as:

V~
1

SWeff 0ð ÞT

ð
SWeff rð ÞTdr:

ð
SŴWeff rð ÞT ð8Þ

where SŴWeff rð ÞT is the normalized fluorescence excitation

probability that defines the profile of the observation volume,

again including both saturation and finite lifetime effects. Higher

order moments of SŴWeff rð ÞT are generally also needed to fully

describe FFS theory. For FCS the additional required parameter is

called the gamma factor [45–47] given by:

c~

Ð
SŴWeff rð ÞT2drÐ
SŴWeff rð ÞTdr

ð9Þ

This parameter characterizes the uniformity of the fluorescence

signal from molecules located at various locations within the

volume and the effective steepness of the boundary defining the

volume. We note that some authors prefer to incorporate the

gamma factor into their definition of the volume, defining an

effective detection volume as Veff ~V=c [7,47,48].

Using this volume notation, we can write the average

fluorescence signal as:

SFT~kSCTSWeff 0ð ÞTV:ySCTV ð10Þ

where we have introduced the ‘‘molecular brightness’’ parameter

y~kSWeff 0ð ÞT, so named because it reports the average number

of fluorescence photons measured per molecule per second

[12,13,49]. We note that molecular brightness is not a fundamen-

tal quantity, but depends both molecular properties (cross section

and quantum yield), excitation conditions (laser power, pulse

width, and beam waist), and the measurement instrumentation

(detector and collection optics efficiencies).

Returning to Eqs. (6) and (7) we can write the full time

dependence of the fluorescence signals as:

SFinst t0ð ÞT~
ySCTV

1{e{C=fp
� � C

fp

e{Ct0 ð11Þ

and

F tð Þ~y

ð
dr C r,tð ÞSŴWeff rð ÞT ð12Þ

Fluorescence Lifetime and FCS Data
Using the above theory it is straight forward to express the data

from both lifetime and FCS measurements in terms of common

global parameters. For lifetime data, which is composed of

histograms from a total of fpT laser pulse cycles, and binned into

time channels of width Dt0, the recorded signal can be written as:

Fdata
hist t0ð Þ~

X
i

TDt0 yiSCiTV

ti 1{e{1=ti fp
� � e{t0=ti ð13Þ

where the subscript irepresents each independent fluorescence

species within the sample, and emission rates are replaced by

fluorescence lifetimes, ti~1=Ci. Similarly, using well developed

FCS theory [4,40,45,46,50] the correlation function for a multi-

component sample is described as:

G tfcs

� �
~

SdF tð ÞdF tztfcs

� �
T

SFT2
~

c

V

P
i

y2
i SCiTAi tfcs

� �
P

i

yiSCiT
� �2

ð14Þ

where Ai tfcs

� �
represents the temporal relaxation of the correla-

tion function for species i. For example, for pure diffusion with

diffusion coefficient D in a three dimensional Gaussian volume

with radial beam waist w0, and an axial beam waist aw0:

A tfcs

� �
~ 1{

8D tfcs

w2
0

� �{1

1{
8D tfcs

a2w2
0

� �{1=2

ð15Þ

The factor, a, in the axial beam waist is sometimes referred to as

a structure parameter in FCS literature. Equations(13), (14) & (15)

clearly show how simultaneously acquired lifetime and FCS data

sets depend on common global parameters, here concentration

and molecular brightness, in addition to unique measurement

specific parameters such as their diffusion coefficient and

fluorescence lifetime. In fact, the theory is also valid for

sequentially acquired lifetime and FCS data provided the sample

has not changed between measurement modes, although in

practice simultaneously acquisition is the best way to ensure that

condition. Subsequent data analysis using these linked global

parameters facilitates enhanced model discrimination and con-

strains fitting parameter space to greatly enhance overall

experimental resolution, as demonstrated below. We also note

the different functional dependencies on these global parameters,

whereby the amplitude of the lifetime data scales with ySCT while

the amplitude of the FCS data scales with y2SCT. These

differences in parameter dependence provide significant con-

straints for model discrimination in fitting routines.

The theory introduced above accurately describes fluorescence

signals originating entirely from the molecular species of interest.

