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Abstract: Brain structure segmentation on magnetic resonance (MR) images is important for various
clinical applications. It has been automatically performed by using fully convolutional networks.
However, it suffers from the class imbalance problem. To address this problem, we investigated
how loss weighting strategies work for brain structure segmentation tasks with different class
imbalance situations on MR images. In this study, we adopted segmentation tasks of the cerebrum,
cerebellum, brainstem, and blood vessels from MR cisternography and angiography images as the
target segmentation tasks. We used a U-net architecture with cross-entropy and Dice loss functions
as a baseline and evaluated the effect of the following loss weighting strategies: inverse frequency
weighting, median inverse frequency weighting, focal weighting, distance map-based weighting,
and distance penalty term-based weighting. In the experiments, the Dice loss function with focal
weighting showed the best performance and had a high average Dice score of 92.8% in the binary-
class segmentation tasks, while the cross-entropy loss functions with distance map-based weighting
achieved the Dice score of up to 93.1% in the multi-class segmentation tasks. The results suggested
that the distance map-based and the focal weightings could boost the performance of cross-entropy
and Dice loss functions in class imbalanced segmentation tasks, respectively.

Keywords: brain structure segmentation; fully convolutional networks; class imbalance; loss weight-
ing; magnetic resonance images

1. Introduction

Brain structure segmentation on magnetic resonance (MR) images is an essential
technique for measuring, visualizing, and evaluating brain morphology. It is used for
diagnosis support of psychiatric and neurodegenerative diseases, brain development
analysis, and surgical planning and navigation [1,2]. It is manually performed in practice,
but manual segmentation is a very laborious task and is subject to intra- and inter-operator
variability [1]. Thus, it is desirable to provide an automatic accurate segmentation of brain
structures. The most successful state-of-the-art approach for automated segmentation is a
fully convolutional network (FCN) [3]. It enables pixel-wise segmentation in an end-to-
end manner. Since it was proposed by Long et al. [3] in 2015, it has been improved for
medical image segmentation [4,5] and applied to brain structure segmentation tasks [6].
However, it is often biased towards the majority (large-size) classes and suffers from low
segmentation performance on the minority (small-size) classes due to a high imbalance
between background and foreground classes in medical images. To address this problem,
which is commonly known as the class imbalance, there are two types of approaches:
data-level approaches and algorithm-level approaches [7,8].
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Data-level approaches mainly alleviate the class imbalance by undersampling the
majority classes [9] and oversampling the minority classes [10]. However, the majority
undersampling limits the information of available data for training and the minority
oversampling can lead to overfitting. On the other hand, algorithm-level approaches
address the class imbalance by improving algorithms for training. The most common
approach is improving loss functions. The improvement of loss functions can be carried
out by using new evaluation metrics for loss function or weighting loss functions to enhance
the importance of minority classes in the training process. Thus far, various types of loss
functions [11–17] and loss weighting strategies [4,18–25] have been proposed to alleviate
the class imbalance problem. They can be applied for any medical image segmentation
tasks in a plug-and-play fashion [26]. However, it is unclear which loss function and
weighting strategy should be used in different situations. Thus, it is important to reveal
weighted loss functions which can enhance the capability of FCNs in brain structure
segmentation tasks.

In related works, Ma et al. [26] performed a systematic study of the utility of 20 loss
functions on typical segmentation tasks using public datasets and evaluated the perfor-
mance of these loss functions in the imbalanced segmentation tasks. Moreover, Ma et al. [27]
compared and evaluated the boundary-based loss functions, which minimize the distance
between boundaries of ground-truth and predicted segmentation labels, in an empirical
study. Yeung et al. [28] focused on compound loss functions, combining Dice and cross-
entropy-based losses with a modulating factor of focal loss function [19] and evaluated
what compound loss functions were effective to handle class imbalance problems. As
shown in these related works, the effect of loss functions varies according to the situation
of segmentation tasks (e.g., medical images used for segmentation, the number and size of
segmentation target objects, and the degree of class imbalance). However, how the loss
functions work for different segmentation targets remains undiscussed, although their
accuracies were evaluated in the related works.

We test the effect of weighted loss functions in different situations of imbalanced
brain structure segmentation tasks, including binary- and multi-class segmentation tasks.
Especially, in this study, we focus on weighting strategies of loss functions, defined based on
class frequency, predictive probability, and distance map, and aim to investigate and discuss
how the loss weightings affect the performance of FCNs in brain structure segmentation
tasks with different class imbalances.

2. Materials and Methods
2.1. Segmentation Target

In this study, we adopted a segmentation task of brain structures, including the cere-
brum, cerebellum, brainstem, and blood vessels, on MR images. As for MR images, we
used MR cisternography (MRC) and MR angiography (MRA) images (Figure 1). MRC im-
ages, i.e., heavily T2-weighted images, can clearly represent brain surface and cerebral sulci
due to the high intensity of cerebrospinal fluid, whereas MRA images can highlight blood
vessels. In our group, we used MRC and MRA as clinical routine MR sequences because of
the ease of segmentation processing, and segmented brain parenchyma on MRC images
and blood vessels on MRA images for the planning and navigation of neurosurgeries. The
brain structures have different features in the MR images. The cerebrum is the largest part
of the brain and has a low-level foreground–background imbalance in the MRC images.
Its surface, i.e., cerebral sulci, has a bit more of a complex shape. The cerebellum is the
second largest part of the brain and is located under the cerebrum. It can be considered a
middle-level imbalanced target. The brainstem is a small part of the brain and is located
between the cerebrum and the spinal cord. It has a high foreground–background imbal-
ance. The brain parenchyma, i.e., the cerebrum, cerebellum, and brainstem, appears in
much the same location in every MRC image volume, although its size and shape have
individual differences. Its surface can be clearly visualized in MRC images due to high
signal intensity of the cerebrospinal fluid around it. On the other hand, blood vessels have
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varying locations and shapes and appear as small white spots in MRA images. Thus, they
are considered a hard-to-segment target with the high foreground–background imbalance,
although they are clearly visualized in MRA images. We used the segmentation targets to
fundamentally evaluate the effect of loss weightings on the FCN-based segmentation of
different brain structures.
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2.2. Network Architecture

As an FCN architecture, we adopted a 2D U-net [4], which is one of the most pop-
ular FCN architectures for medical image segmentation. Figure 2 shows the network
architecture used in this study. The U-net architecture, which consists of a symmetrical
encoder–decoder architecture with skip connections, has been often adopted as a baseline
FCN architecture for various medical image segmentation tasks. Many different variants
of the U-net architecture have been proposed according to different medical image segmen-
tation tasks, and moreover, a 3D U-net architecture [5] has been introduced for volumetric
medical image segmentation. However, training the 3D U-net on full input MR image
volumes is usually impractical due to memory limitations of the graphical processing
unit (GPU). In the case of the MR image volumes used in this study, it would require
at least more than 150 GB of GPU memory, which far exceeds the memory of prevalent
GPUs. To overcome the memory limitation, approaches to train 3D FCNs on resized or
cropped MR image volumes have been proposed. However, resizing MR image volumes
to a smaller size may cause the loss of information on segmentation targets, whereas a
patch-based approach [5,29] that crops MR image volumes requires the tuning of more
hyperparameters (i.e., patch size), which may affect segmentation performance. Thus,
in this study, we decided to use the simple 2D U-net architecture to reduce other factors
affecting the results as much as possible.

