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Abstract

Background: Codon usage may vary significantly between different organisms and between
genes within the same organism. Several evolutionary processes have been postulated to be the
predominant determinants of codon usage: selection, mutation, and genetic drift. However, the
relative contribution of each of these factors in different species remains debatable. The availability
of complete genomes for tens of multicellular organisms provides an opportunity to inspect the
relationship between codon usage and the evolutionary age of genes.

Results: We assign an evolutionary age to a gene based on the relative positions of its identified
homologues in a standard phylogenetic tree. This yields a classification of all genes in a genome to
several evolutionary age classes. The present study starts from the observation that each age class
of genes has a unique codon usage and proceeds to provide a quantitative analysis of the codon
usage in these classes. This observation is made for the genomes of Homo sapiens, Mus musculus,
and Drosophila melanogaster. It is even more remarkable that the differences between codon usages
in different age groups exhibit similar and consistent behavior in various organisms. While we find
that GC content and gene length are also associated with the evolutionary age of genes, they can
provide only a partial explanation for the observed codon usage.

Conclusion: While factors such as GC content, mutational bias, and selection shape the codon
usage in a genome, the evolutionary history of an organism over hundreds of millions of years is an
overlooked property that is strongly linked to GC content, protein length, and, even more
significantly, to the codon usage of metazoan genomes.

Background
The degeneracy of the genetic code implies that different
codon triplets encode the same amino acid. The
frequencies with which these different codons are used
vary significantly between different organisms and
between proteins within the same organism [1].

Many studies have analyzed the differences in codon
usage across species [2,3]. Some of the main conclusions
of these studies are: (i) In prokaryotes, archaea, and
single-cell eukaryotes [4], translational efficiency (or
fidelity) underlies the strong codon usage bias discov-
ered for highly expressed genes [5]. This correlation is
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valid as well in multicellular organisms, such as worms
[6,7], flies, and plants [8,9], but does not hold in higher
multicellular organisms [10]; (ii) There exists a strong
correlation between codon usage and genomic GC
content. This result was demonstrated in diverse organ-
isms ranging from bacteria to metazoa. Moreover, it was
even suggested that human codon usage is determined
solely by GC content and its isochores composition [1].
The causal relationships between GC content, codon
usage, and the underlying evolutionary constraints that
may have shaped them are still not fully understood.

Nonetheless, several evolutionary processes have been
postulated as the major factors that determine codon
usage: selection, mutation, and genetic drift. However,
the relative contribution of each of these factors in
different species remains debatable [11-14]. For a
number of different organisms, it was suggested that
codon usage is best explained by selection for tRNA
abundance, gene expression levels, and translational
optimization [15]. In other cases, the dominant roles
were attributed to mutation bias for local composition,
mutation rate, mutation preference [16], biased gene
conversion, and recombination rates [17]. Among other
attributes considered are gene and protein properties
[18], including protein structure [19], gene length [9],
and mRNA characteristics (e.g., secondary structure)
[20]. Mutation bias towards the transcribed strand
[21], environmental conditions [22], and generation
time [23] were also proposed in explaining the preferred
usage of codons in specific genes and some genomes.

The availability of a substantial number of complete
metazoan genomes provides an opportunity to inspect
the codon usage signal vis-a-vis the age of the genes that
contain these codons. Here, we examine the varying use
of codons in different groups of genes, where the groups
are defined according to their relative evolutionary age
within a single organism. We show a significant coupling
between the evolutionary age of a gene and its codon
preferences in representative metazoan genomes. We
also show that the GC content of a gene and its length
are associated with its evolutionary age. However, we
demonstrate that the latter two linkages provide only a
partial explanation of the codon usage bias. We propose
that the evolutionary history of genes has been main-
tained in the frequencies of their codons throughout
extremely long evolutionary processes.

Results and Discussion
The analysis of metazoan codon usage is made possible
by the availability of a large number of complete
genomes. Hundreds of eukaryotic genomes are currently
at their final stages of assembly and genome annotation.

