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THE BIGGER PICTURE Colorectal cancer is a significant global public health issue, and accurately predict-
ing its recurrence remains a challenge despite advances in screening and treatment. Accurate recurrence
prediction is crucial for clinicians to make informed decisions about treatment and follow-up care, leading
to timely interventions that may improve outcomes and potentially prolong survival. In this study, we pre-
sent a method that combines immune cell information with clinical data to enhance the accuracy of recur-
rence risk prediction. The predictive performance of the method was validated using two independent co-
horts of patients with colorectal cancer of different races. Our approach has implications for both clinical
practice and research, as it helps to suggest treatment strategies by predicting recurrence risk and identi-
fying potential therapeutic targets based on immune cell information.

Development/Pre-production:Data science output has been
rolled out/validated across multiple domains/problems
SUMMARY
Predicting cancer recurrence is essential to improving the clinical outcomes of patients with colorectal can-
cer (CRC). Although tumor stage information has been used as a guideline to predict CRC recurrence, pa-
tients with the same stage show different clinical outcomes. Therefore, there is a need to develop a method
to identify additional features for CRC recurrence prediction. Here, we developed a network-integrated mul-
tiomics (NIMO) approach to select appropriate transcriptome signatures for better CRC recurrence predic-
tion by comparing the methylation signatures of immune cells. We validated the performance of the CRC
recurrence prediction based on two independent retrospective cohorts of 114 and 110 patients. Moreover,
to confirm that the prediction was improved, we used both NIMO-based immune cell proportions and
TNM (tumor, node, metastasis) stage data. This work demonstrates the importance of (1) using both immune
cell composition and TNM stage data and (2) identifying robust immune cell marker genes to improve CRC
recurrence prediction.
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INTRODUCTION

Amajor challenge in cancer treatment is the prediction of cancer

recurrence. This is especially important for colorectal cancer

(CRC), since CRC is the second leading cause of cancer-associ-

ated deaths in the USA.1 Traditional tumor staging systems,

which consider tumor burden (T), cancer cells in lymph nodes

(N), and distant metastasis (M), have been the most reliable

and frequently used strategies to predict recurrence in patients

with CRC.2 However, the clinical outcomes of patients with

CRC with the same TNM stage vary significantly,2–7 suggesting

that additional parameters may be required to improve the pre-

diction of recurrence for patients with CRC.

An emerging feature for predicting cancer recurrence is the tu-

mor microenvironment.8 Indeed, infiltration of immune cells was

found to be a strong predictor of clinical outcome-related fac-

tors, such as prognosis and cancer recurrence in patients with

CRC.2,4–7,9–11 For example, dense infiltration of memory T cells

is correlated with a lower incidence of tumor recurrence in

patients with CRC,7 suggesting that accurate estimation of infil-

trated immune cell levels can be leveraged for clinical usage.

Accordingly, numerous methods have been developed that

aim to detect immune infiltrates, ranging from conventional im-

munostaining-based cell counting methods to omics-based im-

mune cell deconvolution methods.12,13 Detection of immune cell

infiltrates depends on lists of marker genes (immune cell signa-

ture genes)14–16; therefore, carefully selected immune signature

genes are needed to predict recurrence in patients with CRC.

Integrating multiple omics layers provides a unique opportu-

nity to help detect immune cell signature genes. Previous studies

found that multiomics factors are predictive of immune-related

adverse events caused by immune checkpoint inhibitors.17

Moreover, Webber et al. found that a multiomics gene module

detected by integrating protein, mutation, copy number, methyl-

ation, and expression-level data was highly predictive of drug

response.18 Similarly, a multiomics-based neural network model

wasmore predictive of anticancer treatment responses than sin-

gle omics-based models,19 suggesting the importance of utiliz-

ing multiple omics layers for identifying important gene markers.

Altogether, the integration of multiomics data can help detect

robust signals, although it is still unclear whether incorporating

various omics layers can improve immune cell deconvolution.

Along with a multiomics approach, network-based methods

can be applied to successfully identify immune cell signature

genes. We recently reported that protein-protein interaction

(PPI) networks can be leveraged to identify biomarkers associ-

ated with drug sensitivity from the pharmacogenomics data of

patient-derived cancer organoids.20 Because previous studies

have shown that the genes that are proximal to each other in a

PPI network are associated with similar phenotypes,21,22 it is

highly likely that signature genes associated with a cell type

would also form clusters in a PPI network. However, a method

that utilizes both multiomics data and a network-based

approach to identify immune cell signature genes has not been

explored.