2.3. Loss Functions

As shown in the related works [26–28], loss functions are an important factor for
handling the class imbalance. Existing loss functions for FCN-based segmentation can be
divided into four categories: distribution-based loss, region-based loss, boundary-based
loss, and compound loss [26]. Distribution-based loss functions measure the dissimilarity
between two distributions based on cross-entropy. Region-based loss functions quantify
the mismatch or the overlap between two regions. Dice loss function [11,12] is the most
common loss function in this category. Boundary-based loss functions measure the distance
between two boundaries. Euclidean distance [16] or Hausdorff distance [17] metrics can be
used for loss functions in this category. Compound loss functions are defined as the combi-
nations among the distribution-, region-, and boundary-based loss functions [15,28,30–32].
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As described in [26], most of the distribution-based and region-based loss functions
can be considered as the variants of cross-entropy and Dice loss functions, respectively.
Moreover, boundary-based loss functions, which are formally defined in a region-based
way, have similarities to the Dice loss function. Therefore, as most of the loss functions
are based on the cross-entropy and Dice loss functions, we decided to use these two loss
functions in this study. The cross-entropy loss LCE and the Dice loss LDice are defined as

LCE = − 1
N

C

∑
c=1

N

∑
i=1

gi,c log pi,c, (1)

LDice= 1− 2 ∑C
c=1 ∑N

i=1 gi,c pi,c

2 ∑C
c=1 ∑N

i=1 gi,c pi,c+∑C
c=1 ∑N

i=1(1−gi,c)pi,c+∑C
c=1 ∑N

i=1 gi,c(1−pi,c)

= 1− 2 ∑C
c=1 ∑N

i=1 gi,c pi,c

∑C
c=1 ∑N

i=1 gi,c+∑C
c=1 ∑N

i=1 pi,c
,

(2)

where gi,c and pi,c are the ground-truth label and the predicted segmentation probability of
class c at pixel i, respectively. N and C are the numbers of pixels and classes in images for a
training dataset, respectively.

2.4. Loss Weighting Strategies

In highly imbalanced segmentation tasks, FCNs are likely to ignore small-size fore-
ground classes in the training process, which results in the low segmentation accuracy
of the foreground classes. This is what is called the class imbalance problem and can
be alleviated by weighting the loss of small-size foreground classes. In this study, we
adopted five loss weighting strategies defined based on different factors of class frequency,
predictive probability, and distance map. Table 1 indicates the overview of weighted loss
functions used in this study. The details of loss weightings are described below.
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Table 1. Overview of the weighted loss functions.

Baseline Loss Functions Weighting Strategies Weighted Loss Functions

Cross-entropy loss
function LCE

Class frequency-based weighting

Inverse frequency weighting LInverse
CE = − 1

N

C
∑

c=1
WInverse

c
N
∑

i=1
gi,c log pi,c

Inverse median weighting LMedian
CE = − 1

N

C
∑

c=1
WMedian

c
N
∑

i=1
gi,c log pi,c

Predictive probability-based
weighting Focal weighting LFocal

CE = − 1
N

C
∑

c=1

N
∑

i=1
WFocal

i,c gi,c log pi,c

Distance map-based weighting
Distance transform map-based weighting LDTM

CE = − 1
N

C
∑

c=1

N
∑

i=1
WDTM

c gi,c log pi,c

Distance penalty term-based weighting LDPT
CE = − 1

N

C
∑

c=1

N
∑

i=1
WDPT

c gi,c log pi,c

Dice lossfunction LDice

Class frequency-based weighting
Inverse frequency weighting LInverse

Dice = 1− 2 ∑C
c=1 WInverse

c ∑N
i=1 gi,c pi,c

∑C
c=1 WInverse

c ∑N
i=1(gi,c+pi,c)

Inverse median weighting LMedian
Dice = 1− 2 ∑C

c=1 WMedian
c ∑N

i=1 gi,c pi,c

∑C
c=1 WMedian

c ∑N
i=1(gi,c+pi,c)

Predictive probability-based
weighting Focal weighting LFocal

Dice = 1−
2 ∑C

c=1 ∑N
i=1 WFocal

i,c gi,c pi,c

∑C
c=1 ∑N

i=1 WFocal
i,c (gi,c+pi,c)

Distance map-based weighting
Distance transform map-based weighting LDTM

Dice = 1−
(

2
C
∑

c=1

N
∑

i=1
gi,c pi,c

)
/
(

2
C
∑

c=1

N
∑

i=1
gi,c pi,c +

C
∑

c=1

N
∑

i=1
WDTM

c (1− gi,c)pi,c +
C
∑

c=1

N
∑

i=1
WDTM

c gi,c(1− pi,c)

)
Distance penalty term-based weighting LDPT

Dice = 1−
(

2
C
∑

c=1

N
∑

i=1
gi,c pi,c

)
/
(

2
C
∑

c=1

N
∑

i=1
gi,c pi,c +

C
∑

c=1

N
∑

i=1
WDPT

c (1− gi,c)pi,c +
C
∑

c=1

N
∑

i=1
WDPT

c gi,c(1− pi,c)

)
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2.4.1. Inverse Frequency Weighting

Inverse frequency weighting [24], which is one of the most common weighting strate-
gies, is a method for weighting each class based on the class frequency. The weight is
inversely proportional to the number of pixels. The smaller the size of target objects is, the
higher the weight of them becomes. The inverse frequency weight WInverse

c in class c is
defined by

WInverse
c =

1(
∑N

i=1 gi,c

)α , (3)

where α is a power parameter. In this study, we used α = 1 for the cross-entropy loss
function and α = 2 for the Dice loss function. The Dice loss function weighted by the
inverse of square frequency is known as generalized Dice loss function [24].

2.4.2. Inverse Median Frequency Weighting

Inverse median frequency weighting [18] is a frequency-based weighting as with
the inverse frequency weighting. The inverse median frequency weight WMedian

c is com-
puted as

Fc =
∑N

i=1 gi,c

N
, (4)

WMedian
c =

median(Fc)

Fc
, (5)

where Fc is the normalized frequency of class c and median(·) denotes a function returning
the median value of input data.

2.4.3. Focal Weighting

Focal weighting [19] is a method for putting more focus on hard-to-classify class
pixels based on predictive probability. It gives a higher weight to class pixels with lower
prediction confidence and reduces the loss assigned to well-classified pixels during the
training process. The focal weighting WFocal

i,c is defined by

WFocal
i,c = (1− pi,c)

γ, (6)

where γ is called a focusing parameter. In this study, we used γ = 2 for cross-entropy loss
function as in [19] and γ = 1 for Dice loss function as in [25]. Note that for simplification,
here, we did not consider the balancing factor α used in [19].