Complete high-quality proteomes of about 40 animal
genomes are available as well. These resources have
allowed us to determine with much certainty, for each of
the protein sequences of a given organism, if homo-
logues are present or absent along the evolutionary
phylogenetic tree.

Codon usage and evolutionary age
Proteins encoding gene sequences were obtained from
the ENSEMBL database [24]. To avoid bias due to
genome annotation quality, we focused our analysis
solely on genes marked as ‘known’. Very short genes were
also removed to avoid statistical bias in all subsequent
homology searches (see Methods).

We divided the set of about 17,000 analyzed human
genes into 9 groups according to the evolutionary age of
each gene (Table 1). The age of a gene was determined by
the evolutionarily most distant genome containing an
identified homologue to that gene. Relative evolutionary
distance was based on the accepted phylogenetic tree
(Figure 1). Homology relationships were extracted from
ENSEMBL and are based on an exhaustive list of 27 fully
sequenced genome annotations that represent the main
model organisms of the animal kingdom (Figure 1).
Note that despite the large variation in group sizes
(Tables 1 and 2), even the smallest age groups contain
more than enough codon appearances to make statisti-
cally robust conclusions (e.g., human Age group 2
contains over 42,000 codon counts).

For each group of genes, codon usage frequencies were
independently calculated for each of the amino acids.
Thus, each of the 59 redundant codons that account for
these 18 amino acids were assigned a number between 0
and 1 (see Methods).

The analysis of the 9 evolutionary age groups reveals
substantial differences in their codon usage. This was
observed for almost all codons of all amino acids.
Representative results for arginine, threonine, and cysteine
are depicted in Figure 2 (middle column). As a comparison,
we show the codon usage variation for the ~17,000 genes
within 9 randomly assigned age groups of similar sizes
(Figure 2, right column). It is evident that the randomized
grouping results in a complete loss of age dependency.

To robustly test the statistical significance of our
observation for each of the 59 analyzed codons, we
measured the variance of the codon usage between the 9
age groups. This variance was compared to that of 9
randomly selected gene groups with similar sizes, and
this comparison was independently repeated 10,000
times. The variance of the codon usage among the 9 age
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groups was greater than the random groups’ variance in
more than 95% of the tests for 58 codons (p < 0.05), and
94% for the CTA codon (encoding leucine, p < 0.06).
These tests confirm the observation that the age groups
are significantly different from one another with respect
to their codon usage. Another noteworthy observation is
that a number of codon frequencies change monotoni-
cally with the age of the gene group considered
(Additional file 1).

Recent research of codon usage bias has typically employed
measures such as the codon adaptation index (CAI) [25] or
the effective number of codons (ENC) [26]. However,
since these measures are gene-focused, they were not
appropriate for this study, where we characterized hun-
dreds of genes at a time, without the use of a reference set
or other simplifying assumptions. In addition, other
studies have used relative synonymous codon usage
(RSCU) values to measure the deviation from random
per-amino acid codon usage [27]. We did not use this
measure here since we were interested in measuring the
variation of the frequency for each specific codon between
different age groups, without comparing between codons
of the same amino acid (see discussion in [28,29]).

Previous studies have proposed that GC content is a
major determinant of codon usage [30]. We thus

examined the GC content differences between the age
groups. Indeed, the GC content within the coding
regions of the ~17,000 human genes shows significant
variance between the 9 groups (Figure 3) and is more
variable than in randomly selected groups (permutation
test, p < 10-6). Thus, we report here a seemingly
overlooked association between the GC content and
the evolutionary age of a gene. Previous studies have
shown a decrease in GC-rich isochores in mammalian
genomes [31], as can also be noted among synonymous
codons from the newest age groups (Additional files 1
and 2).

Using similar tests, we found that protein length, which
has also been suggested to correlate with codon usage [9]
is associated (p < 10-6) with the age group to which the
gene belongs (Figure 3).