In many cases there may be an additional background signal

arising from room light, scattered laser light, or background

fluorescence from sample contaminants or autofluorescence. If the

Multi-Method Global Analysis
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background signal is significant compared to the signal of interest,

then the background must be accounted for to accurately apply

tFCS theory. The correction depends on the nature of the

background. If the background is not constant, with measurable

lifetime or non-trivial fluctuation dynamics, then it must be treated

as an additional molecular species according to the theory

introduced above. For room light or other time-constant

background signals the correction for lifetime data is performed

simply by subtracting the background from the total signal, while

the correction for FCS requires a corrected correlation function

amplitude. For an independently measured background signal,

SBT, the corrected correlation function amplitude is given by

[45,51]:

G tfcs

� �
corrected

~G tfcs

� �
measured

: SFTzSBT
SFT

� �2

ð16Þ

Here SFT represents the fluorescence signal of interest

described in Eq. (10) above, i.e. the measured background signal

would need to be subtracted from the measured average signal

amplitude, SFTzSBT, to determine the value of the average

fluorescence.

Methods

Microscope Setup
Measurements were performed using a home-built two-photon

laser-scanning setup built around an inverted microscope (IX71,

Olympus) [37,52]. Pulsed excitation, provided by a Titanium:Sap-

phire Tsunami laser (,100 fs pulses at 80 MHz; Spectra Physics)

tuned to 800 nm, was introduced to the optical path via a dichroic

mirror (675DCSX, Chroma Technology) and focused into the

sample using an Olympus 606water objective (UPLSAPO60XW,

Olympus; NA = 1.2). Power was controlled using a l/2 plate and

polarizing cube, and set to 5 mW at the sample. Non-descanned

fluorescence signals were measured after a low pass filter (E700SP,

Chroma Technology) using a hybrid photodetector (Becker and

Hickl HPM 100-40; Boston Electronics). 200 s data points were

collected using a time correlated single photon counting (TCSPC)

module (PicoHarp300, PicoQuant GmbH). Laser pulse synchro-

nization was provided by a battery powered fast photodiode (New

Focus, Model 1621). The TCSPC histograms and autocorrelation

curves were calculated using SymPhoTime software and exported

for analysis in Igor Pro (Wavemetrics, Inc., OR). TCSPC

histograms were binned at 4 ps, and selected to contain

approximately 56107 counts. Autocorrelation curves were calcu-

lated from 0.0001 to 100 ms with 16 points per time coarsening

(Nsub) using the entire 200 s data set.

Binary Dye Titrations
Experiments were performed with mixtures of two Rhodamine

dyes, selected because their diffusion coefficients are too similar to

be resolved via standard FCS analysis. Rhodamine 6G (R6G;

Sigma Cat# 252433) and Rhodamine B (RhB; Sigma Cat#
R6626) dye solutions were prepared in HBS-EP buffer (10 mM

Hepes, 150 mM NaCl, 3 mM EDTA, 0.005% Polysorbate 20;

TEKnova Cat# H8020), and samples were loaded into 8-well

chamber boxes (Lab-Tek II; No. 1.5 coverglass, Nunc; Thermo

Fisher). Concentration titrations were performed to obtain a

calibrated series of dye mixtures, starting with an 800 ml mixture

with R6G and RhB at 50 nM each, a 1:1 concentration ratio.

R6G/RhB concentrations ratios .1 were achieved by sequentially

replacing 400 ml of sample volume with an equal volume of

100 nM R6G. Similarly, concentration ratios ,1 were prepared

by replacing half the sample volume with 100 nM RhB. This

procedure provided sample mixtures with concentrations ranging

from 4 to 97 nM for R6G and 4 to 89 nM for RhB, leading to a

final R6G/RhB concentration ratio ranging from approximately

0.04 to 20.

Data were acquired at each titration step, and the full titration

was repeated three times. Error bars reflect the average and

standard deviation of these three repeated experiments. To ensure

prepared sample concentrations matched their expected values,

control measurements were performed in the same sample

chamber with solutions of each dye independently (either R6G

or RhB), using FCS measurements to determine the actual sample

concentration. The same titration procedure described above was

repeated, except that HBS-EP buffer or solutions of the same dye

being measured were used to replace 400 ml of solution to

respectively decrease or increase concentrations. Dye solutions in

HBS-EP exhibit stable and reproducible concentration values,

provided the chamber boxes were thoroughly cleaned prior to

each use. To clean, a single chamber box well was washed with

detergent, followed by repeated rinses with hot water, and finally

scrubbed with a cotton swab using ultra-pure water. The cleaning

procedure was repeated before each titration. Measurements of

ultra-pure water in the cleaned chamber never showed signal

above the background level of ,1 kHz, measured independently

with the laser out of mode-lock.