2.4.4. Distance Transform Map-Based Weighting

Distance transform map (DTM), which is computed as the Euclidean distance from the
boundary of target objects, is used in the distance-based loss functions [16,17]. Figure 3b
shows an example of DTM. DTM-based weighting can be performed by multiplying
prediction errors by the DTM. This weighting assigns higher weights to the pixels which
are more distant from the boundary of ground-truth labels. Here, we defined the DTM-
based weight WDTM

c as

DTMc =

{
0, x ∈ ∂Gc
inf

y∈∂Gc
||x− y||2, others (7)

WDTM
c = 1 + DTMc, (8)

where DTMc is the distance transform map in class c, and ∂Gc denotes the boundary of
ground-truth label in class c. ||x− y||2 denotes the Euclidean distance between pixels x
and y in images.
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2.4.5. Distance Penalty Term-Based Weighting

Distance penalty term (DPT) is a distance map for weighting hard-to-segment bound-
ary regions [20], in contrast to the DTM. Let DPTc be the distance penalty term in class
c. Then, DPTc is defined as the inverse of the DTMc, and thus, it puts higher weights on
the pixels closer to the boundary of ground-truth labels in contrast with the DTM-based
weighting. Figure 3c shows an example of DPT. As with the DTM-based weighting, DPT-
based weighting penalizes prediction errors with the DPT. The DPT-based weight WDPT

c is
defined by

WDPT
c = 1 + DPTc. (9)

We used the cross-entropy and Dice loss functions weighted by the above five weight-
ing strategies. Table 1 summarizes the weighted loss functions used in this study. As for
the weighted Dice loss functions, LInverse

Dice , LMedian
Dice , and LFocal

Dice put their weights on both the
numerator and denominator terms as in [24], while LDTM

Dice and LDPT
Dice assign their weights to

the false positive (i.e.,
C
∑

c=1

N
∑

i=1
(1− gi,c)pi,c) and false negative (i.e.,

C
∑

c=1

N
∑

i=1
gi,c(1− pi,c)) terms

in the denominator.

2.5. Evaluation of Loss Weighting Strategies
2.5.1. Dataset

We used the MR images of 84 patients with unruptured cerebral aneurysms, which
were imaged with MRC and time-of-flight MRA sequences on a 3.0 T scanner (Signa HDxt
3.0 T, GE Healthcare, WI, USA) at the University of Tokyo Hospital, Tokyo, Japan. The
MR image volumes had 144–190 slices of 512 × 512 pixels with an in-plane resolution of
0.47 × 0.47 mm2 and a slice thickness of 1.00 mm. As a preprocessing step, the MR images
were normalized to have a mean of 0 and a standard deviation of 1. The dataset consisting
of 84 cases was divided into the following three subsets: training (60 cases), validation
(4 cases), and test subsets (20 cases).

The ground-truth-labeled images for training and testing were manually created by
using an open-source software for medical image processing (3D Slicer, Brigham and
Women’s Hospital, MA, USA); the cerebrum, cerebellum, and brainstem were annotated
on MRC images, while blood vessels were annotated on MRA images. The manual
annotation was performed by a biomedical engineer and a neurosurgeon. Table 2 indicates

the frequency
(

Fc =
N
∑

i=1
gi,c/N

)
of the foreground classes (the cerebrum, cerebellum,

brainstem, and blood vessels) in the training subsets. The cerebrum was the most frequent
in the foreground classes, followed by the cerebellum, brainstem, and blood vessels.
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Table 2. Frequency of the foreground classes in the training subset (n = 60).

Cerebrum Cerebellum Brainstem Blood Vessels

Frequency 0.096 0.012 0.003 0.001

2.5.2. Segmentation Tasks

The goal of this work was to study the effect of loss weightings in different class
imbalance situations. Thus, we evaluated the effect of loss weightings on both binary- and
multi-class segmentation tasks. Table 3 indicates the overview of the training datasets in
the binary- and multi-class segmentation tasks.

Table 3. Training datasets in binary- and multi-class segmentation tasks. BG, CR, CL, BS, and BV
stand for background, cerebrum, cerebellum, brainstem, and blood vessels, respectively.

Dataset Ratio 1

Binary-class segmentation tasks
Dataset 1: Cerebrum BG : CR = 9 : 1
Dataset 2: Cerebellum BG : CL = 86 : 1
Dataset 3: Brainstem BG : BS = 352 : 1
Dataset 4: Blood vessels BG : BV = 749 : 1

Multi-class segmentation tasks
Dataset 1: Three classes BG : CR : BV = 677 : 72 : 1
Dataset 2: Four classes BG : CR : CL : BV = 668 : 72 : 9 : 1
Dataset 3: Five classes BG : CR : CL : BS : BV = 666 : 72 : 9 : 2 : 1

1 Ratio of the number of labeled voxels between foreground classes in each training dataset.

Binary-class segmentation tasks: To test how the effect of loss weightings varies ac-
cording to the size of a foreground class in binary-class segmentation tasks, we evaluated
the segmentation performance on the binary-class segmentation task for each of the fore-
ground classes. Note that the binary-class segmentation tasks for the cerebrum, cerebellum,
and brainstem were performed using MRC images, whereas the binary-class segmentation
for blood vessels was performed using MRA images.

Multi-class segmentation tasks: To test how the effect of loss weightings varies accord-
ing to the imbalance of foreground classes in multi-class segmentation tasks, we evaluated
the segmentation performance on the three-, four-, and five-class segmentation tasks; the
three, four, and five classes include the foreground classes of (cerebrum, blood vessels),
(cerebrum, cerebellum, blood vessels), and (cerebrum, cerebellum, brainstem, blood ves-
sels), respectively. Note that the multi-class segmentation tasks were performed using
multi-modal MR images which included MRC and MRA images.

2.5.3. Network Training Procedure

In the binary- and multi-class segmentation tasks, we trained the FCN model on each
training dataset using the cross-entropy and Dice loss functions with or without the loss
weightings. The FCN model was trained from scratch for 30 epochs with the Adam optimization
algorithm [33] (α (learning rate) = {1e− 3, 1e− 4, and 1e− 5}, β1 = 0.9, β2 = 0.999, and
epsilon = 1e− 7) and a batch size of 5 in each training process. For testing, we used the
best trained model in the set {learning rate, epoch} = {1e− 3, 10}, {1e− 3, 20}, {1e− 3, 30},
{1e− 4, 10}, {1e− 4, 20}, {1e− 4, 30}, {1e− 5, 10}, {1e− 5, 20}, and {1e− 5, 30} because
the condition for good training convergence, especially learning rate and number of epochs,
was different according to the loss weightings.