In order to uncouple the age dependence of GC content
and gene length from that of codon usage, we tested
whether genes with very similar GC content (or length)
still show a significant linkage between gene age and
codon usage. We thus binned the genes into sets of
similar GC content (or length) and further divided each
such set into the 9 age groups defined above. For each
GC content (or length), the variance among the age
groups was re-tested. We found statistically significant

Table 1: Partition of H. sapiens and M. musculus genes into age groups

Age group* # Genes Coding region GC content Protein length

Mean SD Mean SD

1 612 0.54 ± 0.10 363 ± 466
2 97 0.53 ± 0.11 441 ± 352
3 1202 0.54 ± 0.10 518 ± 504
4 581 0.55 ± 0.09 531 ± 472

Human 5 648 0.52 ± 0.09 477 ± 424
6 592 0.51 ± 0.09 681 ± 686
7 605 0.53 ± 0.10 571 ± 400
8 3914 0.54 ± 0.09 557 ± 498
9 9023 0.53 ± 0.09 525 ± 399

Total 17274

1 983 0.49 ± 0.10 384 ± 391
2 39 0.51 ± 0.07 590 ± 446
3 861 0.51 ± 0.07 534 ± 516
4 854 0.50 ± 0.08 464 ± 428

Mouse 5 908 0.48 ± 0.07 414 ± 362
6 708 0.50 ± 0.07 623 ± 659
7 645 0.52 ± 0.07 555 ± 409
8 4119 0.54 ± 0.07 546 ± 458
9 9099 0.53 ± 0.06 526 ± 396

Total 18216

*Ordinal evolutionary age, relative to the reference species under analysis
Partition of all genes in H. sapiens and M. musculus into 9 non-overlapping age groups along the evolutionary tree. For each age group, the number of
genes it contains, its average GC content (with standard deviation), and the average length of the proteins (number of amino acids/codons analyzed)
that its genes encode (with standard deviation) are listed. The age groups are as in Figure 1.
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Age 9 a

Roundworms

and Insects

C. elegans
D. melanoga.
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Age 3 a

Other
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B. taurus
C. familiaris
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E. telfairi
E. europaeus
F. catus
L. africana
M. lucifugus
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Age 2 a

Rodents

and Rabbits

C. porcellus
M. musculus
O. princeps
O. cuniculus
R. norvegicus
S. trideceml.

Age 1
(Mouse)

Primates

H. sapiens
M. mulatta
M. murinus
P. troglodytes
O. garnettii

Age 1
(Human)

900 500 300 100 MYA

Figure 1
Phylogenetic tree used to define the relative age groups for the human and mouse genes. The labeled age classes
were defined as the major evolutionary branching points with respect to the 27 genomes analyzed and the species of interest
(human or mouse). Thus, genes are grouped according to their estimated time of appearance in evolution. For example, human
genes in Age group 5 are presumed to have appeared after the split between birds and mammals, since they do not have
homologues in the non-mammal species studied. On the other hand, they already existed in the least common ancestor (LCA)
of all mammals, as evidenced by their respective homologues in O. anatinus. The species included in the analysis are: C. elegans
(worm), D. melanogaster (fruitfly), T. rubripes (fugu), X. tropicalis (xenopus), G. gallus (chicken), O. anatinus (platypus), M.
domestica (Gray Short-tailed opossum), B. Taurus (cow), C. familiaris (dog), D. novemcinctus (nine-banded armadillo), E. telfairi
(lesser hedgehog tenrec), E. europaeus (west european hedgehog), F. catus (cat), L. Africana (elephant), M. lucifugus (bat),
S. araneus (common shrew), C. porcellus (guinea pig), M. musculus (mouse), O. princes (pika), O. cuniculus (rabbit), R. norvegicos
(rat), S. tridecemlineatu (squirrel), P. troglodytes (chimpanzee), M. mulatta (macaque), M. murinus (gray mouse lemur), O. garnettii
(bushbaby), and H. sapiens (human). For the analysis of the human genome, Age 1 includes only primate-specific genes,
while for the analysis of the mouse genome, Age 1 includes only rabbit and rodent-specific genes. Note that the evolutionary
time scale (in millions of years ago, MYA) is approximate.
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variation between the age groups for many of the codons
(Figure 4). Thus, the coupling between age and GC
content (or age and protein length) does not entirely
explain our main observation indicating age-dependent
codon usage (Figure 2, middle column).

