
HIV virology, diversity and clades

	 The HIV virion has a diameter of about 100 nm, 
enveloped by host cell derived lipid bilayer acquired 
during budding from host cell. Briefly, its genome 
consists of two identical copies of single stranded RNA 
molecules, is about 9 kilo bases in length, contains 
9 open reading frames and is characterized by the 
presence of structural genes gag, pol and env and a 
complex combination of other regulatory/accessory 
genes. The gag gene encodes the structural proteins of 
the core (p24, p7 and p6) and matrix (p17) and the env 
gene encodes the viral envelope glycoproteins gp120 
and gp41, which recognize and bind to host cell surface 
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receptors. The pol gene encodes for enzymes involved 
in viral replication including the reverse transcriptase 
that converts viral RNA into DNA, the integrase that 
facilitates incorporation of the viral DNA into host 
chromosomal DNA (the provirus) and the protease that 
cleaves large Gag and Pol protein precursors into their 
components. The accessory or regulatory genes of HIV 
(tat, rev, vif, vpr, nef etc.) modulate virus replication1.

	 Virologically, HIV is an extraordinarily 
variable virus that lacks proofreading mechanisms 
accompanied by high error rate (0.2-2 mutations 
per genome per cycle)2, high replication rate, an 
apparent high tolerance and selection for change. 
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Further, the HIV superinfections allow a volatile 
mechanism for genetic diversification and can permit 
novel recombinants between distant forms3. HIV has 
diversified into multiple genetic subtypes or clades 
and is broadly divided into three distinctive groups: 
group M (for Main), mainly responsible for the global 
epidemic, group O (for Outlier) and group N (for 
Not M, Not O). Group O appears to be restricted to 
west-central Africa4 and group N - a strain discovered 
in 1998 in Cameroon - is rare5. These groups have 
genetic sequence differences of >40% in some coding 
regions. In 2009, another strain was discovered in 
a Cameroonian woman, which is closely related 
to gorilla SIV and was designated as HIV-1 group 
P (Plantier)6. However, globally >90 per cent of 
HIV-1 infections belong to HIV-1 group M and nine 
genetic subtypes (A,B,C,D,F,G,H,J,K) circulate in the 
epidemic and two recombinant forms (CRF01_AE 
and CRF02_AG) are also of major importance. Many 
other recombinant forms circulate at lower levels in 
limited geographical range. 

	 Considering the emerging epidemiological 
numbers at global levels, it is important to mention 
that as a virus, HIV evolved significantly and smartly 
to counter act the well known hallmarks of our 
immune system, e.g. it targets the memory CD4+ cells, 
does not allow immune specificity to work and can 
generate enormous diversity (defeating hallmarks). 
Incidentally, not a single convincing vaccination 
approach has as yet become available to combat HIV/
AIDS and that this has compounded the problem 
even further. Some of the major scientific challenges/ 
hurdles in developing an HIV vaccine include (i) 
inadequate understanding of the immunological 
correlates of protection against HIV/AIDS, (ii) high 
degree of mutations and variability of HIV, (iii) lack 
of suitable animal models for study, and (iv) genetic 
diversity of HLA molecules, both at the population 
level as well as in individuals. 

	 These facts and estimates about HIV/AIDS 
justify the need for an in depth understanding of 
the disease pathogenesis. It is conceivable that the 
biological diversity of the virus evolved over a 
period of time provides human host with definite 
yet unexplored defensive mechanisms to deal with 
the infection in a more robust manner. This review 
highlights the influence of various immune response 
genes associated with challenges posed by HIV on 
the host.  

Differential vulnerability to HIV/AIDS

	 HIV infection leads to a progressive decline in 
peripheral CD4 T cell numbers, T cell dysfunction, 
thymic dysfunction and defects in both number and 
functions of antigen presenting cells such as dendritic 
cells and monocytes. Although, a number of variations 
are seen in different patients, without therapeutic 
intervention, majority (70-80%) of HIV infected 
individuals develop AIDS after 8 to 10 years of clinical 
latency and the disease commonly proceeds in 3 stages: 
(i) acute primary infection, (ii) asymptomatic chronic 
phase, and (iii) symptomatic phase and progression to 
AIDS. On the contrary, about 10 per cent individuals, 
known as rapid progressors, develop AIDS within 3 
years or less7. In contrast, some patients (about 5%), 
are long term non progressors (LTNPs) and remain 
asymptomatic for more than 10 years, even in the 
absence of treatment, maintain low viraemia and 
normal CD4 counts8. Further, the presence of some 
highly exposed persistently seronegative (HEPS) 
groups suggest the importance of natural and acquired 
immunity to HIV, which in turn defines the clinical 
outcome. Moreover, reports suggest inter-individual 
variability towards antiretroviral drug responsiveness 
among AIDS patients, in terms of drug pharmacokinetics 
and pharmacogenomics9-11. Therefore, it is of utmost 
importance to define and understand which factors 
contribute to this variability in terms of virological, 
clinical and immunological control of the virus, 
development of disease among HIV +ve individuals 
and how these are going to ultimately influence 
the HIV epidemic in a region-specific manner. The 
inter-individual variability of HIV susceptibility and 
progression towards AIDS is shown in Fig. 1. 