In this study, we present a network-integrated multiomics

(NIMO) approach to identify immune cell marker genes for

immune cell deconvolution. Using NIMO marker genes, we pre-

dicted cancer recurrence using the NIMO approach in two retro-
2 Patterns 4, 100736, June 9, 2023
spective studies of 114 and 110 patients with CRC. We found

statistically significant improvement in prediction when using

both TNM stage and immune infiltrate composition data inferred

from the NIMO-based approach compared with prediction using

only TNM stage data. Specifically, prediction improvements

were observed in terms of accuracy, precision, recall, and F1

score, which suggests that improvements were made by

increased prediction of true positives and true negatives. Among

the 22 immune cell types considered, we found that high propor-

tions of regulatory T (Treg) cells andM2macrophages were asso-

ciated with recurrence in our CRC dataset. We also observed the

cooccurrence of Treg cells and M2 macrophages and mutually

exclusive patterns between Treg cells and M1 macrophages

and Treg cells and CD8 T cells; these results suggest that our im-

mune gene signature accurately identified known crosstalk be-

tween immune cells. Additionally, we found that the expression

level of NIMO-based Treg cell markers correlated with that of

FOXP3, a known marker of Treg cells, in external CRC single-

cell RNA sequencing data, supporting the idea that our proced-

ure for the selection of immune cell signature genes can identify

robust immune cell markers. Altogether, our results indicate the

importance of (1) understanding the immune cell composition

and (2) using an appropriate procedure to select immune cell

signature genes to improve the prediction and understanding

of recurrence in patients with CRC.

RESULTS

NIMO-based immune cell composition information
combined with TNM stage data improves the prediction
of recurrence in patients with CRC
We curated a retrospective cohort of 114 patients with CRC

(Samsung Medical Center [SMC] cohort), composed of 47 pa-

tients with cancer recurrence and 67 patients without recurrence

(Figure S1). To identify the immune cell composition in patients

with CRC using bulk RNA sequencing data, we first detected im-

munecell-specificmarker genes.Wedesignedacustom immune

cell signature gene detection method that utilizes a NIMO

approach (Figure 1A). Briefly, we first filtered transcriptome-

based immune cell signatures by comparing the methylation-

based immune cell signatures. Among the transcriptome-based

signature genes from Newman et al. (LM22),12 we filtered genes

whoseproximalCpGsiteswere included in the signatureCpGsof

Chakravarthy et al.13 (see experimental procedures). Addition-

ally, we further included differentially expressed genes (DEGs)

that were first neighbors in the PPI network to the genes selected

in the previous procedure. The selected genes for each immune

cell type are provided in Figure S2. The selected genes were then

used to determine immune cell proportions in patients with CRC.

To validate the gene sets generated by the NIMO approach,

we examined whether the identified signatures covered markers

of various immune cell types. We conducted enrichment tests

of TM signatures with and without network expansion on

known cell-type markers using the following two databases:

CellMarker23 and PanglaoDB.24 Our findings indicate that TM

signatures with network expansion were significantly enriched

in markers of all cell types (Figure S3; p < 0.05, hypergeometric

test), whereas TM signatures without network expansion did not

show significant enrichment. For instance, TM signatures with
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Figure 1. Overview of the NIMO approach and the ability of the NIMO approach and other immune cell signatures to predict CRC recurrence

(A) Immune cell markers were curated from Newman et al. (LM22) and Charkravarthy et al. for transcriptome (T)- and methylome (M)-based signatures,

respectively. The T and M signature genes that were determined to have regulatory relationships were further identified (TM signature genes; 46 genes). The first

neighbors of the TM signature genes that were included in the T signature were chosen as NIMO signature genes.

(B and C) CRC recurrence in the SMC cohort (recurrence: 47, nonrecurrence: 67) was predicted using the LM22, Charkravarthy et al., or NIMO signatures for

immune cell deconvolution.

(D and E) CRC recurrence of the GEO: GSE107422 cohort (recurrence: 38, nonrecurrence: 72) was predicted using LM22 or NIMO signatures for immune cell

deconvolution. Deconvolution using the M-based signature, Charkravarthy et al., was not available since methylation data for the GEO: GSE107422 cohort were

not reported. Statistical differences in prediction performances were measured by the Mann-Whitney U test.