To additionally confirm our conclusion that GC content
does not dominate the age-dependent codon usages
observed, we performed the following novel informa-
tion-theoretic test. Intuitively, if changes in GC content
were the only factor in causing aberrations from the
overall codon usage of the organism, we would expect
the codon usage of a particular age group to be dictated
by its GC content, while deviating as little as possible
from the overall codon usage of the genome. Thus, for
each group, we determined the codon usage expected to
comply with its GC content. In detail, we calculated the
usage that minimizes the Kullback-Leibler divergence
(DKL) with the genomic codon usage, while constraining
the GC content (see Methods). We found the observed
codon usages for each of the age groups to be
significantly different than those expected based on GC
alone (c2 test, p < 10-10); this result was consistent for
human, mouse, and fly (see below).

Codon usage preference by evolutionary age is
a universal phenomenon
We tested whether the association between evolutionary
age and codon usage preferences observed in Homo
sapiens carries over to other metazoa. To this end, we
applied a similar analysis for the Mus musculus and the
Drosophila melangoaster genomes (Table 2). For the latter
genome, we overcome the uneven full-genome sam-
pling of the evolutionary tree from human to fly by
taking advantage of the recent sequencing and annota-
tions efforts for 12 species from the Drosophila genus
[32].

For the mouse and fly species, a linkage between gene
age and codon usage biases (Figure 2, left column and
Additional files 2 &3) was confirmed by applying the
same tests applied for the human genome. The variance
in codon usage was significantly higher than random
(p < 0.05) for 54 codons in mouse (excluding: CGT (R),
CTC (L), CCT (P), GCC (A), GTC (V)), and for 57
codons in fly (the exceptions being CGT (R) and GTC
(V)). Therefore, the linkage between codon usage and
gene age is not specific to the human genome and is
likely to apply to other metazoans as well.

Table 2: Partition of D. melanogaster genes into age groups

a

D. melanogater
gene is in Age group:

If the furthest species containing
a homologue is among:

1 D. melanogaster, D. sechellia, D. simulans, D. erecta, D. yakuba
2 D. ananassae
3 D. pseudoobscura, D. persimilis
4 D. wilistoni
5 D. mojavensis, D. grimshawi, D. virilis
6 Ades aegypti., Anopheles gambiae.
7 Vertebrates, C. elegans
8 Saccharomyces cerevisiae

b

Age group # genes Coding region GC content Protein length

Mean SD Mean SD

1 336 0.49 ± 0.06 412 ± 892
2 130 0.49 ± 0.06 401 ± 406
3 160 0.49 ± 0.06 394 ± 245
4 147 0.51 ± 0.06 456 ± 421
5 2582 0.54 ± 0.06 568 ± 691
6 1841 0.55 ± 0.05 650 ± 625
7 3155 0.55 ± 0.04 578 ± 471
8 2632 0.55 ± 0.04 543 ± 406