Highly exposed persistently seronegative 
individuals

	 A large number of cohorts of HIV exposed 
persistently seronegative (HEPS) individuals have 
been identified globally. The UCLA Multicenter 
AIDS Cohort Study (MACS)12 suggested protection 
for a group of homosexual men. Similarly, in Kenyan 
female sex workers heterogeneity towards HIV 
susceptibility was observed13. Further, immunologic 
studies reported HIV specific T cell immune responses 
in HIV exposed spouses of discordant couples14. This 
cohort is useful for studying the genetic, immunologic 
and environmental factors that confer natural 
protection and viral resistance even after repeated 
exposures. Generally these HEPS fall into three 
categories: (i) Discordant couples, (ii) Individuals 



with high risk sexual behaviour including commercial 
sex workers (CSWs) and men who have sex with men 
MSM), and (iii) individuals exposed nonsexually that 
include injection drug users, haemophiliacs, infants 
born to HIV-infected mothers and other exposed to 
contaminated blood products.

Viraemic controllers, rapid and slow progressors

	 The inter-individual variability of HIV disease 
progression is supported naturally by the presence of 
different clinical progression groups in humans and 
non human primates. Table I demonstrates the general 
patterns and relationship between viral loads, CD4+ 
T cell counts and disease progression, however, these 
patterns and the underlying determinants are only 
partially understood. 

Non human primates: Macaques and Chimpanzees 

	 Non human primates serve as important models to 
study AIDS and correlates of protection because natural 
infection of these hosts by the simian immunodeficiency 
virus (SIV) is characterized by the general lack of 
progression to AIDS and reduced vertical transmission. 
Although, recently a few cases of simian AIDS have 

Fig. 1. Inter-individual variability to HIV infection and disease 
progression. Exposed uninfected (EU) individuals show resistance 
to HIV acquisition even after multiple exposures and high risk 
behaviour. Long-term non-progressors (LTNP) maintain stable 
CD4 levels and low virus load (VL) for ten or more years, Rapid 
progressors (RPs) who cannot control viraemia and develop AIDS 
within three years of infection, and Elite controllers (EC), who 
represent just 1% of HIV-infected persons, control HIV replication 
to <50 copies/ml.

Table I. Five clinical progression groups as mentioned and defined in literature15-19

Long term non progressors
(A) Elite controllers

Asymptomatic, over 10 year after seroconversion1.	
Undetectable plasma viral RNA levels for the respective assay  (2.	 e.g.,<75 copies/ml by bDNA or, <50 by ultrasensitive PCR) even 
without ART
Rare non consecutive episodes of viraemia up to 1000 copies/ml3.	
Minimum of 3 longitudinal viral load determinations, in the absence of ART, spanning at least a 12-month period4.	

(B) Viraemic controllers
Same as in A 11.	
Plasma HIV RNA levels equal or below 2000 copies/ml without ART2.	
Rare non consecutive episodes of viraemia above 2000 copies/ml 3.	
Same as in A 44.	

(C) Viraemic non controllers
Same as in A 11.	
More than 50% of the samples indicating plasma HIV RNA levels above 2.000 copies/ml without ART2.	

Chronic progressors
Symptomatic, or initiation of ART within 10 years after seroconversion1.	
Minimum of 3 longitudinal viral load determinations, in the absence of ART, indicating a viral set point above 2000 copies/ml2.	

Rapid progressors
1.	 Two or more CD4 T cell counts below 350 μl within 3 years after seroconversion, with no value ≥350 afterwards in the absence of 

ART
2.	 And/or, ART initiated within 3 years after seroconversion, and at least one preceding CD4<350/μl
3.	 And/or, AIDS or AIDS-related death within 3 years after seroconversion and at least one preceding CD4<350 μl

ART, antiretroviral therapy
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been reported in naturally or experimentally infected 
African green monkeys (AGMs), sooty mengabeys 
and mandrills, such instances are rare20. 

	 These natural, nonprogressive SIV infections 
represent an evolutionary adaptation that allows 
harmless co-existence between primate lentiviruses 
and their hosts’ immune system. This evolutionary 
advantage does not result in reduced viral replication 
but rather it involves phenotypic changes to CD4+ T 
cells, controlled and limited immune activation and 
preserved mucosal immunity. It is interesting to note 
that the HIV-1 epitopes mapped in chimpanzees have 
been shown to be remarkably similar to those identified 
in human LTNP cohorts, suggesting that in both 
species, cytotoxic T lymphocytes (CTLs) could have 
an important role in protection. Further, considering the 
genetic and evolutionary relatedness to humans (98% 
between chimpanzees and humans), vaccine research 
on these animal models could be greatly beneficial in 
designing novel therapeutic strategies. 

Immune correlates of protection 

	 Studies of immune depletion and passive 
immunization in animal models strongly suggest that 
both cell mediated and neutralizing antibodies mediated 
immune responses provide effective protection 
from HIV infection and from disease progression. 
Polyfunctional (IL-2 plus IFNγ) CD4+ and CD8+ T cell 
responses were found to be superior in viraemic control 
and maintaining homeostasis of the immune system21. 
Adaptive immune responses comprising neutralizing 
antibodies and virus specific CD4+ and CD8+ T cells, 
are the major correlates of protection in functional 
terms. 

	 Further understanding of these correlates is 
required to define the differential vulnerability towards 
HIV-1/AIDS, contributed by the complex interactions 
between a number of host genetic, immunological 
and virological factors. The host genetic factors play 
a major role in defining this heterogeneity of disease 
progression and susceptibility. 

HIV/AIDS restriction vs permissivity: polygenic 
effect

	 The heterogeneity in HIV infection after exposure 
and also in the clinical course of the disease can be 
studied using cohorts of transmission and disease 
progression phenotypes, including exposed uninfected 
individuals, fast and slow progressors. Identifying 
host genetic factors and alleles, the major cause of this 

heterogeneity (protection vs risk), and their influences 
in these HIV infection/transmission and progression 
phenotypes, are the main objectives of host genetic 
research in this field. An understanding of the host 
genetic factors and their interaction with immune and 
virological factors could yield important information on 
the immunopathogenesis of HIV infection. In last few 
years, there is an upgradation of technologies and as a 
result, the host genetics of HIV/AIDS using candidate 
gene based approaches is now moving simultaneously 
towards greater depth of whole genome analysis using 
advanced gene discovery approaches and integration 
through systems biology.