See also Figures S1–S7.
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Figure 2. Prediction of CRC recurrence using immune cell proportions inferred from NIMO signature gene and TNM stage data

(A) Prediction of CRC recurrence from estimated immune cell proportions. Immune cell proportions were estimated using the immune cell gene signature inferred

from the NIMO-based approach as an input for cell-type deconvolution. The following 22 target immune cell types were used in the analysis: B cells (naive,

memory, and plasma cells); monocytes; macrophages (M0, M1, and M2); T cells (CD4memory resting, CD4memory activated, CD4 naive, Treg, follicular helper,

CD8, and gd); NK cells (resting and activated); mast cells (resting and activated); dendritic cells (resting and activated); neutrophils; and eosinophils.

(legend continued on next page)
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network expansion effectively covered macrophage marker

genes annotated in PanglaoDB (17 genes, p = 6.33 10�11), while

those without expansion did not exhibit significant enrichment (1

gene, p = 0.84).

We also examined whether NIMO signature gene expression

was significantly correlated with DNA methylation (Figure S4).

Our analysis revealed that the gene sets selected by the NIMO

approach (TM signature) contained significantly more genes

with a negative correlation between expression and methylation

than the filtered gene set (T-TM signature) (p = 2.6 3 10�3,

Fisher’s exact test). These findings suggest that the NIMO

approach effectively filtered out transcripts regulated by DNA

methylation to a certain extent, although not completely.

We found that the selection of immunecell signature geneshad

a significant impact on the ability to predict CRC recurrence. To

evaluate the prediction performance, we used transcriptome-

and methylome-based immune cell markers from Newman

et al. (LM22)12 andChakravarthy et al.,13 respectively, to estimate

immune cell proportions. We conducted cross-validation using

four different machine learning models (support vector machine,

extra trees, random forest, and logistic regressionmodels) andan

ensemble model that integrated prediction results into a single

classifier. We evaluated prediction performance using measures

such as the area under the receiver operating curves (AUC), ac-

curacy, precision, recall, and F1 score. We observed that the

ensemblemodel outperformedall the individualmachine learning

(ML) models (Figure S5) and selected it for further analyses.

We found that neither the LM22 markers nor the Chakravarthy

et al. markers were strong predictors of CRC recurrence. The

average AUC using the NIMO markers was 0.74, whereas those

using the LM22 and Chakravarthy et al. markers were 0.56 and

0.52, respectively (Figure 1B). This suggests that the selection

of immune cell signature genes is critical for accurately esti-

mating immune cell proportions and predicting cancer recur-

rence. The more robust prediction performance of NIMO

compared with the transcriptome- and methylome-based

marker sets was consistent across other performance measures

(Figures 1C and S6). We also confirmed that the NIMO markers

outperformed transcriptome- and methylome-based markers

even when recurrence prediction was performed by classifying

patients with CRC by stage (Figure S7). In summary, our results

highlight the importance of selecting appropriate immune cell

marker genes for the accurate prediction of CRC recurrence.

We validated the performance of NIMO markers to predict

cancer recurrence using an independent cohort of 110 patients

with CRC (GSE107422),25 composed of 38 patients with recur-

rence and 72 patients without recurrence.We found that immune

cell proportions inferred by the NIMO markers predicted CRC

recurrence better than those based on LM22 markers. Specif-

ically, we enumerated immune cell proportions using immune

cell markers derived from NIMO and the transcriptome-based

approach (LM22). Then, we predicted CRC recurrence using

the cell proportions. The AUCs of NIMO (0.62) were significantly

higher than those of LM22 (0.55) (Figure 1D; Mann-Whitney U
(B) CRC recurrence prediction was measured in terms of the following five diffe

recall, and F1 score. CRC recurrence was predicted by using TNM stage data and

were measured by the Mann-Whitney U test.

See also Figures S8 and S9.
test, p = 6.6 3 10�19). The accuracy, precision, recall, F1 score,

and disease-free survival consistently showed the stronger per-

formance of NIMO (Figures 1E and S8). These results suggest

that NIMO is a robust approach to predicting CRC recurrence

across independent cohorts.

Next, we investigated whether including immune cell compo-

sition could enhance the predictive power of TNM stage data.

Our analysis revealed a significant improvement in prediction

performance when both TNM stage and immune cell proportions

were used compared with the predictions relying on TNM stage

data alone (Figure 2A). This improvement was consistently

observed across various performance metrics, including AUC,

accuracy, precision, recall, and F1 score (Figure 2B; Mann-

Whitney U test, p <0.05 considered significant). We also

compared the performance improvement in our model using im-

mune cell composition with that using the expression of all

genes. Interestingly, we found that the model incorporating im-

mune cell composition inferred from gene expression outper-

formed the model using the expression of all genes (Figure S9).