Data Analysis
TCSPC histograms and FCS autocorrelation curves (ACFs)

were analyzed using custom and native global analysis routines in

Igor Pro. For tFCS analysis, a TCSPC histogram and simulta-

neously acquired ACF are considered together as one independent

tFCS data set (Fig. S1 a). All fits in Igor Pro were performed using

a Levenberg-Marquardt non-linear least squares algorithm which

minimizes the x2 value, for a tFCS data set defined as:

x2~
Xk{1

i~0

Fdata
hist xið Þ{yi

� �2

sdecay xið Þ
z

Xkzl{1

i~k

G xið Þ{yið Þ2

sfcs xið Þ

 !
ð17Þ

where k and l are the number of data points in the lifetime

histogram and the calculated autocorrelation function respectively.

Observation volume parameters, w0 and a, were calibrated using

R6G in H2O solution assuming a diffusion coefficient of

426 mm2s21 [53].

We present two different approaches for data analysis. The first

is applicable when a tFCS data set is available for only a single

sample condition, e.g. a single concentration ratio, which is a

common experimental scenario. In this case, the analysis is

‘‘global’’ in that the TCSPC and FCS data have common global

fitting parameters (molecular concentration and molecular bright-

ness) that are linked across the data types (each has a single value

for both types of data), and other local parameters including the

lifetimes and diffusion coefficients. A second analysis approach is

used when multiple tFCS data sets are available with one or more

experimental variables, such as sample concentration, varied

across the data sets (Fig. S1b). For this case, the global fitting

routine can be applied to all of the tFCS data sets simultaneously,

with a single set of global parameters that are linked across all of

the tFCS data sets and separate local parameter sets for each

tFCS data set. Data fits to experimental decay curves included a

temporal offset such that the peak of the instrument response

function (IRF) corresponds to t0~0, but were not reconvolved

Multi-Method Global Analysis
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with the IRF during fitting. The IRF was recorded using hyper-

Rayleigh scattering [54] from colloidal gold solutions (Sigma Cat#
G1652) at low excitation powers.

TCSPC histogram data sets were found to contain significant

systematic non-Poissonian noise at GHz frequencies (Fig. S2; red

line), originating from differential non-linearities within the

TCSPC module and other electronic noise. This systematic noise

was found to vary linearly with total photon count per time bin in

a highly reproducible manner such that this systematic noise could

be removed from the signal. A data point of uncorrelated room

light containing a comparable or greater number of photon counts

as experimental acquisitions was recorded to determine the

correction. A 100 point binomial smooth operation was performed

to remove Poissonian noise while retaining the lower frequency

systematic noise (Fig S2; black line) [55]. The smoothed reference

noise data set was then scaled by the photon counts, yielding a

multiplicative factor that effectively removes the non-Poissonian

systematic noise from the signal while retaining the inherent

Poissonian noise [56]. This procedure was followed for all

experimental TCSPC data sets.

Simulated Data
Simulated data sets were created using Eqs. (2) & (3) for a given

parameter set followed by the addition of random noise. TCSPC

histograms were created with a total of 56105 counts followed by

the addition of Poissonian noise for a given number of counts per

bin. Noise was also added to FCS curves, with noise levels

determined using noise levels from experimental FCS curves

acquired under comparable conditions [57]. The ACF acquisition

time, T, for all calculated data sets was 30 seconds. Each x2 surface

point is the average of three repetitions with unique simulated

noise. All parameters were assumed to be unknown and were not

fixed during the analyses, however, we did implement the ÆFæ
constraint (Eq. 10) to remove fitting problems associated with the

covariance of the concentration and molecular brightness.