	 Large cohort and candidate gene based studies 
(done primarily in the Caucasian population) have 
highlighted the importance of host determinants 
comprising a number of immune response genes22 
that contribute towards differential vulnerability of 
individuals to HIV/AIDS outcome. This includes 
genes that regulate HIV cell entry (like chemokine 
co-receptors and their ligands), those that influence 
acquired and innate immunity (major histocompatibility 
complex, killer cell immunoglobulin-like receptor, 
and cytokines), as well as others including tripartite 
interaction motif 5 a (TRIM5α) and apolipoprotein B 
mRNA-editing enzyme, catalytic polypeptide-like 3G 
(APOBEC3G). The latter have recently been identified 
and are known to influence HIV-1/AIDS outcome. 
These host factors and their variants presumably alter 
the transmission from an infected host primarily by 
regulating the replication of virus and the concentration 
of the particles circulating in the blood and mucosal 
secretions of the potential donor. There is a compelling 
evidence suggesting influence of genetic variations on 
HIV viral load set point, rate of CD4 T cells decline, 
susceptibility to specific AIDS defining illnesses and 
response to antiviral therapy23,24. 

	 O’Brien et al22 have performed a meta-analysis 
of five different cohort studies from Multicenter 
Hemophilia Cohort Studies (MHCS), AIDS Linked to 
Intra-Venous Experience (ALIVE), Hemophilia Growth 
and Developmental Study (HGDS), Multicenter AIDS 
Cohort Study (MACS), San Francisco City Clinic Men’s 
Study (SFCC). They suggested that evaluation of the 
‘Genetic Propensity Index’ (GPI) of an individual based 
on the distribution of ‘AIDS restriction genes’ that limit 
AIDS (chemokine ligands and receptors or others like 
the cytokines or HLA or Killer immunoglobulin like 
receptors (KIRs) could be a useful way of identifying 
‘at risk’ individuals. Hence based on the genetic profile 
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of three sets of immune associated genes, the genetic 
propensity indices of individuals vary significantly 
depending on the presence or absence of protection 
conferring genes. Thus, if a population possesses more 
of the protective alleles, it would be expected to have 
greater number of AIDS free individuals. Therefore, 
GPI can help predict survival kinetics, improve 
diagnostics and treatment of AIDS at individual and/or 
population specific manner. 

	 Fellay et al25 have proposed that an additive 
genetic score could predict HIV-1 disease progression. 
The progression outcome (initiation of combined 
antiretroviral treatment with CD4+ T cells < 500/
µl) during the first 5 years after estimated date of 
seroconversion were determined in categories defined 
by HIV-1 viral load and by a simple additive genetic 
score in individuals of Caucasian ancestry (n=1071). 
In this study, the individuals were stratified with 
minimum score of 0 for those who were homozygous 
for the major allele at rs2395029 (a proxy for HLA-
B*5701), rs9264942 (HLA-C -35 variant), rs9261174 
(ZNRD1), and CCR5-D32. The study suggested that 
the calculated genetic score refines the prediction of 
progression, beyond the information provided by viral 
load only, throughout the range of set point values. 

	 The results of various candidate gene studies and 
the meta-analysis of several large AIDS cohorts have 
revealed multiple genetic variants, i.e AIDS restriction 
genes that affect HIV entry, intracellular replication as 
well as innate and adaptive host responses (Table II). 

	 These AIDS restriction genes (ARGs) including 
chemokine receptors, their ligands, MHC molecules, 
cytokines, their receptors, factors that are directly 
involved in HIV-1 cell entry, immune recognition and 
antigen presentation, are discussed further.

Influence of HLA on HIV/AIDS 

	 The human leukocyte antigen (HLA) system 
is encoded by the most polymorphic region of the 
human genome, the major histocompatibility complex 
(MHC). The collection of the genes arrayed within 
this region spans 4× 106 nucleotides on the short arm 
of chromosomes 6 at position 6p21.3. These genes are 
arranged in three distinct regions, each comprising of a 
cluster of immune response genes (Fig. 2A). 

	 The inherent features of the MHC include (i) 
extreme polymorphism of this region across various 
ethnic groups (most polymorphic genomic region), 
suggesting its evolutionary significance and selection 

pressure at this region. A total of ~6400 HLA alleles 
have been named and numbers of allelic variants are 
expanding with the time44,45; (ii) high degree of linkage 
among various loci; and (iii) ability to present antigenic 
peptides promiscuously to generate immune responses. 
These features make this system of particular interest 
in biology and medicine, protect humans from ever 
evolving pathogens that enter the body, develop 
cell mediated and humoral immune responses, and 
also determine whether a transplanted tissue will be 
accepted as self or rejected as foreign.

	 Presentation of antigenic peptides to CD8+ and 
CD4+ T cells is restricted by MHC class I and class 
II molecules, respectively, which are expressed on the 
surfaces of antigen-presenting cells (Fig. 2B). Most of 
the amino acid substitutions are concentrated in the 
peptide binding groove of HLA molecules and thus 
define the nature of epitope peptides to be presented 
to CD8+ and CD4+ T cells. The virus-specific CD8+ 
T cells play key role in controlling viral replication 
by targeting HIV-1 peptides presented through class 
I molecules on infected cells and by establishing a 
dynamic equilibrium between the evolving virus and 
the HLA-restricted adaptive host immune response46. 