These findings strongly suggest that considering immune cell

composition, in addition to TNM stage data, is crucial for accu-

rately predicting CRC recurrence.

Association of inferred immune cell proportions and
clinical features with CRC recurrence
Motivated by the ability to predict CRC recurrence, we investi-

gated the associations between inferred immune cell propor-

tions and clinical phenotypes of CRC. We found that a high

proportion of Treg cells and a high proportion of T follicular helper

cells were the most significantly associated with recurrence and

no recurrence, respectively, in CRC (Figure 3). We also found

that macrophages were significantly associated with CRC

recurrence (Mann-Whitney U test, p < 0.05). Accordingly, we

observed that the abundance of M1 macrophages was signifi-

cantly higher in patients with CRC without recurrence, whereas

there was a significantly higher amount of M2 macrophages de-

tected in theCRC recurrence patient group (Figure 3). Consistent

with our results, high proportions of M1 and M2 macrophages

were previously reported to be associated with favorable and

poor prognosis in CRC, respectively.26 We found that when us-

ing signatures from LM22, the significance of differences in Treg
cell and M1 macrophage fractions between patients with and

without recurrence was reduced (Figure S10), suggesting that

important cues of the tumor microenvironment may be lost

when using less optimal signature genes for deconvolution. We

also observed significantly higher proportions of resting mast

cells and monocytes in patients with recurrent CRC and higher

proportions of follicular helper T cells and activated CD4memory

T cells in patients with CRC without recurrence. Finally, we

observed a higher proportion of CD8 T cells in patients with

CRC without recurrence, although the difference failed to meet

statistical significance.

Given the highly heterogeneous nature of patients with

CRC,27–31 we further aimed to subclassify patients with CRC
rent metrics for evaluating predictive performance: AUC, accuracy, precision,

/or immune cell proportions. Statistical differences in prediction performances

Patterns 4, 100736, June 9, 2023 5



Figure 3. Association of immune cell propor-

tions with CRC recurrence

Statistical differences in immune cell proportions

between patients with CRC with and without

recurrence were measured by the Mann-Whitney U

test. Red and green dots indicate higher percent-

ages of leukocytes in patients with CRC with and

without recurrence, respectively. p values less than

0.05 were considered significant. Immune cell

compositions were inferred using the NIMO sig-

natures.
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with and without recurrence into homogeneous subgroups using

both clinical features and NIMO signature-based immune cell

proportions. Using hierarchical clustering (see experimental pro-

cedures), wewere able to detect three homogeneous subgroups

within patients with CRCwith recurrence and without recurrence

(Figure 4A). Within the CRC subgroups, we found that our in-

ferred immune cell proportions were in line with the expression

of known immune cell markers. Specifically, we found that the

N1 subgroup had significantly higher CD8 T cells than the group

of patients with recurrence (Figure 4B; Mann-Whitney U test, p =

3.9 3 10�5). When testing for differential gene expression, we

observed that known CD8 T cell markers,32 including GZMB,

GZMA, CD8A, and PRF1, were all significantly overexpressed

in the N1 group (Figure 4B). Moreover, our analysis indicated

that M1 macrophages in the R2 group were depleted compared

with those in the groups of patients without recurrence (Fig-

ure 4C; p = 1.8 3 10�3). Reassuringly, we found that known

M1 macrophage markers33 were downregulated in the R2 group

compared with the group without recurrence (Figure 4C), sug-

gesting that the inferred immune cell proportions accurately

reflect the true immune cell compositions within a patient.

Immune cell signatures inferred from the NIMO
approach correspond with known biological
characteristics of Treg cells
As Treg cells were most highly associated with recurrence in pa-

tients with CRC in our dataset, we further investigated the rela-

tionship between our signatures developed with the NIMO

approach and the biological characteristics of Treg cells. First,

we examined whether the cooccurrence of Treg cells and other

immune cells was recapitulated when the proportions of immune

cells were predicted using the NIMO signatures in our CRC data-

set (Figure 5A). We found that cooccurrence and mutually exclu-

sive patterns were observed between Treg cells and immunosup-
6 Patterns 4, 100736, June 9, 2023
pressive and immune-activating cells,34