The FCN model with the weighted loss functions were implemented by using Keras
with Tensorflow backend, and the training and prediction were performed on an Ubuntu
16.04 PC (CPU: Intel Xeon Gold 5222 3.80 GHz, RAM: 384 GB) with NVIDIA Quadro
RTX8000 GPU cards for deep learning.



Healthcare 2021, 9, 938 9 of 23

2.5.4. Evaluation Metrics

To quantitatively evaluate the segmentation performance, we adopted the Dice sim-
ilarity coefficient (DSC), surface DSC (SDSC) [34], average symmetric surface distance
(ASD), and Hausdorff distance (HD). The DSC and SDSC, overlap-based metrics, can be
used for evaluating the region overlaps; the DSC measures the overlap of whole regions
between ground-truth and predicted labels, whereas the SDSC measures the overlap of the
two surface regions. The DSC was calculated by

DSC =
2|G ∩ P|
|G|+ |P| , (10)

where G and P denote the regions of ground-truth and predicted labels, respectively. The
SDSC was calculated by

SDSC =

∣∣∣∂G ∩ B(τ)
∂P

∣∣∣+ ∣∣∣∂P ∩ B(τ)
∂G

∣∣∣
|∂G|+ |∂P| , (11)

where ∂G and ∂P denote the boundaries of ground-truth and predicted labels, respec-
tively. B(τ)

∂G , B(τ)
∂P ⊂ R3 are the border regions of ground-truth and predicted label sur-

faces at tolerance τ, which are defined as B(τ)
∂G =

{
x ∈ R3

∣∣∃y ∈ ∂G,
∣∣∣∣x− y

∣∣∣∣≤ τ
}

and

B(τ)
∂P =

{
x ∈ R3

∣∣∃y ∈ ∂P,
∣∣∣∣x− y

∣∣∣∣≤ τ
}

, respectively [26,34]. We here used τ = 1 mm as
in [26].

The ASD and HD, boundary distance-based metrics, can be used for evaluating the
surface errors; ASD measures the average surface distance between ground-truth and
predicted labels, whereas HD measures the max surface distance between them. The ASD
was calculated by

ASD =
∑x∈∂G D(x, ∂P) + ∑y∈∂G D(y, ∂G)

|∂G|+ |∂P| , (12)

where D(a, A) denote the minimum Euclidean distance from a voxel a to a set of voxels A.
The HD was calculated by

HD = max
{

max
x∈∂G

D(x, ∂P), max
y∈∂P

D(y, ∂G)

}
. (13)

As for HD, in this study, 95th-percentile HD (95HD) was used, as in [27].
When the segmentation accuracy increases, the overlap-based and the boundary

distance-based metrics approach 1 and 0, respectively. The evaluation metrics was imple-
mented using the open-source code, which is available at [35].

Furthermore, we used a rank score, which was defined based on [36], to comprehen-
sively evaluate which loss weightings worked well based on the above metrics, as in [26].
The rank score was computed according to the following steps:

Step 1. Performance assessment per case: compute metrics mi
(
lossj, classk, casel

)
(i = 1, . . . , Nm) of all loss functions lossj (j = 1, . . . , 12) for all classes
classk (k = 1, . . . , Nc) in all test cases casel (l = 1, . . . , 20), where Nm and Nc are
the number of metrics and classes, respectively. Note that in this case, we used four
metrics mi ∈ {DSC, SDSC, ASD, 95HD} and a total of twelve loss functions, in-
cluding cross-entropy and Dice loss functions with no weighting, Inverse, Median,
Focal, DTM, and DPT weightings.

Step 2. Statistical tests: perform Wilcoxon signed-rank pairwise statistical tests between

all loss functions with the values mi
(
lossj, classk, casel

)
−mi

(
loss′j, classk, casel

)
.

Step 3. Significance scoring: compute a significance score sik
(
lossj

)
for loss functions

lossj, classes classk, and metrics mi. sik
(
lossj

)
equals the number of loss functions



Healthcare 2021, 9, 938 10 of 23

performing significantly worse than lossj according to the statistical tests (p < 0.05,
not adjusted for multiplicity).

Step 4. Rank score computing: compute the final rank score R
(
lossj

)
of each loss function

from the mean significance score of all classes and metrics in each of the binary-
and multi-class segmentation tasks by the following equation:

R
(
lossj

)
=

1
Nm × Nc

Nm

∑
i=1

Nc

∑
k=1

sik
(
lossj

)
. (14)

3. Results

We compared the results of loss weightings (inverse frequency weighting (Inverse),
inverse median frequency weighting (Median), focal weighting (Focal), distance transform
map-based weighting (DTM), and distance penalty term-based weighting (DPT)) with those
of no weighting (N/A). The statistical difference between N/A and each loss weighting
was evaluated by the Wilcoxon signed-rank test. A p-value less than 0.05 was considered
significant. Subsequently, we comprehensively evaluated the effect of loss weightings by
using the rank scores.

3.1. Binary-Class Segmentation Tasks

Table 4 summarizes all the results in the binary-class segmentation tasks. Figure 4
shows the violin plots of the Dice scores. As for cross-entropy loss function, Inverse and
Median provided worse results than N/A in any segmentation tasks. Focal, DTM, and DPT
tended to improve the surface accuracy in the highly imbalanced segmentation tasks (i.e.,
segmentation of brainstem and blood vessels) although the improvement was not statisti-
cally significant. As for Dice loss function, Inverse and Median significantly improved the
segmentation accuracy in the highly imbalanced segmentation tasks, compared with N/A.
Focal tended to provide better results than N/A in all the binary-class segmentation tasks.
The distance map-based weightings (i.e., DTM and DPT) worked well in the segmentation
of brain parenchyma, but they were ineffective in the segmentation of blood vessels.

Table 4. Segmentation results of no weighting (N/A), inverse frequency weighting (Inverse), inverse
median frequency weighting (Median), focal weighting (Focal), distance transform map-based weight-
ing (DTM), and distance penalty term-based weighting (DPT) in binary-class segmentation tasks:
Dice similarity coefficient (DSC), surface DSC (SDSC), average symmetric surface distance (ASD)
(mm), and 95th-percentile Hausdorff distance (95HD) (mm). (a) Dataset 1: cerebrum, (b) Dataset 2:
cerebellum, (c) Dataset 3: brainstem, and (d) Dataset 4: blood vessels. The results of background
class are excluded in this table. Compared with the results of N/A, the significantly better and worse
results are shown in bold and italic, respectively (Wilcoxon signed-rank test, p < 0.05, not adjusted
for multiplicity).

Loss Function Weighting DSC SDSC ASD 95HD

(a) Dataset 1: Cerebrum

Cross entropy

N/A 0.987 0.991 0.064 0.287
Inverse 0.970 0.941 0.424 3.504
Median 0.981 0.983 0.135 0.565

Focal 0.986 0.989 0.073 0.397
DTM 0.986 0.990 0.069 0.378
DPT 0.987 0.992 0.059 0.328

Dice

N/A 0.986 0.988 0.102 0.381
Inverse 0.984 0.986 0.275 0.495
Median 0.985 0.990 0.234 0.425

Focal 0.988 0.993 0.054 0.308
DTM 0.987 0.991 0.061 0.364
DPT 0.987 0.992 0.066 0.341
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Table 4. Cont.