	 The genetic diversity in the HLA system 
influences different aspects of HIV-1/AIDS like viral 
transmission, control of dynamics of viral equilibration 
and progression, development of opportunistic 
infections and even response to therapy including 
the observed hypersensitivity to ART drugs23,24,26,38. 
Further, the HLA class I restricted immune responses 
exert direct effect by imprinting mutations in HIV-1, 
which in turn defines viral diversity, its replicative 
and evolutionary fitness. Hence, identification of the 
conserved immunodominant HIV epitopes that can be 
presented by HLA alleles most commonly found in 
a population would have implications for designing 
MHC based vaccines. Incidentally, HLA diversity 
imposes a potential limitation on the development of 
candidate vaccine designs, and there are uncertainties 
on population or clade specific vaccine approaches 
over global vaccine approach. During the last few 
years genome wide studies have highlighted the role 
of human lymphocyte antigen system47 amongst the 
securely identified host factors associated with HIV/
AIDS outcome. Some of the well established HLA 
associations with the HIV infection and progression 
are summarized below:

HLA class I alleles: Two alleles HLA-B*27 and B*57 
have consistently been found to be associated with 
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Table II. Summary of studies focused on human genetic variants involved in modulating HIV pathogenesis. These have been grouped into 
genes influencing HIV entry, post HIV entry and those associated with acquired and protective immunity

Chromosome 
(genetic loci)

Gene product Gene variant Association Refs

HIV entry

Viral co-receptors

3p21 CCR2 64I Delayed progression 27

3p21 CCR5 ∆32 Protection/resistance, delayed progression 28

3p21 CCR5 C20S Protection in the presence of ∆32 29

3p21 CCR5 C101X Protection in the presence of ∆32 29

3p21 CCR5 G106R, C178R, C269F HIV resistance /Delay AIDS 29

3p21 CCR5 59029AA Faster progression 29

3p21 CCR5 P1 [Promoter haplotypes] Faster progression 29

3p21 CCR5 HHC Promoter haplogroup Faster progression in Japanese 30

3p21 CCR5 HHE Promoter haplogroup Faster progression in Caucasians 31

3p21 CX3CR1 I249/M280 Faster progression 29

19p13 DC-SIGN Promoter variant Parenteral infection 32

Co-receptor  ligands

17q11 MCP1/MCP3/Eotaxin H7 haplotype Decrease susceptibility to infection 32

17q12 MIP-1 α (CCL3L1) Gene copy number Susceptibility to infection 33

17q12 MIP-1β (CCL4L1) L2 Susceptibility to infection 34

17q12 RANTES (CCL5) -403A , -28G (promoter) Delayed progression 35

17q12 RANTES (CCL5) In 1.1C (intronic) Faster progression 36

10q11 SDF-1(CXCL12) 3’A Delayed progression? 37

Post  HIV entry

11p15 TRIM 5α Haplotype 9 Increase transmission 32

11p15 TRIM 5α 136Q,43Y Protection/resistance 32

22q13 APOBEC3G 186R, C40693T Faster progression, Increase transmission 32

11p15 TSG101 -183C Rapid CD4 T cell decline 32

Acquired/innate immunity

6p21 HLA B*27 Delayed progression 38

6p21 B*18 Faster progression 38

6p21 B*57 Delayed progression 38

6p21 B*35Px Faster progression 38

19q13; 6p21 KIR3DS1 3DS1 + HLA-Bw4-80Ile Delayed progression 39

19q13; 6p21 3DL1 + HLA-B*57 Delayed progression 40

Cytokine genes

12q14 Th1([γ-IFN) +874T allele Delayed progression 41

1q31 Th2 (IL10 ) IL10-5′-592A Faster progression 42

5q31 Th2 (IL4) -590T Faster progression 43

Source: Adapted and modified from Ref. 26
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a favourable prognosis, irrespective of differences 
in ethnicity, virus clade, and risk group48. Several 
molecular subtypes of B*27 (~96) are known that differ 
from the more common B*2705 ‘prototype’ by one or 
a few amino acid residues. The presence of Glu-- at 
position 45 (negative charge) in the B pocket of HLA-
B*27 alleles allows strong selection of peptides with 
a positively charged Arg++ at position 2 which in turn 
could be responsible for slow disease progression49. 
The other known protective alleles i.e. B57 restrict 
CTL responses, specifically targeting multiple HIV-1 
peptides against gag and reverse transcriptase motifs. 
This broad peptide recognition specificity of B57 could 
account for compromised viral fitness leading to its 
AIDS protective nature. 

	 In contrast, other allelic groups (B22 serogroups, 
HLA-B*35 and B*53) have been shown to be 
associated with unfavourable prognosis or higher viral 
RNA levels in HIV patients. Currently, the HLA-B*35 
can be split into 210 subtypes and these set of alleles 

can be grouped into B*35Px or B*35Py depending 
on their ability to bind peptides. The HLA-B*35Py 
molecules preferentially bind peptides carrying a 
tyrosine residue (Y) at position 9 of the peptide while 
B*35Px molecules have no such preferential binding. 
Previous reports suggest that HIV infected individuals 
carrying B*35Px alleles (e.g. B*3502/03/04) progress 
to AIDS faster as compared to those carrying HLA-
B*35Py set of alleles (B*3501/08), who progress rather 
slowly50. The differential peptide preference and 
relative efficiency of B*35Px and B*35Py in presenting 
specific HIV-1 epitopes to CTLs, presumably, could 
lead to either ineffective or a protective immune 
response. Fig. 3 summarizes the brief overview of the 
proposed mechanisms of these alleles as described by 
Gao et al51.