Results

The primary goal of this work is to demonstrate how

experimental resolution and model discrimination capabilities in

FFS can be dramatically enhanced by using MFD and multi-

method global analysis, here shown through the implementation of

tFCS. We thus demonstrate the capability to resolve the molecular

composition of a mixture of two identical molecular weight

fluorescence dyes, Rhodamine 6G and Rhodamine B, for which

standard FCS experiments would be unable to identify the

presence of the two sample components (DR6G = 390 mm2s21;

DRhB = 465 mm2s21) [10] or to accurately recover their

concentrations and other physical properties since their diffusion

coefficients are too close [10]. The fluorescence lifetimes of these

two dyes are easily resolved (tR6G = 3.92 ns and tRhB = 1.63 ns),

and the use of MFD thus provides an important contrast

parameter. However, lifetime fitting alone can only resolve

lifetime values and fractional intensities and cannot determine

molecular concentrations, diffusion coefficients, or molecular

brightness values that report on interactions. Even after deter-

mining the presence of two species from the lifetime data, a

traditional MFD approach fails to recover this information since

FCS analysis of data from this mixture can still not achieve a stable

fit for a two-component model. On the other hand, tFCS analysis

does produce stable fits and accurate parameter recovery, thus

providing a vastly improved functionality over FCS and/or

lifetime measurements alone.

To illustrate the strength of this method we analyze nine

individual tFCS data sets acquired from rhodamine dye mixtures

with RhB and R6G dye concentrations ranging from approxi-

mately 3 to 97 nM, providing concentration ratios (CR6G/CRhB)

spanning almost three orders of magnitude. Comparison of tFCS

fitting results (Fig. 1a, squares) to the known dye concentrations

(Fig. 1a, solid lines) demonstrates accurate recovery of molecular

concentrations for each species over a fairly wide range of

concentration ratios. This achievement is significant considering

that FCS or lifetime measurements alone are not able to recover

this information at all. These results, fitted one R6G:RhB

concentration ratio at a time, do require some a priori knowledge

for one of the sample components in order to obtain stable data

fits. Here we assume that the lifetime, molecular brightness, and

diffusion coefficient of the R6G molecules (tR6G, yR6G & DR6G)

can be measured independently, thus serving as fixed fitting

parameters during tFCS analysis (see parameter values in Fig. 1b).

We note, however, that prior knowledge of these three parameter

values (tR6G, yR6G & DR6G) is not sufficient to achieve stable

fitting results using FCS analysis alone. Only by further assuming

prior knowledge of the brightness of the second species can one

achieve somewhat stable fits, and even then some of the

numerically stable fitting results return inaccurate parameters.

Any error in the assumed brightness values also translates directly

into errors in the recovered concentrations (Fig. S3). The use of

tFCS avoids these problems without any assumptions about the

second brightness value, and thus offers a significant advantage.

R6G has a higher molecular brightness than RhB and is the

calibrated species in tFCS analysis (fixed values for its diffusion

coefficient, lifetime and brightness), and as such, its concentration

(Fig. 1a, red squares) can be accurately recovered across all points

of the titration. Concentrations of the less bright RhB are harder

to measure, yet we still see accurate concentration measurements

up to a concentration ratio of approximately 3 (Fig. 1a, blue

squares). Above the concentration ratio of approximately 3 the

recovered value of CRhB becomes unstable in the curve fitting

routines and is sensitive to initial parameter guesses due to the

covariance of the molecular brightness and concentration param-

eters. These instabilities can also been seen in the recovery of the

diffusion coefficient (Fig. 1c) and molecular brightness (Fig. 1d) of

RhB, which are otherwise quite accurate at lower concentration

ratios. This observation is not unexpected since at higher

concentration ratios the RhB signal becomes an increasingly

small fraction of the total fluorescence signal. Also, since each

molecular species’ contribution to the measured correlation

function amplitudes varies with the square of its molecular

brightness, the molecule with lower brightness is harder to

measure at lower concentrations than the brighter molecular

species. Lifetime measurements alone can accurately determine

the fluorescence lifetimes of multiple sample components inde-

pendently of any FCS analysis, reflected by the measured lifetime

values which do not exhibit similar instabilities even at high

concentration ratios (Fig. 1e).