Loss Function Weighting DSC SDSC ASD 95HD

(b) Dataset 2: Cerebellum

Cross entropy

N/A 0.978 0.981 0.088 0.669
Inverse 0.954 0.922 0.411 1.755
Median 0.950 0.904 0.525 2.539

Focal 0.976 0.976 0.166 2.430
DTM 0.978 0.978 0.104 0.729
DPT 0.978 0.980 0.089 0.713

Dice

N/A 0.976 0.973 0.221 1.048
Inverse 0.965 0.940 1.934 1.975
Median 0.968 0.950 2.037 4.568

Focal 0.977 0.980 0.101 0.686
DTM 0.974 0.972 0.153 0.878
DPT 0.976 0.975 0.184 2.331

(c) Dataset 3: Brainstem

Cross entropy

N/A 0.963 0.940 0.501 4.676
Inverse 0.933 0.874 1.024 8.518
Median 0.922 0.849 0.849 6.510

Focal 0.962 0.947 0.239 1.362
DTM 0.965 0.951 0.280 1.204
DPT 0.965 0.946 0.425 3.478

Dice

N/A 0.923 0.824 8.880 156.912
Inverse 0.953 0.921 0.476 4.770
Median 0.954 0.926 0.421 3.365

Focal 0.963 0.949 0.241 1.905
DTM 0.961 0.939 0.332 4.268
DPT 0.957 0.936 0.318 1.646

(d) Dataset 4: Blood vessels

Cross entropy

N/A 0.785 0.809 1.415 12.947
Inverse 0.642 0.700 2.008 16.978
Median 0.647 0.690 2.222 18.620

Focal 0.783 0.812 1.351 12.353
DTM 0.786 0.821 1.419 12.243
DPT 0.784 0.824 1.361 12.340

Dice

N/A 0.704 0.767 1.996 16.026
Inverse 0.786 0.826 1.385 13.364
Median 0.768 0.794 1.627 14.597

Focal 0.785 0.812 1.518 13.104
DTM 0.725 0.754 2.400 19.281
DPT 0.648 0.627 5.999 40.077
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Figure 4. Violin plots of the segmentation results (Dice similarity coefficients) of no weighting (N/A), inverse frequency 
weighting (Inverse), inverse median frequency weighting (Median), focal weighting (Focal), distance transform map-
based weighting (DTM), and distance penalty term-based weighting (DPT) in binary-class segmentation tasks. (a) Dataset 
1: cerebrum, (b) Dataset 2: cerebellum, (c) Dataset 3: brainstem, and (d) Dataset 4: blood vessels. Compared with the results 
of N/A, the significantly worse and better results are shown in black and red, respectively (Wilcoxon signed-rank test, *  𝑝 < 0.05, **  𝑝 < 0.01, and ***  𝑝 < 0.001, not adjusted for multiplicity). 

Figure 4. Violin plots of the segmentation results (Dice similarity coefficients) of no weighting (N/A), inverse frequency
weighting (Inverse), inverse median frequency weighting (Median), focal weighting (Focal), distance transform map-based
weighting (DTM), and distance penalty term-based weighting (DPT) in binary-class segmentation tasks. (a) Dataset 1:
cerebrum, (b) Dataset 2: cerebellum, (c) Dataset 3: brainstem, and (d) Dataset 4: blood vessels. Compared with the results
of N/A, the significantly worse and better results are shown in black and red, respectively (Wilcoxon signed-rank test,
* p < 0.05, ** p < 0.01, and *** p < 0.001, not adjusted for multiplicity).

Figure 5 visualizes an example of the segmentation results of blood vessels, which are
the highly imbalanced class, in the binary-class segmentation task. As for the cross-entropy
loss function, N/A had difficulty in segmenting the upper blood vessels. Both Inverse and
Median allowed the FCN to extract most of the upper blood vessels which N/A failed
to segment, but obviously increased the overextraction. Focal provided almost the same
result as N/A. Both DTM and DPT extracted the wider region of blood vessels than N/A.
As for the Dice loss function, N/A had false negatives in the upper blood vessels as with
the cross-entropy loss function. It also provided a few more false positives. The class
frequency-based weightings, especially Inverse, improved the false positives as well as the
false negatives. Focal provided better results than N/A, although it was not so much as
Inverse. The results of the distance map-based weightings, especially DPT, were worse
than that of N/A.
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Figure 5. Visualization of the segmentation results of blood vessels in the binary-class segmentation task. (a) No weighting, 
(b) Inverse frequency weighting, (c) Inverse median frequency weighting, (d) Focal weighting, (e) Distance transform 
map-based weighting, and (f) Distance penalty term-based weighting. 

3.2. Multi-Class Segmentation Tasks 
Table 5 summarizes all the results in the multi-class segmentation tasks. Figure 6 

shows the violin plots of the Dice scores. As for the cross-entropy loss function, Inverse 
and Median, as in the binary-class segmentation tasks, worsened the results in any multi-
class segmentation tasks. The results of Focal, especially surface accuracies, were equiva-
lent to or better than those of N/A in almost all the tasks. In the distance map-based 
weighting, DPT worked well for improvement of segmentation accuracy. As for the Dice 
loss function, Inverse and Median significantly improved the segmentation accuracy of 
blood vessels, which were a very high-level imbalanced class, in any multi-class segmen-
tation tasks. However, Inverse also significantly worsened the segmentation accuracy of 
the cerebrum and cerebellum, which were relatively large-size targets. Focal provided 
better results than N/A for almost all the segmentation targets. The distance map-based 
weightings showed inconsistent results between the multi-class segmentation tasks. 

Figure 7 visualizes an example of the segmentation results in the five-class segmen-
tation task. It shows the false positive and false negative labels as well as the predicted 

Figure 5. Visualization of the segmentation results of blood vessels in the binary-class segmentation task. (a) No weighting,
(b) Inverse frequency weighting, (c) Inverse median frequency weighting, (d) Focal weighting, (e) Distance transform
map-based weighting, and (f) Distance penalty term-based weighting.