Total 10983

Partition of all genes in D. melanogaster into 8 non-overlapping age groups along the evolutionary tree. (a) Genes were divided into 8 age groups. The
6 youngest groups (1 to 6) are a “high-resolution” partition, enabled by the recent sequencing of 12 members of the Drosophilidae family and 2
mosquito species. (b) For each age group, the number of genes it contains, its average GC content (with standard deviation), and the average length of
proteins (number of amino acids/codons analyzed) that its genes encode (with standard deviation) are listed.
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Figure 3
Age-dependent GC content and length of human, mouse, and fly genes. For each age group, the average GC content
of the coding regions of the genes, or average protein length, is shown. See Figure 1 and Table 2 for the definition of the
age groups used. For each of human, mouse, and fly, the variance between age groups for both GC content and protein length
is statistically significant (permutation test, p < 10-6).
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For the fly genome, the correlation between gene age and
GC content seems to be stronger than for the human and
mouse genes (Figure 3). And, indeed, while the GC
content only weakly explains the age dependency of
codon usage for mouse genes (similar to that observed
for human), the age-related codon bias of fly genes
seems to be mostly, but not entirely, dominated by the
GC content (Figure 4, middle-top and right-top panels,
respectively). It is also worth noting that, in D.
melanogaster, age-dependent monotonic behavior was
observed in the GC content as well as in the codon usage
for most of the 59 codons (Additional file 3), perhaps
implying a stronger link between these two age-
dependent phenomena. Furthermore, for almost all
amino acids in the fly, the usage of synonymous codons
is more uniform in the newer age groups relative to the
old ones (Additional file 3). This may reflect the
combination of: (i) the GC content necessarily restricts
the possible uniformity of codon usage [33] (Figure 3,
old age groups); (ii) a potential overlap between the old
age groups and slow evolving genes, which have

previously been shown to possess large differences in
the usage of synonymous codons [34].

We now set out to test whether the coupling found
between the codon usage and gene age behaves similarly
in human, mouse, and fly. For simplicity, we grouped
the genes of each organism into two groups representing
‘new’ and ‘old’ genes. The ‘new’ set contains all genes
that are primate-specific (for human), rodent and rabbit-
specific (for mouse), and melanogaster subgroup-speci-
fic (for fly). The ‘old’ ones are those that are not included
in the ‘new’ group (see Figure 1 and Table 2).

We then measured the deviation of the codon usage for
the ‘new’ genes from that of the ‘old’ genes, for each of
the three model organisms. The codon usage was
represented by a 59-coordinate vector (one coordinate
for each codon, whose value is its relative usage
frequency among the codons encoding its amino acid).
Hence, the deviation between the ‘new’ and ‘old’ groups
in each genome is quantified as the difference of the

����� ����	 
��

�

��
�
�
��
��
�
	

�
�
�
�
��
�
��
�
�
�
�

0

10

20

30

40

50

GC content (%)

<
  3

4
34

−
36

36
−

38
38

−
40

40
−

42
42

−
44

44
−

46
46

−
48

48
−

50
50

−
52

52
−

54
54

−
56

56
−

58
58

−
60

60
−

62
62

−
64

64
−

66
66

−
68

68
−

70
70

−
72

>
  7

2

x

x

x
0

10

20

30

40

50

GC content (%)

<
  3

4
34

−
36

36
−

38
38

−
40

40
−

42
42

−
44

44
−

46
46

−
48

48
−

50
50

−
52

52
−

54
54

−
56

56
−

58
58

−
60

60
−

62
62

−
64

64
−

66
66

−
68

68
−

70
70

−
72

>
  7

2

x x x x x x x
0

10

20

30

40

50

GC content (%)