	 Considering their importance and based on the 
published allele frequency data52, the distribution 
pattern of these protective and risk conferring alleles in 
various populations in comparison to the data on north 

Fig. 2. (A) Chromosomal location and gene map showing multiple genes within the MHC region on the short arm of chromosome 6 (6p21.3) 
of man. (B) Schematic view of HLA class II and class I molecular structures showing the peptide binding groove/clefts formed between α1 
and β1 domains in class II and α1 and α2 domains in class I molecules, respectively. The membrane proximal domains (α2, β2 of class II and 
β2 microglobulin and α3 of class I) are conserved and non polymorphic. 
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Indians from our study24 is shown in Fig. 4. As can be 
observed, the overall pattern of distribution of trinity 
of these alleles is similar in various populations with 
B*35 being the predominant allele.

Heterozygosity and homozygosity: Carrington and 
co-workers first showed that heterozygosity at class 
I loci (A, B, C) was associated with delayed AIDS 
progression among HIV-1 infected patients, on the 
other hand, homozygotes progressed rather rapidly to 
AIDS and death53. This could be as a result of diversity 
in presentation of antigenic peptides to effector T cells 
by the presence of larger allelic diversity. Therefore, it 
takes longer for escape mutants to arise in heterozygous 
compared with homozygous individuals. On the other 
hand, homozygisity of HLA-Bw4 bearing B alleles, was 
found associated with a significant advantage against 
HIV viraemia54. This can be as a result of regulation of 
natural killer cell activity because Bw4 acts as a ligand 
for KIRs on these cells.

HLA class I supertypes: HLA alleles can be grouped 
together as HLA supertypes on the basis of their 
overlapping peptide binding properties, where 
different members of a supertype bind similar 
peptides, yet exhibiting distinct repertoires55. Some 
HLA supertypes have previously been shown to be 
associated with HIV transmission and with circulating 
HIV concentration23,24,26,38. For example, Kenyan 
women carrying HL A-A2/A6802 supertype were found 
protected from HIV-1 subtype A infection and reduced 
MTC transmission56. Similarly, in the MACS cohort, 
the same HLA-A2/A6802 supertype observed more 
frequently among HEPS individuals than among those 
with HIV-1 subtype B seroconversion57. 

	 In the B locus, alleles in the HLA-B7 supertype 
(includes B7, B35, B51, B53, B55, B56, B67 and B78), 
which are relatively common in most populations55, were 
found to be associated with high viraemia, poor CTL 
responses and fast progression to AIDS in Caucasoid 
and African-Americans infected predominantly 
with HIV-1 subtype B53,58-60. Some of the HLA-B7 
supertype alleles (namely, B*3502, *3503, *3504 and 

*5301), that associate with faster progression to AIDS, 
preferentially engage with antigenic supermotifs with 
certain residues (Leu, Val, Met) at their C’ terminal. On 
the other hand, other alleles of the HLA-B7 supertype 
(B*3501 and *3508) (not associated with faster disease 
progression) prefer to engage supermotifs with just a 
tyrosine at the C terminal51. 

HLA class II alleles: Diversity at HLA class II loci could 
influence antigen presentation and viraemic control by 
influencing the virus specific CD4+ T cell responses 
and induction of HIV specific CTLs. However, only 
limited information is available on the role of class II 
alleles/haplotypes with HIV-1 disease61-63. Previously 
a correlation was observed between homozygosity at 
HLA-DRB1 and reduced risk of developing pulmonary 
TB among HIV infected subjects64. In a perinatal study, 
higher frequency of HLA-DRB1*03 in infected infants 
and DRB1*15 allele in uninfected infants born from 
HIV positive mothers has also been reported65. Further, 
HLA-DR2 was reported as a susceptibility marker in 
south Indian HIV patients66.

Haplotypic associations: Two extended haplotypes, 
namely HLA-A1-Cw7-B8-DR3-DQ2 (ancestral 
haplotype AH8.1) and HLA-A11-Cw4-B35-DR1-DQ1 
have been implicated in faster progression to AIDS 
among the Caucasian HIV +ve subjects60,67. However, 
the mechanisms underlying for the observed loss of 
CD4+ T cells are yet unexplored. The association of 
AH8.1 with susceptibility to several autoimmune 
diseases, including type 1 diabetes, dermatitis 
herpetiformis, systemic lupus erythematosus, common 
variable immunodeficiency and IgA deficiency are well 

Fig. 3. ‘Trinity’ of HLA-B alleles (B*27, B*57 and B*35), that 
exert their effect at distinct intervals of viral pathogenesis.

Fig. 4. Distribution of ‘trinity’ of HLA-B alleles (B*27, B*57 and 
B*35). Data on north Indians from our study24, while those in other 
ethnic groups from52.
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reported among Caucasians68. The hyper-activation 
and/or autoimmunity conferred by this haplotype might 
be involved in the progressive immunodeficiency in 
AIDS. Incidentally, the AH8.1 haplotype is rather rare 
in the Indian population and has been compensated 
by another related haplotype HLA-A26-Cw7-B8-
DR3-DQ2 designated as AH 8.269, which is strongly 
associated with susceptibility to autoimmune diseases 
like celiac disease70 and type 1 diabetes71 in north 
Indians, however, its impact in HIV infection remains 
obscure. An over-representation of haplotype HLA-
A*1101- B*3520-Cw*1507 has been reported among 
Indian patients with AIDS72.