3.2. Multi-Class Segmentation Tasks

Table 5 summarizes all the results in the multi-class segmentation tasks. Figure 6
shows the violin plots of the Dice scores. As for the cross-entropy loss function, Inverse and
Median, as in the binary-class segmentation tasks, worsened the results in any multi-class
segmentation tasks. The results of Focal, especially surface accuracies, were equivalent to
or better than those of N/A in almost all the tasks. In the distance map-based weighting,
DPT worked well for improvement of segmentation accuracy. As for the Dice loss function,
Inverse and Median significantly improved the segmentation accuracy of blood vessels,
which were a very high-level imbalanced class, in any multi-class segmentation tasks.
However, Inverse also significantly worsened the segmentation accuracy of the cerebrum
and cerebellum, which were relatively large-size targets. Focal provided better results than
N/A for almost all the segmentation targets. The distance map-based weightings showed
inconsistent results between the multi-class segmentation tasks.
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Table 5. Segmentation results of no weighting (N/A), inverse frequency weighting (Inverse), inverse median frequency weighting (Median), focal weighting (Focal), distance transform
map-based weighting (DTM), and distance penalty term-based weighting (DPT) in the multi-class segmentation tasks: Dice similarity coefficient (DSC), surface DSC (SDSC), average
symmetric surface distance (ASD), and 95th-percentile Hausdorff distance (95HD). (a) Dataset 1: three classes, (b) Dataset 2: four classes, and (c) Dataset 3: five classes. The results of
background class are excluded in this table. Compared with the results of N/A, the significantly better and worse results are shown in bold and italic, respectively (Wilcoxon signed-rank
test, p < 0.05, not adjusted for multiplicity).

(a) Dataset 1: Three Classes

Loss Function Weighting
Cerebrum Blood Vessels

DSC SDSC ASD 95HD DSC SDSC ASD 95HD

Cross entropy

N/A 0.979 0.965 0.507 5.635 0.778 0.810 1.926 17.142
Inverse 0.967 0.956 0.265 1.256 0.618 0.662 2.448 20.272
Median 0.970 0.969 0.239 1.273 0.675 0.740 1.901 17.298

Focal 0.979 0.989 0.093 0.585 0.796 0.843 1.195 12.933
DTM 0.979 0.989 0.092 0.585 0.788 0.848 1.097 10.539
DPT 0.984 0.992 0.069 0.492 0.795 0.836 1.198 11.321

Dice

N/A 0.985 0.990 0.266 0.445 0.771 0.833 1.225 11.276
Inverse 0.896 0.634 2.290 17.436 0.800 0.842 1.177 11.325
Median 0.985 0.986 0.109 0.479 0.809 0.848 1.172 11.654

Focal 0.985 0.984 0.147 0.415 0.780 0.821 1.525 14.393
DTM 0.984 0.991 0.068 0.492 0.760 0.817 1.354 11.769
DPT 0.986 0.992 0.245 0.408 0.759 0.816 1.346 12.316

(b) Dataset 2: Four classes

Loss Function Weighting
Cerebrum Cerebellum Blood Vessels

DSC SDSC ASD 95HD DSC SDSC ASD 95HD DSC SDSC ASD 95HD

Cross entropy

N/A 0.985 0.994 0.057 0.469 0.978 0.981 0.082 0.670 0.792 0.834 1.209 11.215

Inverse 0.966 0.963 0.221 1.015 0.939 0.890 0.472 1.911 0.623 0.668 2.375 19.928
Median 0.970 0.968 0.221 1.009 0.954 0.938 0.279 1.397 0.674 0.738 1.860 17.051

Focal 0.980 0.990 0.087 0.575 0.979 0.982 0.082 0.635 0.783 0.836 1.168 11.228
DTM 0.986 0.994 0.059 0.408 0.977 0.979 0.142 2.019 0.781 0.827 1.247 11.639
DPT 0.982 0.992 0.069 0.505 0.980 0.986 0.065 0.579 0.791 0.842 1.138 11.197

Dice

N/A 0.986 0.993 0.060 0.338 0.975 0.971 0.329 2.370 0.766 0.821 1.246 11.110
Inverse 0.163 0.066 18.575 81.644 0.960 0.949 0.314 3.939 0.799 0.840 1.192 12.014
Median 0.980 0.984 0.155 0.524 0.973 0.972 0.234 2.578 0.780 0.818 1.306 12.029

Focal 0.987 0.994 0.052 0.352 0.980 0.986 0.067 0.543 0.791 0.834 1.233 11.518
DTM 0.971 0.963 0.198 1.061 0.956 0.933 0.449 3.654 0.610 0.630 5.309 34.425
DPT 0.985 0.992 0.064 0.505 0.978 0.981 0.085 0.593 0.786 0.827 1.289 12.360
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Table 5. Cont.

(c) Dataset 3: Five classes

Loss Function Weighting
Cerebrum Cerebellum

DSC SDSC ASD 95HD DSC SDSC ASD 95HD

Cross entropy

N/A 0.981 0.991 0.083 0.552 0.977 0.980 0.127 0.855

Inverse 0.971 0.973 0.179 0.846 0.950 0.926 0.346 1.492
Median 0.979 0.987 0.104 0.609 0.958 0.949 0.253 1.252

Focal 0.985 0.993 0.060 0.469 0.979 0.984 0.107 0.634
DTM 0.980 0.990 0.085 0.552 0.979 0.982 0.093 0.898
DPT 0.982 0.993 0.069 0.502 0.980 0.985 0.070 0.624

Dice

N/A 0.986 0.993 0.074 0.338 0.977 0.982 0.084 0.618
Inverse 0.000 0.000 - - 0.955 0.946 0.221 1.405
Median 0.984 0.988 0.107 0.502 0.974 0.975 0.171 1.164

Focal 0.987 0.995 0.052 0.291 0.980 0.986 0.065 0.567
DTM 0.986 0.993 0.068 0.361 0.978 0.983 0.082 0.608
DPT 0.985 0.992 0.098 0.445 0.974 0.977 0.095 0.747

Loss Function Weighting
Brainstem Blood Vessels

DSC SDSC ASD 95HD DSC SDSC ASD 95HD

Cross entropy

N/A 0.961 0.942 0.266 2.083 0.790 0.846 1.084 10.471
Inverse 0.944 0.937 0.371 1.302 0.712 0.778 1.524 14.184
Median 0.949 0.928 0.415 1.528 0.686 0.721 1.920 17.233

Focal 0.962 0.947 0.267 1.495 0.782 0.830 1.263 12.068
DTM 0.966 0.946 0.291 2.362 0.783 0.840 1.163 11.097
DPT 0.964 0.952 0.203 1.343 0.797 0.855 1.059 10.703

Dice

N/A 0.960 0.934 0.389 2.174 0.774 0.828 1.234 11.574
Inverse 0.961 0.941 0.391 2.374 0.801 0.836 1.196 12.002
Median 0.962 0.941 0.344 2.329 0.788 0.829 1.200 10.648

Focal 0.963 0.952 0.235 1.262 0.783 0.828 1.300 12.835
DTM 0.964 0.944 0.217 1.288 0.773 0.831 1.221 11.280
DPT 0.960 0.929 0.394 3.759 0.757 0.801 1.869 18.269
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Figure 6. Violin plots of the segmentation results (Dice similarity coefficients) of no weighting (N/A), inverse frequency 
weighting (Inverse), inverse median frequency weighting (Median), focal weighting (Focal), distance transform map-
based weighting (DTM), and distance penalty term-based weighting (DPT) in multi-class segmentation tasks. (a) Dataset 
1: three classes, (b) Dataset 2: four classes, and (c) Dataset 3: five classes. Compared with the results of N/A, the signifi-
cantly worse and better results are shown in black and red, respectively (Wilcoxon signed-rank test, *  𝑝 < 0.05, **  𝑝 <0.01, and ***  𝑝 < 0.001, not adjusted for multiplicity). 