It is clear that combing lifetime and FCS data for fitting as a

single tFCS data set results in greatly improved capabilities for

resolving the molecular composition of a sample. The major

limitations of the method as introduced so far are that some

independent knowledge of the sample properties (e.g. tR6G, yR6G

& DR6G) was required for stable curve fitting and the RhB

concentration was not recoverable at the higher concentration

ratios. Each of these limitations can be overcome if one leverages

the full power of global analysis. Specifically, if an experimental

parameter can be varied over a series of measurements then global

analysis allows curve fitting for the entire measurement series with

Multi-Method Global Analysis
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common experimental parameters ‘linked’ across all data sets. For

the example introduced here, the concentration ratios of the two

dyes varies from one mixture to the next, but other dye properties

including the fluorescent lifetimes, diffusion coefficients, and

molecular brightness values must share the same values for all

mixtures. Full global analysis of the data thus involves simulta-

neously fitting all of the data sets with a single set of globally linked

fitting parameters for the lifetime, molecular brightness, and

diffusion coefficient (t, y & D) of each species in the sample. Two

additional ‘‘local’’ fitting parameters, CR6G and CRhB are

associated with each individual data set to account for the

different molecular concentrations of each rhodamine dye for each

concentration ratio.

The results from the Global-tFCS fit are shown in Fig. 2, and

the returned global parameters are shown in Table 1. As can be

seen immediately, the full global fits achieve remarkable accuracy

across the entire measured concentration range. This includes

accurate recovery of the molecular concentration of RhB, the

species with lower molecular brightness, even when it constitutes

only a few percent of the molecules within the sample. This level of

sensitivity for a minor species goes well beyond what has been

achievable in fluctuation measurements, demonstrating the greatly

enhanced sensitivity and resolution available using the global

tFCS approach. Moreover, these extraordinary global fitting

results were obtained without any constraints on fitting param-

eters, and unlike the individually fit tFCS data sets the full global

fits assume no prior knowledge of molecular brightnesses, diffusion

coefficients, lifetime values, or any other parameter for either

species. These attributes offer tremendous advantages and

flexibility in applications of this method. For complex experimen-

tal systems it may be impossible to isolate an individual molecular

species for calibration purposes, or calibrations performed under

one sample condition (e.g. diffusion coefficients for isolated

molecules) may not accurately reflect actual values in a different

sample condition (e.g. diffusion coefficients within a living cell).

The full global analysis approach completely eliminates the need

for any molecule specific calibration measurements, and still

returns accurate results across a wide range of sample composi-

tions.

We note that while global analysis on its own offers powerful

enhancements in many curve fitting applications, the use of global

analysis alone does not explain the success of the tFCS approach.

In particular, one can attempt to fit the same data shown above

using a global FCS fitting approach (no lifetime data), but with

only minimal success. Achieving numerically stable fitting results

with global FCS (alone) first requires holding fixed the diffusion

coefficient and molecular brightness parameters for one species,

which is not required for global tFCS, and even then the fit results

are highly dependent upon initial guesses for parameter values (see

Fig. S4) and can still be unstable. Thus, while one can sometimes

get marginally reasonable fits to the data using a global FCS fit

(though never close to the accuracy of tFCS), such fits can also

Figure 1. tFCS analysis of binary dye mixtures with known R6G and RhB concentrations. (a) Recovery of molecular concentrations across
nine known concentration ratios using tFCS. Measured concentrations are shown as red and blue squares, and the solid lines show the known
concentration of each dye mixture. (b) Sample parameters detailing concentrations, diffusion coefficients, molecular brightnesses and fluorescence
lifetimes of the prepared R6G and RhB mixtures. Recovery of RhB diffusion coefficient (c), molecular brightness (d), and fluorescence lifetime (e)
respectively. Data points and error bars represent the average and standard deviation of three repeated experiments.
doi:10.1371/journal.pone.0090456.g001
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return inaccurate results and there is no reliable method to sort the

accurate from the inaccurate fit results. The tFCS fits, which

leverage the enhanced capabilities of multi-modal global analysis,

do not suffer from any such problems and return stable and

accurate fitting results every time, independent of initial parameter

guesses and without fixed fitting parameters. As with any global

analysis methods, the success of this approach depends funda-

mentally upon there being common linkable parameters across

various measurement conditions, i.e. a given molecular species has

the same brightness in each sample condition.