HLA and drug hypersensitivity: MHC ancestral 
haplotype HLA-B*5701-DRB1*07 (AH57.1) has 
strong association with abacavir hypersensitivity 
syndrome (AHS) with 2 to 8 per cent of HIV infected 
Caucasian patients develop hypersensitivity within 10 
to 40 days after initiation of chemotherapy9. Further, 
HLA-B*5701 has been found to be highly predictive 
of clinically diagnosed AHS in several study cohorts10. 
Accordingly, mandatory screening of B*5701 before 
abacavir therapy has been recommended in the US 
and Europe73. A recent report suggests that the drug 
induces specific HLA-B*5701 restricted CD8+ T cell 
responses74. The residues 116 and 114 in the ‘pocket F’ 
of the peptide binding cleft of a B*5701 molecule are 
of particular importance and contribute towards drug 
specific binding. In addition, associations of HLA-
DRB1*0101 and Cw8 with sensitivity to nevirapine, 
have been observed11.

Rare HLA alleles: Recent epitope based studies have 
shown that HLA alleles encountered by HIV in hosts 
with common HLA alleles generally require limited 
virus diversification to attain escape status and evade 
resulting in higher viral loads. On the other hand, 
in individuals with rare HLA class I alleles, there is 
possibly an unexpected encounter of the virus with 
HLA, leading to greater adaptive evolution albeit with 
low fitness/reversion75, thus resulting in decreased 
viral loads by offering ‘selective advantage’ to the 
host against the pre-adapted virus. A recent report 
from the Japanese population has suggested the 
evolutionary impact of host HLA phenotype on virus 
fitness. According to the study, the highly prevalent 
HLA-B*51 (~20%) was protective initially, but over 
a span of 25 yr, the virus evolved and had adapted a 
mutation I135X linked to B*51 to a point of fixation. 
Accordingly, the protective effect of this allele is 
beginning to wane gradually76.

Chemokine system: HIV entry gateways and 
blockers

	 The chemokines and their receptors comprise an 
expanding group of immunoregulatory molecules 
involved in regulating leukocyte trafficking during 
development, homeostasis, inflammation and infection. 
These are 8-10 kDa proteins sharing 20-95% homology 
in amino acid sequences77 and are classified on the 
basis of the arrangement of four conserved cysteine 
residues into four families: (i) the α chemokine family 
where the first two cysteines are separated by an amino 
acid (cysteine-X amino acid-cysteine, or CXC), (ii) 
the β-chemokine family where these two cysteines are 
adjacent (cysteine-cysteine, or CC), (iii) Lymphotactin, 
a “C” chemokine, is homologous to CC members but 
lacks the first and third canonical cysteines, and (iv) 
Fractalkine, represents a class in which the chemokine 
moiety sits atop a membrane anchored mucin like stalk 
and contains a unique CX3C motif. The chemokine 
receptors belong to the seven transmembrane G 
protein coupled receptor group. Although the families 
lack sequence homology, they share a common 
transmembrane core (TMI-VII) with three intracellular 
(i1-i3) and extracellular (e1-e3) loops. Two conserved 
cysteines in e1 and e2 are disulphide bonded. The 
TM I-VII traverses the membrane with grouping of 
ectodomains to generate chemokine binding sites. 
Interactions with the respective ligands change the core 
conformation of the receptors which in turn expose G 
protein binding site for downstream signaling. 

	 In the middle of 1996, a novel mechanism of HIV 
and host factors’ interaction was revealed upon the 
identification of chemokine receptors as requisite strain 
specific co-receptors for viral fusion and subsequent 
entry into host cells78. Another study identified the CC 
chemokines macrophage inflammatory protein (MIP)-
1α, MIP-1β and RANTES as the primary mediators of 
soluble CD8+ T cell derived HIV inhibitory activity79. 
Since then, various chemokine receptors and their 
ligands have been implicated in HIV pathogenesis and 
viral entry process. However, influence of chemokines 
on HIV outcome, their production and activity must 
be considered in the context of cytokine regulatory 
network, as well as the strain of HIV.

	 Among various chemokine receptors, CCR5 and 
CXCR4 are the major co-receptors used by HIV. Based 
on co-receptor usage, viral variants can be grouped as 
CCR5 (R5) or CXCR4 (R4) or both (R5X4) (Fig. 5). 
The former are the nonsyncitium inducing while the 
latter are predominantly syncitium inducing virions. 
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The major determinants of HIV tropism were identified 
within the third variable (V3) domain of gp120, 
however, the largest co-receptor binding surface is 
provided by the bridging sheet and adjacent structures. 
The N terminal domains of CCR5 or CXCR4 are 
modified post-translationally with sulphate moieties 
on tyrosine residues, which could possibly allow 
electrostatic interaction with positively charged amino 
acid residues in the bridging sheet and the V3 base. 
However, the signaling function of the co-receptors is 
not required for HIV entry80.

	 Several genetic variants of genes encoding HIV 
co-receptors and their respective chemokine ligands 
(e.g. for CCR5: RANTES, macrophage inflammatory 
protein α, β and MCP-2, for CXCR4: SDF-1) have 
been described, and some of these variants have 
been reported to be associated with resistance to HIV 
infection and/or disease progression.

Chemokine receptors: CCR2 and CCR5 variants

	 (i) The CCR2-64I variant - A valine to 
isoleucine substitution at position 64 within the first 
transmembrane region of CCR2 has been associated 
with 2-4 years delay in disease progression to AIDS 

compared to individuals carrying the wild type allele 
in homozygous state27,81. Among the HIV-1 discordant 
couples in Thailand, CCR2 64I homozygosity was found 
associated with a reduced risk of viral transmission82. 
The population frequency of this 64I allele is 8-10 
per cent among Caucasians, 15-17 per cent among 
subjects of African origin27,81 and 20.6 per cent in the 
Chinese populations83. The close proximity of CCR2 
gene to CCR5 on chromosome 3p21.384 suggests that 
the observed impact of this mutation could possibly be 
as a result of linkage with highly polymorphic CCR5 
promoter region. 