Figure 6. Violin plots of the segmentation results (Dice similarity coefficients) of no weighting (N/A), inverse frequency
weighting (Inverse), inverse median frequency weighting (Median), focal weighting (Focal), distance transform map-based
weighting (DTM), and distance penalty term-based weighting (DPT) in multi-class segmentation tasks. (a) Dataset 1: three
classes, (b) Dataset 2: four classes, and (c) Dataset 3: five classes. Compared with the results of N/A, the significantly
worse and better results are shown in black and red, respectively (Wilcoxon signed-rank test, * p < 0.05, ** p < 0.01, and
*** p < 0.001, not adjusted for multiplicity).

Figure 7 visualizes an example of the segmentation results in the five-class segmenta-
tion task. It shows the false positive and false negative labels as well as the predicted labels.
False positives were likely to appear around the surface of the cerebrum, cerebellum, and
brainstem, while false negatives tended to appear in the upper part of blood vessels. As for
the cross-entropy loss function, Inverse and Median reduced the false negatives, but more
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than that, they greatly increased the false positives. Focal worked well for a reduction in
the false positives, although it did not reduce the false negatives. The results of the distance
map-based weightings showed that DPT was a little effective in reducing the false positives
and false negatives. As for Dice loss function, Inverse reduced the false negatives in blood
vessels, although it failed to segment the whole cerebrum. Median worked to reduce the
false negatives in blood vessels, as with Inverse. Focal slightly reduced the false positives.
DTM and DPT seemed to provide almost the same results as N/A.
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Figure 7. Visualization of the segmentation results in the five-class segmentation task. (a) No weighting, (b) inverse frequency
weighting, (c) inverse median frequency weighting, (d) focal weighting, (e) distance transform map-based weighting, and
(f) distance penalty term-based weighting. The segmentation results include the predicted results (left), the false positives
(middle), and the false negatives (right). Note that in the result of Dice loss function with inverse frequency weighting, there
are no true positive voxels in the cerebrum class and most of the background region were overestimated as the cerebrum
class, but the false positives and false negatives in the cerebrum class were excluded from the figure for better visualization.
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3.3. Rank Scoring

Table 6 indicates the ranking results of loss weightings in the binary- and multi-class
segmentation tasks. The distance map-based weightings for cross-entropy loss function and
the predictive-probability weighting for Dice loss function tended to have high rank scores
in both the binary- and multi-class segmentation tasks. In the binary-class segmentation
tasks, the Dice loss function with Focal showed the best ranking result. It actually obtained
a high average DSC and SDSC of 92.8% and 93.3%, respectively. Compared with no
weighting, it improved the DSC and SDSC values of all tasks by 0.2–8.1% and 0.5–12.5%,
respectively. In the multi-class segmentation tasks, the cross-entropy loss function with
DPT had the highest rank score, followed by the Dice loss function with Focal. In the
five-class segmentation task, DPT achieved the highest average DSC and SDSC values of
93.1% and 94.6%, respectively.

Table 6. Ranking results of no weighting (N/A), inverse frequency weighting (Inverse), inverse median frequency weighting
(Median), focal weighting (Focal), distance transform map-based weighting (DTM), and distance penalty term-based
weighting (DPT) in (a) binary-class segmentation tasks and (b) multi-class segmentation tasks. The best results are shown in
bold. The rank is determined based on the rank scores of segmentation results on all datasets.

(a) Binary-Class Segmentation Tasks

Loss Function Weighting
Rank Score

RankDataset 1:
Cerebrum

Dataset 2:
Cerebellum

Dataset 3:
Brainstem

Dataset 4:
Blood Vessels All

Cross entropy

N/A 5.25 7.25 3.25 6.00 5.44 4
Inverse 0.00 2.25 1.25 1.25 1.19 11
Median 1.50 0.75 0.50 0.75 0.88 12

Focal 3.50 4.00 6.00 6.00 4.88 5
DTM 4.25 6.25 6.50 6.00 5.75 2
DPT 5.5 6.25 4.50 6.00 5.56 3

Dice

N/A 2.75 4.00 0.00 2.50 2.31 10
Inverse 1.75 1.50 3.00 5.50 2.94 8
Median 1.75 1.00 3.50 3.75 2.50 9

Focal 8.5 4.50 6.50 4.75 6.06 1
DTM 4.5 4.25 4.25 1.75 3.69 6
DPT 5.25 4.00 4.00 0.00 3.31 7

(b) Multi-class segmentation tasks

Loss Function Weighting
Rank Score

RankDataset 1:
Three Classes

Dataset 2:
Four Classes Dataset 3: Five Classes All

Cross entropy

N/A 1.50 5.75 4.13 4.08 6
Inverse 0.63 0.83 0.81 0.78 12
Median 1.25 1.92 0.81 1.28 11

Focal 4.88 4.67 4.19 4.50 4
DTM 5.63 5.25 3.69 4.64 3
DPT 6.75 6.17 6.63 6.50 1

Dice

N/A 4.63 4.58 3.69 4.19 5
Inverse 2.88 2.17 1.38 1.97 10
Median 6.00 3.67 2.56 3.69 8

Focal 3.63 7.50 6.75 6.31 2
DTM 4.63 0.67 4.75 3.36 9
DPT 4.88 4.67 2.44 3.72 7

4. Discussion

We evaluated the effect of loss weightings on the segmentation of the cerebrum,
cerebellum, brainstem, and blood vessels from the MR images. From the segmentation
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results with the non-weighted loss functions, we found that the segmentation errors of
the cerebrum, cerebellum, and brainstem, including false positives and false negatives,
were concentrated at the edges of them, whereas the segmentation errors of blood vessels,
especially false negatives, appeared in the upper part of them. This is probably because the
edges of brain parenchyma or the upper blood vessels were variable according to the cases
and the FCN was biased toward training image features on easier-to-segment majority
regions. Thus, in order to improve the brain structure segmentation, it would be important
to make the FCN focus on training image features around the edge of brain parenchyma
and in the upper part of blood vessels by loss weightings. We discuss the effect of loss
weightings based on the results in the binary- and multi-class segmentation tasks below.
Subsequently, we also discuss the limitations of this study.