respectively, when using the NIMO signa-

tures (Figures 5B–5D). Specifically, we

identified that the predicted proportions

of immunosuppressive cell types, i.e., M2

macrophages and Treg cells, showed a

high correlation in our patients with CRC

(Mann-Whitney U test, p = 0.046; Fig-

ure 5B). In contrast, positive crosstalk be-

tween Treg cells and M2 macrophages

was not observed when considering im-

mune cell compositions computed using
gene signatures from LM22 (p = 0.50; Figure 5B). Similarly, we

discovered statistically significant mutually exclusive patterns

between Treg cells and M1 macrophages (p = 0.027; Figure 5C)

and also between Treg cells andCD8 T cells (p = 0.013; Figure 5D)

when using our signatures. Meanwhile, mutually exclusive pat-

terns with Treg cells were not observed when using immune

cell signatures from LM22 for either M1 macrophages (p =

0.13; Figure 5C) or CD8 T cells (p = 0.16; Figure 5D). Taken

together, our results suggest that appropriate immune cell

marker selection is required to determine immune cell cooccur-

rence and mutually exclusive patterns.

We further validated our signatures by comparing the expres-

sion levels of a well-established Treg marker gene (FOXP3) and

Treg signature genes defined by the NIMO approach in an

external single-cell RNA sequencing dataset of patients with

CRC. We observed that the average expression level of Treg
cell genes in our signature was moderately correlated with

FOXP3 expression (Figures 5E and 5F; Spearman correlation

coefficient = 0.50, p = 5.2 3 10�95). Our results are in line with

previous reports showing that FOXP3 is themost specificmarker

for Treg cells.
34 We also found that the significance of the corre-

lation between FOXP3 and signature gene expression was

greater for Treg cell genes from the NIMO signatures than for

Treg cell signature genes from LM22 (Figure 5G). Taken together,

our results suggest that the selection of immune cell signature

genes can have an impact on immune cell deconvolution.

DISCUSSION

In this study,we found that information about the immunecontext

can improve the prediction of CRC recurrence compared with

that using only TNMstage information. Importantly, our deconvo-

lution results revealed heterogeneous subgroups of patients

with CRC, and we further validated our approach with external
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Figure 4. Subclustering of patients with CRC with and without recurrence

(A) Patients with CRC with and without recurrence were clustered based on clinical features and immune cell proportions.

(B and C) Immune cell fractions were compared between subgroups, and gene expression was compared between (B) the N1 and recurrence groups and (C) the

R2 and nonrecurrence groups. For the boxplots, the Mann-Whitney U test was used to determine the significance of differences. For scatterplots, an absolute

log2 fold change over 1 and an adjusted p value of under 0.05 were used to identify differentially expressed genes. Labeled genes in the scatterplots are gene

markers for CD8 T cells and M1 macrophages from Jiang et al. and Beyer et al., respectively. Differentially expressed genes among the gene markers from Jiang

et al. and Beyer et al. are displayed in the scatterplots.

See also Figure S10.
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Figure 5. Regulatory T cell signatures inferred from the NIMO-based approach correspond with known biological characteristics

(A) Overview of crosstalk between regulatory T cells and M1 and M2 macrophages and CD8 T cells.

(B–D) Comparison of crosstalk between regulatory T cells and (B)M2macrophages, (C)M1macrophages, and (D) CD8 T cells using cell fractions inferred from the

NIMO or LM22 signatures. Patients with CRC were split into high (upper 30%) and low (lower 30%) immune cell groups. Statistical significance was measured

using the Mann-Whitney U test.

(E–G) Comparison of FOXP3 expression and the average expression of regulatory T cell genes from NIMO and LM22 signatures in an external single-cell RNA

sequencing dataset.

(legend continued on next page)
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single-cell RNA sequencing data. Our results suggest that with

the use of appropriate immune cell signature genes, clinicians

can better interpret the patient’s immune status, which can be

leveraged for predicting the clinical outcome of the patient.

Our findings provide further evidence for the effectiveness of

network expansion analysis using multiomics data to identify

robust biomarkers. Specifically, our study demonstrated that us-

ing NIMO-based marker genes for immune cell deconvolution

improved the prediction of CRC recurrence (Figure 1), high-

lighting the importance of selecting appropriate marker genes

and conducting network expansion analysis with multiomics

data. In line with these results, incorporating biological knowl-

edge into the biomarker discovery process is beneficial for iden-

tifying biomarkers for different immune cell types,35,36 predicting

anticancer drug responses in patients with cancer,20 and identi-

fying novel genes associated with oral disorders.37,38 Recent

studies by Strum et al. and Cobos et al. also underscored the

impact of signature gene selection on immune cell deconvolution

performance, further emphasizing the importance of careful

marker gene selection.14,15 In summary, our results highlight

the crucial role that immune cell signature gene selection plays

in providing an accurate understanding of the immune context;

these results also highlight the potential utility of the NIMO

approach for discovering such signature genes.