	 We observed no significant difference in the 
allelic distribution of CCR2-64I between healthy 
(11.7%) and HIV+ subjects (11.1%) in north Indians85. 
According to our results, 64I mutation may be an 
important determinant of HIV infection and/ or disease 
progression but does not appear to be associated 
with acquisition of HIV infection in subjects of 
north Indian origin. Our findings are consistent with 
another study on exposed but uninfected partners of 
HIV-1 infected individuals from north India which 
showed no correlation of CCR2 polymorphism with 
susceptibility against HIV86. 

	 (ii) CCR5 ∆32 mutation - CCR5 acts as a major 
co-receptor for entry of R5 isolates and is generally 
expressed on the surface of monocytes/macrophages, 
dendritic cells, microglial cells and activated T cells. 
CCR5 gene is highly polymorphic and variants have 
been found to be associated with resistance to HIV-1 
infection and rate of disease progression27. In this 
naturally occurring knockout deletion the presence 
of a premature stop codon results in truncation of the 
protein synthesized, which is not expressed on the 
cell surface, thus effectively restrict HIV-1 cell entry 
in homozygous people and delayed AIDS progression 
in heterozygotes27,28. In Northern Europe, CCR5-
Δ32 occurs at a frequency of 10-16 per cent and its 
frequency decreases in a Southeast cline toward the 
Mediterranean and the mutation gradually disappears 
toward the African and Asian populations87. In our 
studies88, we could not identify any homozygous CCR5-
Δ32 individual among 193 healthy controls and 257 
HIV infected individuals, however, four in the former 
group and 10 HIV +ve subjects were found to have this 
deletion in heterozygous state. Low occurrence of this 
mutant (Δ32) allele was in accordance with the previous 
published reports in the healthy Indian population89-91, 
which suggest that this protective mutation is overall 
rare in this population.

Fig. 5. Chemokines and their receptors network guiding the HIV 
entry. CCR5 and CXCR4 co-receptor utilization by the HIV R5 
and X4 virions in the macrophages and T cells respectively. MIP-1, 
macrophage inflammatory protein-1; RANTES, regulated upon 
activation normal T cell expressed and secreted; SDF-1, stromal 
derived factor-1; CCR5, receptor 5 for β family (cysteine-cysteine, 
or CC) of chemokines; CXCR4, receptor for α family (cysteine-X-
cysteine, or CXC) of chemokines.
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	 (iii) CCR5 promoter region variants - The promoter 
region of CCR5 gene is highly polymorphic and based 
on distribution of SNPs has been organized into seven 
different haplotypes, namely, HHA, HHB, HHC, 
HHD, HHE, HHF (F*1, F*2), and HHG (G*1, G*2)84. 
These CCR5 promoter haplotypes are associated with 
susceptibility to HIV infection and disease outcome29. 
It is suggested that individuals who are homozygous 
for allele CCR5*59029G may progress to AIDS more 
slowly compared to those who are homozygous for the 
CCR5*59029A allele92. The CCR5*59356 t allele occurs 
more frequently in African Americans as compared to 
Hispanic or Caucasian persons, and its homozygosity 
or presence of HHD haplotype has been correlated with 
increased rate of perinatal transmission93. Further, HHE 
homozygosity was associated with both HIV infection 
and rapid progression in Caucasians31. In addition, it 
has been reported to be associated with HIV-1 infection, 
accelerated CD4 decline, and disease progression 
in Thai IDUs and HEPS individuals94,95. Similarly, 
HHC is correlated with faster disease progression 
among African Americans84. On the contrary, in 
the Thai population, this haplotype is reported with 
slower disease progression94. The HHG*2 and HHF*2 
haplotypes have also been found associated with 
slower HIV disease progression among Caucasian and 
African-American individuals, respectively, probably 
because of the protective effects of d32 and CCR2 64I 
respectively84.

	 Our studies88 of five SNPs in the CCR5 promoter 
region (positions 59029, 59353, 59356, 59402, and 
59653) indicated significantly higher frequencies of 
allele CCR5 59402A in the HIV-positive individuals 
than healthy individuals (66.4 vs 57.1%) and in CDC 
stage C patients (76%) versus stages A and B patients 
together (60%). Similar findings were observed at 
genotypic level suggesting that the CCR5*59402A 
allele might favour the likelihood of acquisition of 
HIV-1 infection and development of AIDS in HIV+ve 
Indian patients. 

	 Higher frequency of homozygous CCR5 promoter 
haplotype ACCAC (~HHE) was observed in the 
stage C HIV-positive patients (48.6%) compared 
with those in stages A and B put together (38.5%)88. 
These results suggest possible role of HHE in the 
development of AIDS related symptoms in Indian 
population. In accordance to our results, haplogroup 
HHE has been associated with enhanced acquisition 
and rate of progression to AIDS in Caucasians96 and 
Thais94,95. 

Chemokines: MCP-1, SDF-1, RANTES and MIP-
1α variants

	 The beta-chemokines macrophage inflammatory 
protein (MIP)-1α (CCL3), MIP-1β (CCL4), and 
RANTES (CCL5) are the natural ligands of CCR5 
and SDF-1 is for CXCR4 co-receptor. Two additional 
variants named CCL3L1 and CCL4L1, encoded by 
genes arising from the duplication of CCL3 and CCL4, 
respectively, have also been reported97. Chemokines 
induce internalization of their receptors, thus abrogating 
its ability to promote HIV-1 infection and further 
modulate the disease progression.