4.1. Binary-Class Segmentation Tasks

As for the cross-entropy loss function, the class frequency-based weightings (Inverse
and Median) greatly increased false positives. They assign a lower uniform weight to the
loss of larger-size classes, i.e., background class in the case of binary-class segmentation
tasks. They gave a low uniform weight to low-confidence background pixels near the
edge of the foreground, which would result in a large increase in false positives on the
low-confidence background pixels, although they could also help reduce false negatives.
On the other hand, the predictive probability- and the distance map-based weightings
tended to improve the surface accuracy of highly imbalanced classes, i.e., the brainstem and
blood vessels. Different from the class frequency-based weighting, they assign a different
weight to each pixel. Using such pixel-wise weights instead of uniform weights may be
appropriate for imbalanced segmentation because FCNs do not focus equally on all the
pixels of the same class during training. The predictive-probability-based weighting (Focal)
gives higher weights to pixels with lower prediction confidences based on the predictive
probability and helps correct pixels misclassified with low prediction confidence, whereas
the distance map-based weightings (DTM and DPT) define pixel-wise weights based on
the distance from the edge of ground-truth labels and help correct surface segmentation
errors. Thus, it is considered that these loss weightings could correct the surface error
because pixels around the edge of foreground class were subject to be misclassified with
low prediction confidence in the highly imbalanced segmentation tasks.

As for the Dice loss function, the class frequency-based weightings significantly
improved the accuracy in the highly imbalanced segmentation tasks, although they did
not work well for the cross-entropy loss function. They assigned the weight to both
the denominator and numerator for the Dice loss function, which would allow the FCN
to reduce false negatives without increasing false positives. The predictive probability-
based weighting, which showed the best performance in Table 6, worked well for the
low- and middle-level imbalanced segmentation tasks as well as the highly imbalanced
segmentation tasks. This can be explained by the fact that the FCN with the Dice loss
function had more pixels misclassified with low prediction confidence in the low- and
middle-level imbalanced segmentation tasks, compared with that of the cross-entropy loss
function. Additionally, the distance map-based weightings tended to improve the surface
accuracy in the brain parenchyma segmentation. However, they were ineffective in the
segmentation task of blood vessels. As shown in [16], in the case of the segmentation of
objects which have variable locations and shapes, they might be able to work stably by
using a scheduling strategy, i.e., gradually increasing the weight to the mismatched region
with the training epochs.

4.2. Multi-Class Segmentation Tasks

The binary-class segmentation tasks included the class imbalance problem between
background and foreground classes, whereas the multi-class segmentation tasks, which
deal with two or more foreground classes, included the class imbalance problems not
only between background and foreground classes but also among foreground classes.
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However, the results in the multi-class segmentation tasks showed similar tendencies to
those in the binary-class segmentation tasks, although some of them were affected by the
foreground–foreground class imbalance.

The class frequency-based weightings failed to improve the segmentation performance
of the FCN with the cross-entropy loss function in any multi-class segmentation tasks
because they greatly increased false positives by assigning an extremely low weight to the
background pixels. For the Dice loss function, they also worked negatively for the low- and
middle-level imbalanced classes. Especially in the five-class segmentation task, Inverse
could not segment the cerebrum at all due to the foreground–foreground class imbalance.
However, it also provided the best DSC value for blood vessels. Thus, the class frequency-
based weightings could work well for only objects with very high imbalance because
of their extreme weighting in any segmentation tasks. The predictive probability-based
weighting totally worked well for both the cross-entropy and Dice loss functions. These
results suggested that despite the foreground–foreground class imbalance, it could enable
FCNs to focus on the pixels misclassified with low prediction confidence, i.e., hard-to-
segment pixels, by considering the predictive probability. As well, the distance map-based
weightings tended to provide good segmentation results for the cross-entropy loss function.
In particular, the cross-entropy loss function with DPT achieved the best performance as
indicated in Table 6b. However, the distance map-based weightings provided unstable
segmentation results for the Dice loss function. In this study, although we designed the Dice
loss function with the distance map-based weightings by multiplying the false positive and
false negative terms in the denominator by the weights, using a scheduling strategy might
make the effect of the distance map-based weightings more stable, as mentioned above.

Therefore, the cross-entropy loss function with DPT and the Dice loss function with
Focal achieved relatively high accuracy in any segmentation targets and tasks, but some
other weightings outperformed their weightings according to segmentation targets. For
example, the Dice loss function with Inverse provided better DSC and SDSC results for
blood vessels than that with Focal. Therefore, in this study, we focused on the unary
weighted loss functions instead of compound loss functions, but considering the difference
of features in loss weightings, the combination of different weighted loss functions might
lead to the further improvement of segmentation performance.

4.3. Limitations

For limitations of this work, we adopted the segmentation of brain parenchyma and
blood vessels on MRC and MRA images, which is performed as a routine work in our group.
However, the effect of loss weightings might depend on segmentation targets and tasks,
although the results in this study reflected the features of loss weightings. Considering
a wider range of applications, we should test the loss weightings in other brain structure
segmentation tasks (e.g., the segmentation of white matter, gray matter, and cerebrospinal
fluid on T1-weighted MR images). Second, we used the 2D U-Net architecture to investigate
the effect of loss weightings with less hyperparameters. However, we would need to test
3D FCNs with the weighted loss functions, because they have been applied for volumetric
brain structure segmentation. Moreover, we set default parameters for loss weightings
(e.g., the focusing parameter for focal weighting) based on the previous studies, but tuning
such parameters would enable the performance improvement of FCNs. Furthermore, in
this study, we focused on segmenting brain structures, including blood vessels, from the
MR images of patients with cerebral aneurysms, but considering the clinical practice, it
would be desired to automatically detect the location of aneurysms, as in [37], in addition
to the segmentation.

5. Conclusions

This paper investigated how the loss weightings work for FCN-based brain structure
segmentation on MR images in different class imbalance situations. Using the 2D U-Net
with cross-entropy or Dice loss functions as a baseline network, we tested the five loss
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weightings, which were defined based on class frequency, predictive probability, and
distance map, in the binary- and multi-class brain structure segmentation on MRC and
MRA images. From the experimental results, we found that the cross-entropy loss function
with the distance map-based weightings, especially distance penalty term-based weighting,
and the Dice loss function with the predictive probability-based weighting could stably
provide good segmentation results. In the binary-class segmentation tasks, the Dice loss
function with focal weighting showed the best performance and achieved a high average
DSC of 92.8%, whereas in the multi-class segmentation tasks, the cross-entropy loss function
with distance penalty term-based weighting provided the best performance. It achieved
the highest average DSC of 93.1% in the five-class segmentation task. We also found that
their weighted loss functions were relatively robust to the foreground–foreground class
imbalance as well as the background–foreground class imbalance. In other words, the
experimental results suggested that they could work well in the situations of both binary-
and multi-class segmentation. Therefore, it may be effective to use the distance penalty
term-based weighting in the cross-entropy loss function and the focal weighting in the Dice
loss function. We believe that these findings would help to select weighting strategies for
loss functions or design advanced loss weighting strategies.

In future work, for clinical application, we will address the detection and segmentation
of a diseased area that is more highly imbalanced, such as a cerebral aneurysm, as well
as its surrounding structures, by using the loss weighting strategies. Moreover, we will
design compound loss functions (i.e., combination among the loss weightings) and further
investigate the effect of them for different brain structure segmentation tasks.
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