CRC is among the top three most common cancers in the

USA; therefore, there is an urgent need to identify biomarkers

that enable early prediction of clinical outcomes.27,39 We found

that the immune context of a patient can be used to predict

recurrence in CRC (Figure 2). Additionally, we found that incor-

porating both the patient’s immune context and TNM stage

improved the prediction of recurrence in our CRC dataset. We

also observed that the immune context and clinical features

were variable even within groups of patients with and without

recurrence (Figure 4), suggesting the existence of high heteroge-

neity within patients with CRC. Indeed, while TNM stage has

been previously reported to be associatedwith cancer prognosis

and metastasis in CRC,27 patients displayed various outcomes

even when they were assigned to the same TNM category.3

These observations suggest that a combination of several

different biomarkers is required for improving the survival of pa-

tients with CRC.27 Because of the increasing evidence that the

tumor microenvironment is closely associated with tumor devel-

opment,5 further clarification is required for the role of immune

cells in cancer recurrence.

In this study, we choseCIBERSORT due to its ability to provide

references for diverse immune cell types (22 types).40 The quan-

tification of immune cells in patients with cancer remains a

crucial research topic for understanding cancer development

in the context of the immune system. To this end, cell deconvo-

lution methods have been developed to accurately quantify im-

mune cell proportions in tumors, providing a cost-effective and

scalable approach to analyze the immune context.40 While
(E) Principal-component analysis (PCA) plot using whole-transcriptome single-cel

the expression level of (left) FOXP3 or (right) the average expression of regulator

(F) Correlation between FOXP3 expression and the average expression of regula

significance were measured using Spearman correlation.

(G) Comparison of the significance of the correlation between FOXP3 expression a

based regulatory T cell markers.
various deconvolution methods have been developed12,41,42

and their performances have been compared using bench-

marking frameworks,40 selecting the appropriate method for a

given application requires careful consideration.

While we show that the NIMO-based approach can improve

the prediction of recurrence in patients with CRC, it is still unclear

whether our approach can be applied to predicting other clinical

outcome-related factors, such as prognosis or immunotherapy

response. Moreover, it is unknown whether NIMO can be used

for analyses based on single-cell RNA sequencing. Reassur-

ingly, we observed that the expression of Treg cell signature

genes found using the NIMO-based approach was in concor-

dance with that of the Treg cell-specific marker FOXP3 in

single-cell RNA sequencing data of CRC samples (Figures 5E–

5G). As more single-cell RNA sequencing data become avail-

able, we expect that the discovery of cell-type markers will be

facilitated. An interesting research strategy would be to apply

network-based approaches to single-cell RNA sequencing

data to supplement the limitations of the technique in identifying

cell-type markers.

The immune cell signatures identified by the NIMO approach

are highly enriched in known immune cell markers (Figure S3)

and help predict CRC recurrence (Figures 1 and 2). However,

linking DNA methylation at enhancers to gene expression re-

quires caution because DNA methylation at enhancers does

not always guarantee regulation of the expression of their target

genes. For example, Andersson et al.43 reported that only half of

the enhancers defined by cap analysis of gene expression

(CAGE) sequencing (CAGE-seq) were tightly linked to their

closest genes. In addition, our study observed a significant

negative correlation between expression and methylation levels

for 39% of the NIMO immune cell signatures (Figure S4).

Currently, the lack of datasets with simultaneous expression

and methylation sequencing for sorted immune cells presents

a limitation. We anticipate that using a matched dataset with

the NIMO approach could lead to more precise recurrence

predictions in the future. To achieve an elaborate mapping of

methylation with expression, it is necessary to infer enhancer-

gene relationships using a dedicated physical interaction map

between gene and regulatory regions that can be assayed by

chromosome conformation capture (3C).44,45
EXPERIMENTAL PROCEDURES

Resource availability

Lead contact

Further information and requests for resources should be directed to and will

be fulfilled by the lead contact, Sanguk Kim (sukim@postech.ac.kr).

Materials availability

This study did not generate new unique reagents.