When correct fitting models are identified, tFCS yields highly

accurate curve fitting results, as shown above. Since sample

composition is often unknown a priori, an important consideration

regarding the overall applicability of the tFCS approach is the

extent to which curve fitting procedures are able to successfully

discriminate between different fitting models. To test this we

employed computationally generated data sets for binary mixtures,

and fitted data from multi-component samples to an (incorrect)

single component model. We then determined the range of

lifetime values and diffusion coefficient ratios for which curve

fitting to a single species model indicated a sufficiently poor

‘‘goodness of fit’’ to warrant rejecting the single component model.

Figure 3 shows these analyses, plotted as cross sections of x2

surfaces, compiled using four different single species models: FCS

alone (green lines), standard lifetime alone (yellow lines), lifetime

using an intensity constraint (blue lines), and tFCS, also with an

intensity constraint (red lines). Fitting with FCS alone yields a

horizontal valley centered at diffusion coefficient ratio of 1, with

boundaries that are consistent with Meseth et al. [10]. Similarly,

the two lifetime models yield vertical valleys, with a slight

asymmetry around the ratio of 1. This asymmetry is due to the

finite pulse to pulse time window, in which the longer lifetimes of

the second component do not fully decay at larger lifetime ratios.

From these plots it is immediately clear that there are many

experimental conditions for which either FCS or lifetime

measurements alone cannot resolve two sample components. In

contrast the tFCS approach greatly decreases the range of

parameter space, centered at D2=D1~t2=t1~1, for which two

species cannot be clearly resolved. This clearly indicates that tFCS

improves the confidence in model selection over standard FFS

methods, and also provides experimental guidelines for how

different physical parameter values must be to be easily resolved

experimentally using tFCS.

In Fig. 3 the tFCS chi-squared contours fall slightly outside of

the single method curves since they are essentially the average of

the chi-squared values for the two different methods. For example,

when the two diffusion coefficients are identical and the lifetimes

different the FCS fit alone will yield ‘‘good fit’’ with x2 ,1 while

the lifetime fit alone will have a larger chi-squared value since it

cannot fit the two component lifetime data as well with a single

lifetime model. We note that the ‘‘good fit’’ for the FCS data in

this example, as indicated by the chi-squared value, is in this case

actually a ‘‘poor fit’’ for failing to resolve the presence of a second

species that is contained within the sample. The tFCS chi-squared,

which again basically averages the FCS and lifetime chi-squared

values, thus indicates a ‘‘less poor’’ fit than lifetime alone. The

difference in lifetime values needed to bring the tFCS chi-squared

value up to the same value as lifetime fitting alone is what pushes

the tFCS contour slightly outside the lifetime or FCS alone curves.

This feature of these plots should be understood in terms of the

regions of parameter space for which the various methods can

distinguish between one- and two-component samples, and does

not indicate that tFCS has lower resolution. To the contrary, as

demonstrated above, the tFCS significantly enhance curve fitting

resolution fitting to a two component model when compared with

either method used alone.

Discussion/Conclusions

We have introduced a new fluorescence fluctuation analysis

technique, tFCS, and have demonstrated that tFCS can

dramatically enhance sensitivity and resolution in fluctuation

measurements, highlighted by the capability to measure concen-

trations, molecular brightness values, diffusion coefficients and

fluorescence lifetimes from multiple molecular species even when

their diffusion coefficients are very similar and one of the species

makes up a small fraction of the total molecular population within

Figure 2. Comparison of Global-tFCS analysis with known R6G
and RhB sample mixtures. Recovery of molecular concentrations
across nine known concentration ratios using Global-tFCS. Calibrated
known concentrations (solid lines) compared to recovered concentra-
tions of R6G (red circles) and RhB (blue circles). Data points and error
bars represent the average and standard deviation of three repeated
experiments.
doi:10.1371/journal.pone.0090456.g002

Table 1. Molecular parameter values recovered using Global-
tFCS compared to known parameter values.