<
  3

4
34

−
36

36
−

38
38

−
40

40
−

42
42

−
44

44
−

46
46

−
48

48
−

50
50

−
52

52
−

54
54

−
56

56
−

58
58

−
60

60
−

62
62

−
64

64
−

66
66

−
68

68
−

70
70

−
72

>
  7

2

x x x x x

x

x x x x x x x

0

10

20

30

40

50

Protein length

<
  3

50

35
0−

55
0

55
0−

75
0

75
0−

95
0

95
0−

11
50

11
50

−
13

50

13
50

−
15

50

15
50

−
17

50

17
50

−
19

50

>
  1

95
0

x x x x
0

10

20

30

40

50

Protein length

<
  3

50

35
0−

55
0

55
0−

75
0

75
0−

95
0

95
0−

11
50

11
50

−
13

50

13
50

−
15

50

15
50

−
17

50

17
50

−
19

50

>
  1

95
0

x x x
0

10

20

30

40

50

Protein length

<
  3

50

35
0−

55
0

55
0−

75
0

75
0−

95
0

95
0−

11
50

11
50

−
13

50

13
50

−
15

50

15
50

−
17

50

17
50

−
19

50

>
  1

95
0

x

x

x x x

x

Figure 4
Age-dependent codon usage for fixed GC content and length. For each of human, mouse, and fly (left to right), its
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BMC Evolutionary Biology 2009, 9:285 http://www.biomedcentral.com/1471-2148/9/285

Page 7 of 12
(page number not for citation purposes)



‘new’ and ‘old’ vectors (see Methods). Thus, these
calculations yield three vectors, each representing the
influence of age on the codon usage in each organism.
When we measure the angle between the three vectors in
the 59-dimensional space, a remarkable resemblance is
observed. These deviation vectors have practically the
same directions (i.e., multidimensional “trajectory”) for
the human, mouse, and fly, with a statistical significance
of p < 10-8 (Table 3, see Methods). This is particularly

noteworthy, since the ‘new’ groups are expected to have
evolved independently, since, by definition, they include
genes that appeared after the separation of each pair
among human, mouse, and fly.

We subsequently proceeded to quantify the level of
dependence of the usage frequency on the age signal, for
each of the 59 codons. Namely, we examine the extent to
which different codons (or their amino acids) encapsu-
late the evolutionary age signal and ask which codons
are more “sensitive” to gene age, across the three
metazoan representatives examined. To this end, we
ranked the codons in each organism according to their
responsiveness to evolutionary age (Figure 5), using the
variance among the 9 age groups. Indeed, human and
mouse codons showed similar patterns regarding the
specific dependency of age (Spearman’s rank correlation
test: r = 0.92, p < 10-6 with permutations test).
Moreover, this pattern was somewhat conserved for
Drosophila (r = 0.74, p < 10-6). We tested the properties
of the codons showing high responsiveness toward
evolutionary age (and those that are indifferent to it)

Table 3: Pairwise comparison of age-dependent codon usage
deviation vectors for human, mouse, and fly genes

θ cos(θ) p-value

θ(human, mouse) 18.3° 0.9494 3.6 × 10-12

θ(human, fly) 37.0° 0.7984 8.5 × 10-9

θ(mouse, fly) 29.3° 0.8719 2.3 × 10-10

For each of the three genomes analyzed, the deviation vector was
defined as the difference of the codon usage vectors for ‘old’ and ‘new’
genes. The angle between each pair of 59-dimensional deviation vectors
was measured (θ) and the p-value of obtaining this angle was calculated
(see Methods).
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Figure 5
Codon age-responsiveness for the 59 degenerately coding codons. For each codon, the age-dependent variance was
calculated. For each genome, the 59 resulting variance scores were rank-ordered. The 59 codons are sorted by their rank-
ordering in the human genome, and the rank-ordering in the mouse genome is compared. A strong overall similarity of
codon rank-ordering between the human and mouse genomes is shown. Spearman’s rank correlation test: r = 0.92, p-value
< 10-6. The codons are colored according to a standard biochemical grouping of the amino acids for which they encode.
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according to the biochemical grouping of the corre-
sponding amino acids. No clear correlation was found
between the biochemical grouping of the amino acids
and the ranks of their codons.

Properties of evolutionary age groups
We further checked whether the evolutionary age group-
ings might be correlated with some functional classifica-
tion. It is well known that certain functions are found in
only specific parts of the evolutionary phylogenetic tree,
e.g. those involved in morphogenesis, organ develop-
ment, differences in brain function, and behavior.
Moreover, certain traits (e.g., the immune system and
pathogen defense mechanisms) were acquired late in
metazoan evolution. Indeed, studying the trend of
development-specific genes along the evolutionary tree
supports the notion that the molecular signal of
evolutionary history is partially retained [35,36].