Data and code availability

Methylation profiles of bulk tumors from patients with CRC from the SMC cohort

have been deposited in The European Nucleotide Archive under the accession
l RNA sequencing data of patients with CRC (GEO: GSE146771). Colors depict

y T cell markers from the NIMO signature.

tory T cell markers from the NIMO signatures. The correlation coefficient and

nd the average expression of regulatory T cell markers of NIMO and signature-
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code PRJEB50005 (https://www.ebi.ac.uk/ena/browser/view/PRJEB50005).46

The rawdataof bulk RNAsequencing from theSMCcohort havebeen deposited

at the European Genome-Phenome Archive, which is hosted by the Geninus

WTS Data Access Committee under accession code EGAD00001006985.47 Im-

mune cell compositions identified by the NIMO approach in patients with CRC

have been provided in the GitHub repository (https://github.com/SBIlab/

SGI_cancer_recurrence_NIMO/).48 We used single-cell RNA sequencing data

of colon cancer from Gene Expression Omnibus (GEO: GSE146771).49

Study approval

This study was approved by the institutional review boards of the SMC

(approval no. SMC 2018-04-074-004). Written informed consent was obtained

from all subjects. All experimental methods complied with the Helsinki

Declaration.

Preprocessing of gene expression and methylation data

We aligned RNA sequencing reads to the human reference genome (GRCh38)

using STAR aligner.50 Read counts were used to obtain normalized gene

expression levels using the RSEM package.51 To quantify immune cell propor-

tions in each patient, we used transcripts per million (TPM)-normalized RNA

sequencing values.

GEO: GSE107422 25 was curated as an independent cohort of patients with

CRC with recurrence. We used processed TPM values as gene expression

levels. When multiple gene IDs were annotated to a single gene symbol, we

took the maximum TPM value of the gene IDs to map the gene ID to the

gene symbol.

To preprocess the methylation data, we aligned the sequencing reads from

bisulfite-treated samples and performed methylation calls using Bismark52

with the default option. The alignment was performed on the human reference

genome (hg19) using Illumina annotation. To quantify the immune cell propor-

tions in each patient using methylation data, we used the b value, which is a

fraction of the methylation per site. The b value was quantified using the R

package bsseq.53

Identification of immune cell signature genes and inference of

immune cell proportions in patients with CRC

To identify robust immune cell signature genes, we first curated transcriptome-

based (T signature) and methylation-based (M signature) immune cell signa-

tures from Newman et al. (LM22)12 and Chakravarthy et al.,13 respectively.

We mapped the CpG sites in M signatures to their most proximal gene regu-

latory elements (i.e., promoters and enhancers), with promoter and enhancer

regions downloaded from the FANTOM5 project.43,54,55 The NIMO signature

included both genes in the T signature and those mapped to the M signature.

To identify signature genes with the NIMO approach, we used the STRING

functional protein interaction network,56 which was comprised of 13,824 no-

des and 323,774 edges. The genes that were included in the signature met

the following two criteria: (1) a first neighbor of T and M signature genes in

the protein interaction network and (2) a gene included in the original LM22

signature genes. Source codes to identify immune cell signature genes are

available at the following GitHub repository: https://github.com/SBIlab/

SGI_cancer_recurrence_NIMO.48

To confirm whether the TM signature genes showed a correlation between

expression and the DNAmethylation levels of their proximal CpG sites, we uti-

lized 359 TCGA COAD and READ samples.57 The DNA methylation levels of

the samples were measured by the Illumina Human Methylation 450 platform.

The Spearman correlation coefficient was measured between gene expres-

sion levels and the most proximal CpG methylation levels of T and T-TM sig-

natures. The p values of the correlation were adjusted by the Bonferroni

method, and adjusted p values lower than 0.05 were considered significant.

The proportions of negative significant, positive significant, and nonsignificant

correlations of gene-CpG pairs were compared between the T signature and

the T-TM signature. The significance of proportional bias wasmeasured by us-

ing Fisher’s exact test.

To infer the immune cell proportions of patients with CRC using different im-

mune cell signatures (i.e., LM22, NIMO signatures), we used the transcriptome

data from the patients and applied the CIBERSORT12 deconvolution method

using each immune cell signature. We used the reference LM22 immune cell

expression data that were provided in the original publication. The deconvolu-
10 Patterns 4, 100736, June 9, 2023
tion of CRC patient data using transcriptome- or NIMO-based signatures re-

turned proportions of 22 immune cell types, including B cells (naive, memory,

and plasma cells); monocytes; macrophages (M0, M1, and M2); T cells (CD4

memory resting, CD4 memory activated, CD4 naive, Treg, follicular helper,

CD8, and gd); natural killer (NK) cells (resting and activated); mast cells (resting

and activated); dendritic cells (resting and activated); neutrophils; and eosino-

phils. For deconvolution using a methylation-based signature, we used meth-

ylCIBERSORT13 to infer immune cell proportions using methylation data from

patients with CRC in the SMC cohort.