Global-tFCS Parameter Value

Fit Rel. Err

R6G D 0.3960.01 0.8% 0.3960.01

t 3.9160.01 0.2% 3.9260.01

y 22.360.2 2.9% 23.060.70

RhB D 0.4660.01 0.6% 0.4760.02

t 1.5760.01 3.7% 1.6360.01

y 12.860.1 0.5% 12.860.4

The accuracy of the recovered information goes well beyond previous
experimental capabilities, which is more remarkable given that no fitting
constraints or a priori assumptions were required for these fitting results.
doi:10.1371/journal.pone.0090456.t001
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the sample. Moreover, Global-tFCS removes the need to fix any

of the fitting parameters during the analysis, and thus removes the

need for independent measurements on isolated sample compo-

nents which are often not possible to measure. The freedom from

parameter assumptions and calibrations, together with the marked

improvement in accuracy highlight the benefits of Global-tFCS.

tFCS also has the potential to significantly enhance detection of

molecular interactions. When a molecule binds to another

molecule of similar molecular weight its change in diffusion

coefficient is typically too small to be resolved via FCS analysis

alone. However, it is not unusual for the fluorescence to be

quenched (or dequenched) upon binding, which has an associated

change in the fluorescence lifetime and thus potentially making the

interaction resolvable via tFCS. The sensitivity of tFCS, with the

possibility to resolve even a small fraction of a molecular

population involved in interactions as demonstrated above, further

enhances the utility of this method for resolving such interactions.

There are two important principles underlying the success of the

tFCS approach. First, by using MFD it is often possible to find a

contrast parameter that allows resolution of multiple sample

components that are otherwise disguised in a particular measure-

ment. For example, in the case of tFCS the fluorescence lifetime

serves as the contrast parameter which detects the presence of two

sample components when the FCS measurement alone would not

resolve a second species. Second, and as importantly, global fitting

of multiple measurement modes (e.g. FCS and lifetime) simulta-

neously enhances the resolution of each individual method during

curve fitting. The different methods have unique dependencies on

the global parameters, such as lifetime data depending linearly on

the molecular brightness but the FCS data amplitude depending

on the square of the molecular brightness. Thus, an analysis

method that forces the fitting parameters to account for total

fluorescence signal across independent measurement modes, but

with common global parameters describing each, has a greatly

constrained fitting parameter space and produces much better

curve fitting results.

Also serving the success of this approach is the strategy to

leverage all the information content of the fluorescence signal.

This includes, for example, making use of the often ignored

amplitude information in the lifetime data as is done in tFCS.

While illustrated here for the specific case of FCS and lifetime

measurements, this general principle can and should be further

exploited to maximize use of the information content of the

fluorescence signal. For example, measurements of molecular

rotations via fluorescence anisotropy or spectral signatures

through spectrally resolved detection could serve as further

extensions of this approach. When coupled with the full global

analysis approach, such additional contrast parameters will further

provide important ways to enhance sensitivity and resolution for

characterizing the molecular scale composition and dynamics of

molecules within complex systems.

A less considered, but equally as important topic is that of

determining the correct fit model, without assumptions, using data

alone. The increased ability to resolve small fractions of different

species provides an inherent capacity to assist in model discrim-

ination. We have demonstrated the ability of tFCS in distinguish-

ing the presence of a second species across a wide range of

parameter combinations. The array of x2 values demonstrates the

increased parameter space for which tFCS can separate species

and provides a metric for experimental design.

Measurements as described in this work are reasonably straight

forward to implement. The theory presented is valid as long as the

sample does not change in any way from one measurement to the

next. The measurements thus need not in principle be acquired

simultaneously, although in practice that is likely the best

approach to ensure no changes in the sample from one

measurement mode to the next. Some additional hardware may

be required, such as time correlated single photon counting

(TCSPC) electronics for lifetime measurements, but it is generally

Figure 3. Identifying a second component from simulated mixture data via incorrect single component analysis. These curves shown
represent the chi-squared contours for the different fitting methods when fitting two-component data with a single component model. When the x2

value exceeds ,1.3 we conclude that the single component analysis fails, indicating the presence of a second component in the sample. Four x2

surfaces demonstrate the boundary in parameter space for 1) FCS (green lines); 2) Fluorescence Lifetime (yellow lines); 3) Fluorescence Lifetime with
average intensity constraint (blue lines); and 4) tFCS with average intensity constraint (red lines).
doi:10.1371/journal.pone.0090456.g003
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very practical to perform multiple modes of measurement at the

same time, on the same instrument, for any given sample.