We tested the possible enrichment of Gene Ontology
(GO) annotations [37] in each of the 9 age groups of
human genes. It turns out that a few functional
annotations are enriched in some age groups. Specifi-
cally, newer age groups were enriched with “nucleic acid
binding” genes, while older groups showed enrichment
with the process of “molecular transducer activity”. The
function that was most prevalent in the oldest age group
was “catalytic activity”. However, the number of genes
annotated with these GO terms was relatively small and
thus only insignificantly influenced the group character.

Conclusion
In this study, we provide an unbiased measurement, in
metazoan genomes, of the effect of the evolutionary age
of genes on their codon usage. We adopt a critical
statistical perspective that analyzes the codon usage
signal on a genomic scale, rather than from a gene-
centric point of view. This approach has revealed weak
signals that may otherwise be masked by gene-to-gene
variation.

Our results are quite surprising. Most correlations that
were previously suggested to dominate the determina-
tion of codon usage are time-independent, thereby
implying that the evolutionary history of a gene or a
species is less important than its current properties. Most
studies that suggest selection as the major driving force
for codon bias have analyzed protein structures, mRNA
stability, expression efficiency, and recombination
mechanisms [17]. These studies took advantage of the
availability of absolute gene expression, proteomic
expression levels, and expression breadth. These features
are used as appropriate approximations to selective
forces. Of note, none of these models include an element

of evolutionary age. Indeed, since it is assumed that
current metazoan genomes are near equilibrium with
respect to mutation and selection [30], it was unexpected
to find age-dependent differences in the codon usage of
genes, as reported here.

We have herein reported a phenomenon relating the age
of gene groups and their codon preferences. The
evolutionary mechanisms underlying this phenomenon
are yet to be discovered. It is important to note that our
assessment of evolutionary age might be influenced by
biological noise, such as rapidly evolving genes. In
addition, our analysis could be confounded by cases
where there is no gene homologue in the representative
genomes for some branches of the evolutionary tree.
Thus, one should be cautious about the definition of
homologues, which could lack detection sensitivity due
to the uneven and somewhat biased selection of
genomes that were completely sequenced. For example,
an intermediate genome that is not yet sequenced can
provide a missing link that will redefine the partition of
an age group and will thus directly affect the assignment
of a gene to its appropriate age. Mechanistically, this
could be the consequence of gene loss, lateral transfer of
genetic material (through retroviral dynamics), but also
through recombination and gene conversion processes
[17]. These potential drawbacks increase the unavoid-
able inaccuracy of the genomic data used in this study.
Notwithstanding these reservations, we did find a
significant degree of age dependency for codon usage.
We have also reported here phenomena of the depen-
dence of GC content and protein length on gene age, but
we showed that these phenomena do not dominate the
coupling of codon usage to gene age.

The age dependence of codon usage was found to apply
to all three representative organisms tested. Not only
does this pattern remain as a general trend, but the
dependence on age is in fact similar for the human,
mouse, and fruit fly genomes. We conclude that the
evolutionary history of an organism, over hundreds of
million years, is strongly reflected in its codon usage.

Methods
Databases and Resources
Protein encoding gene sequences were obtained from the
ENSEMBL database [24]. We included in our analysis
only genes marked as ‘known’ and ignored genes that are
annotated as ‘novel’. In cases of alternative splicing
variants, only a single splice variant was included. The
numerous non-protein coding genes (including rRNA,
tRNA, miRNA, snoRNA, etc.) were excluded. Genes
encoding proteins of length shorter than 150 amino
acids were also removed, since it is difficult to find
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statistically significant homologues for short proteins.
A total of 17,274 human genes and 18,216 genes from
mouse were included in the analysis.

For the analysis of the fly genome, we overcome the
uneven full-genome sampling of the evolutionary tree
from human to fly by taking advantage of the recent
sequencing and annotation efforts of 12 species from the
Drosophila genus [32]. The D. melanogaster proteome is
based on the FlyBase database [38]. A total of 10,983
genes are included in the analysis.