Enrichment analysis of immune cell biomarkers for the TMsignature

To validate the network expansion of the NIMO approach to improve the

detection of markers of immune cell type, we used two cell biomarker data-

bases, CellMarker23 and PanglaoDB.24 We selected 19 and 21 cell types in

CellMarker and PanglaoDB, respectively, to match with LM22 cell types. First,

we compared the number of immune cell markers covered by the NIMO signa-

ture genes with and without network expansion. The enrichment significance

wasmeasured using the hypergeometric test. The p values were corrected us-

ing the Bonferroni correction.

Recurrence prediction in the SMC cohort

We used cross-validation to evaluate the performance of immune cell propor-

tions and/or clinical features in predicting recurrence. In detail, 80%of patients

were divided into a training set, 20% of patients were divided into a test set,

and different training and test sets were used for 500 iterations. We used an

ensemble of MLmodels that included support vector machine, random forest,

and extra tree models. The ensemble model was constructed by using a soft

voting classifier that predicts recurrence by summing the predicted probabil-

ity. All of the ML models were used with the sklearn58 package in Python. To

optimize each ML method, we used 5-fold cross-validation within the training

set to select the best hyperparameters. The best hyperparameter for the sup-

port vector machine model was selected using the ‘‘rbf’’ kernel with kernel co-

efficient (g). The values of regularization parameter (C) hyperparameters were

tested at 0.001, 0.01, 1, 2, 3, 4, 5, 10, 20, 50, and 100. For the random forest

model and extra tree classifier, the number of trees (n_estimators) was

selected from 500, 100, and 2,000 trees. For logistic regression, we selected

the regularization parameter Cwithin 0.1 and 1 in 0.1 intervals. Final recurrence

prediction for a patient was performed by voting from four different MLmodels

using the VotingClassifier function from the sklearn Python package.

Recurrence prediction in the GEO: GSE107422 cohort

To validate NIMO markers in the independent GEO: GSE107422 cohort,25 we

performed cross-validation to evaluate the performance of immune cell pro-

portions in predicting recurrence. Because of the unbalanced labels of the

cohort, which was composed of 38 patients with recurrence and 72 patients

without recurrence, balanced training and test sets were prepared. For recur-

rence patients, 80% of the patients were divided into a training set, 20% of the

patients were divided into a test set, and the same number of patients without

recurrence were randomly divided into training and test sets. Different training

and test sets were used for 500 iterations.

Disease-free survival (DFS) analysis

To compare DFS between patients with predicted recurrence and nonrecur-

rence, we assigned predicted labels to patients with leave-one-out cross-vali-

dation (LOOCV). The Kaplan-Meier curve of patients’ DFS was plotted using

lifelines (v.0.19.5), a python module. The statistical significance of the survival

difference was calculated by the log rank test.

Stage-specific prediction

We conducted stage-by-stage recurrence prediction for patients from the

SMC cohort. Since the number of patients with a recurrence in TNM stages

I, II, III, and IV were 2, 5, 19, and 21, respectively, we used patients in stages

III and IV for the recurrence prediction. To evaluate the performance of recur-

rence prediction in each stage, we used 80% of all patients randomly

selected as the ML training set, and among the remaining 20% of patients,

only patients belonging to the corresponding stage were used as part of

the test set.

https://www.ebi.ac.uk/ena/browser/view/PRJEB50005
https://github.com/SBIlab/SGI_cancer_recurrence_NIMO/
https://github.com/SBIlab/SGI_cancer_recurrence_NIMO/
https://github.com/SBIlab/SGI_cancer_recurrence_NIMO
https://github.com/SBIlab/SGI_cancer_recurrence_NIMO
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Statistical differences in predictive performances, immune cell proportions,

and expression levels were measured by the Mann-Whitney U test. The cor-

relation between the average expression of signature genes and a

biomarker gene was measured by Spearman correlation. The significance

of DEGs was corrected by multiple testing correction using the Benjamini-

Hochberg procedure. Figure legends indicate the detailed methods of sta-

tistical analysis.
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