Certainly lifetime and FCS data can be acquired simultaneously,

and extending such measurements to include molecular rotations,

spectra, and other parameters is a straight forward process using

modern hardware. Thus, any time fluctuation measurements are

contemplated, a multi-modal global analysis approach is probably

also accessible – with improved accuracy and resolution as

demonstrated above. It is thus likely that methods such as tFCS

will eventually supersede fluctuation methods alone.

Supporting Information

Figure S1 Comparison of tFCS and global-tFCS analy-
ses. tFCS analysis (a) allows brightnesses and concentrations to be

treated globally across the two data modalities due to common

parameters now describing the amplitudes of both the lifetime

decay and autocorrelation function. Global-tFCS (b) intrinsically

retains the pair-global relationship for each pair individually, in

addition to treating the lifetimes, diffusion coefficients, and

brightnesses as global parameters across all pairs of the titration.

Data has been normalized for visual comparison.

(TIF)

Figure S2 Reference data set recorded using uncorre-
lated light to assess the systematic error in data
acquisitions. A 100 point binomial smoothed data set (black

line) removes Poissonian noise while retaining the lower

frequencies (red line) used for data corrections.

(TIF)

Figure S3 The effects of molecular brightness assump-
tions in two component FCS analyses compared to tFCS.
Comparison of simulated data sets depicting a binary system with

a diffusion coefficient ratio of 3, molecular brightness and lifetime

ratios of 2 (a), and titrated across a concentration ratio of three

orders of magnitude (b). Here, we have ‘calibrated’ species a and

fixed the known values for Da, ya and ta during all subsequent

analyses. The covariant autocorrelation amplitudes require that

the molecular brightnesses be held for both species using FCS

analysis; therefore, we have ‘‘guessed’’ yb in order to attain stable

fits. Three different analyses (b) using yb guesses below (yb =

8 kcpsm; horizontal kites), the same as (yb = 10 kcpsm;

diamonds), and above (yb = 12.5 kcpsm; horizontal kites) the

correct molecular brightness value highlight the potential

inaccuracies in two component FCS results. Across concentration

ratios Ca/Cb of 0.03 to 1, in which the amount of unknown species

is sufficiently large, FCS analysis can distinguish the 2nd

component, albeit with molecular brightness guess dependent

errors. Beyond the Ca/Cb of approximately 3, FCS analysis fails to

identify two species and transitions into a fit result that finds two

identical species of equal concentration, that of half the total. This

is corroborated by the transition of the returned diffusion

coefficient, Db, from 0.1 to 0.3 mm2ms21 (e; all blue data points).

tFCS analysis (b; gold data points) of the same titration data set, in

which no assumptions or held parameters are enforced on the 2nd

species, returns accurate results across the entire range, even in the

case of a very small fraction of the less bright species (gold circles).

tFCS also returns accurate molecular brightnesses (c) and

fluorescence lifetimes (d) across the majority of the titration range,

and still distinguishes the diffusion coefficient where FCS analysis

fails (e; gold triangles). Data points and error bars indicate the

average and standard deviation of three independent simulated

data sets.

(TIF)

Figure S4 Comparison of initial guesses in global
analysis of experimental FCS data only. To demonstrate

that multi-method global analysis, here implemented as tFCS, is

the key to the accuracy of the results shown in Fig. 3, we show here

that global analysis of FCS data alone does not return comparable

accuracy, or even stable fitting results. Shown here are

experimental autocorrelation data of binary RhB and R6G

mixtures, with individually calibrated parameters (a), subject to

global analysis of FCS data only (no lifetime data) incorporating

repeated titration data sets. Concentrations are considered local fit

parameters while diffusion coefficients and molecular brightness

are global. Here, the diffusion coefficient and molecular brightness

of R6G have been held fixed at the correct value during fitting.

Four different initial guess combinations for the diffusion

coefficient and molecular brightness of RhB are shown (b-e).

Some initial guesses return somewhat stable fits, albeit with

inaccurate results, while other initial guesses can lead to extremely

unstable fits. Data points and error bar reflect the average and

standard deviation of the three different fits to the independently

acquired data sets. These fitting results show that global analysis of

FCS data alone cannot accurately fit the data.

(TIF)
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