For the human and mouse proteomes, homology was
extracted from ENSEMBL using a predetermined list
derived from a reciprocal BLAST identification scheme.
These homologues are based on an exhaustive list of
fully sequenced genomes (detailed in Figure 1) having
high quality proteome annotations in a broad range of
the evolutionary tree, from H. sapiens to C. elegans
(Figure 1). Within the metazoa, we excluded the branch
leading to distant phyla, including Placozoa, Porifera
(sponges), and Cnidaria (corals and jellyfish) and
focused on major model organisms of the animal
kingdom. For the homologues from the perspective of
the D. melanogaster genome (Table 2), we used the
FlyBase database, in addition to ENSEMBL (including
the S. cerevisiae genome), for obtaining the predeter-
mined homologies of the genes [38].

Functional assignment for groups of genes is based on
the enrichment of Gene Ontology (GO) annotations
[37], with respect to the appearance of the GO
annotation in the entire proteome.

Age group assignments
The age of a gene was determined by the evolutionarily
most distant genome containing an identified homo-
logue to that gene. Thus, Age 1 denotes genes most
specific to the organism being analyzed, and Age 9 (Age
8 for fly) includes genes found in the least common
ancestor (LCA) of all analyzed species.

Codon usage measurements
For each group of genes, codon usage frequencies were
independently calculated for each of the amino acids.
For each of the 18 degenerately encoded amino acids,
the empirical frequencies of its corresponding codons
were separately counted and normalized to sum to 1.
The other two amino acids (tryptophan and methionine)
each have a single codon and were not included in the
analysis. Thus, each of the 59 redundant codons that
account for these 18 amino acids were assigned a
number between 0 and 1.

Calculation of expected codon usage for
a given GC content
We derived a method to calculate the codon usage
expected for a given GC content, where this usage is most
similar to a background codon usage. In our case, the
background is the overall genomic codon usage. For-
mally, we seek the codon frequencies f that are closest to
the background frequencies B, while constraining the GC
content to a level of G:
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where DKL denotes the Kullback-Leibler divergence, nj is
the number of codons encoding amino acid j, qj is the

relative frequency of amino acid j, Ci
j ∈{ }0 11

3
2
3, , , is

the GC content of the i-th codon for the j-th amino acid,
and Bi

j and fi
j are the background and optimized

frequencies of the i-th codon for the j-th amino acid,
respectively.

We used Matlab to numerically solve this optimization
problem. For each age group, the expected frequencies
calculated by this method were compared to the
observed frequencies using the c2 test for goodness of fit.

Age dependence of codon usage
For all pairs of organisms analyzed, the similarity between
the age-dependent responsiveness of their codon usages
was calculated. In detail, for each genome analyzed, the
deviation vector was defined as the difference of the codon
usage vectors for ‘old’ and ‘new’ genes. Specifically, the
‘new’ set contains all genes in the Age 1 class (primate-
specific for human, rodent and rabbit-specific for mouse,
and melanogaster subgroup-specific for fly). The ‘old’ ones
are those in all other age classes.

For example, we denote the usage vector of the ‘new’

human genes as:

U f fhuman
new

human
new

human
new= ( , , ), ,1 59…

where fhuman i
new

, denotes the frequency of the i-th codon
(normalized by its respective amino acid). Next, we
calculate the codon usage deviation vector between ‘old’
and ‘new’ human genes:

BMC Evolutionary Biology 2009, 9:285 http://www.biomedcentral.com/1471-2148/9/285

Page 10 of 12
(page number not for citation purposes)



Δhuman human
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oldU U= −

Finally, to compare human and mouse deviations, we
calculated the angle between their respective vectors
[θ(human, mouse)]:
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The p-value of randomly finding two vectors with an
incident angle whose cosine is at least as small as this

was calculated as:
Pr[ cos( ) ]θ ε π
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[39].
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