	 (i) MCP-1 -2518 A/G transition - Monocyte 
chemoattractant protein-1 (MCP-1/CCL2), regulates 
migration and infiltration of monocytes, macrophages, 
basophils, mast cells, T cells, natural killer cells and 
dendritic cells to sites of injury. CCL2 along with 
its receptor CCR2 have been demonstrated to be 
induced and involved in a variety of diseases98. MCP-1 
mediated macrophage recruitment and activation could 
potentially influence HIV infection and pathogenesis 
by directly infecting macrophages at infection site, 
then may serve as “Trojan horses” for dissemination 
of the virus to lymph nodes and other organs. This 
macrophage dependent viral amplification at local sites 
of infection seems to be a pre- requisite for efficient 
dissemination of the virus during very early stages. In 
addition, several reports link MCP-1 expression, HIV-1 
replication and inhibition of HIV-1 infection in vitro99. 

	 MCP-1 A/G transition in the promoter region 
modulates the levels of MCP-1 expression. The 
G allele results in increased MCP-1 production at 
transcriptional and protein level compared to A allele100 
and homozygosity for the MCP-1 –2578G allele 
has been shown to be associated with a 50 per cent 
reduction in the risk of HIV-1 acquisition. Interestingly, 
in HIV-1 infected individuals, the same genotype 
was associated with faster disease progression and a 
4.5-fold increased risk of developing HIV associated 
dementia in large cohort studies comprising European, 
African and Hispanic Americans101. In Caucasians the 
allelic frequency of ‘G’ is 23 to 25 per cent (25.8% in 
Germans, 25% in Italians, 23.9% in Hungarians and 
23.8% in Czechs)102. On the other hand, most Asian 
populations report relatively higher frequency for the 
‘G’ allele, i.e. 50-65 per cent (65% in Koreans, 63.8% 
in Japanese and 51% in Chinese population)103. One 
study from south India reported that the frequency of 
G allele was 34 per cent104. The study did not reveal 
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any association of this variant with HIV susceptibility 
and development of tuberculosis in HIV +ve cohort.

	 (ii) CXCL12 (SDF1-3’A variant) - CXC chemokine 
ligand 12 (CXCL12), or stromal cell–derived factor 1 
(SDF1), is the only known natural ligand for the HIV-1 
co-receptor CXCR4. Two isoforms, CXCL12α and β 
are expressed as a result of alternative splicing of a 
single gene. A SNP designated SDF1-3′UTR-801G>A 
(rs1801157), was identified at position +801 relative to 
the start codon in the 3′ untranslated region (3′UTR) 
of the CXCL12β gene transcript37. The transition was 
found associated with delayed onset of AIDS37, other 
studies in contrast suggested association to decreased105 
survival after AIDS diagnosis; or no effect on disease 
progression106. The SNP in the heterozygous state was 
found associated with increased vertical transmission 
from mother to child in an African study107. Another 
study revealed association with resistance to HIV-1 
infection in seronegative high-risk individuals108. 
Studies investigating plasma CXCL12 protein 
levels in HIV-1–seropositive patients, exposed high-
risk HIV-1–seronegative individuals, and healthy 
HIV-1–seronegative controls with consideration of 
SDF1-3′A genotypes have also reported inconsistent 
associations. 

	 The frequency of SDF1-3’A ranges from 17-35 
per cent in South Indians, Thais108,109 and many other 
populations worldwide (17-22%)110. A report from 
Indian population suggested lack of association of 
this variant with HIV susceptibility, however, in the 
same study GG genotype was found associated with 
susceptibility to pulmonary TB in HIV patients104. 

	 Mutations in the CXCR4 gene are generally rare and 
have not been implicated in HIV-1/AIDS pathogenesis. 
The delay in onset of AIDS observed in SDF1-3’A 
homozygotes might result from overproduction of 
SDF1 in certain tissue compartments, regulating the 
CCR5-CXCR4 switching. The controversial role of 
CXCL12 (SDF1-3′A SNP) and CXCR4 mutations 
in HIV-1/AIDS pathogenesis need to be defined in 
ethnically distinct populations.

	 (iii) CCL5/RANTES - Regulated upon activation 
normal T cell expressed and secreted (RANTES) 
inhibits CCR5-mediated viral entry by competitive 
binding and down-modulating CCR579. In EU 
individuals and HIV slow progressors, elevated levels 
of circulating RANTES chemokines have been 
observed previously111. Two SNP sites have been 
identified in the promoter region of RANTES, namely, 

-28C/G (rs1800825) and -403G/A (rs2107538)112. In 
one study -28G variant, but not -403A, was reported 
to upregulate RANTES transcription112 whereas in 
another -403A was reported to upregulate RANTES 
transcription without consideration of -28C/G113. 

	 Reports suggested association of RANTES -403A 
and -28G haplotypes with slower disease progression in 
Japanese and Thai cohorts112,114 and lower susceptibility 
to infection in a Chinese cohort115. The genotype 
-403GA-28CC was found to be risk conferring to HIV-1 
infection but resisted AIDS progression compared 
to genotype -403GG-28CC in European Americans 
(EA)35. On the other hand, in African Americans, no 
effect on HIV-1 susceptibility and AIDS progression by 
these variants has been observed116. Similarly, a report 
from the Indian population suggests lack of association 
of these variants with HIV infection86.

	 (iv) CCL3L1 copy number variants - Human CC 
chemokine ligand 3-like 1 gene (CCL3L1) is located 
on human chromosome 17q11.2 and is highly variable 
in copy numbers due to a hot spot for segmental 
duplications. This copy number variation has been 
found linked to HIV/AIDS susceptibility with a lower 
copy number is associated with a higher risk of HIV-1 
acquisition and rapid progression towards AIDS and 
death33. Although chemokines bind their receptors 
and influence viral entry, their role as mediators of 
inflammation influences the overall cell mediated 
immunity (CMI) following infection. Dolen et al117 
have reported that this effect on cell mediated immunity 
as the major protective mechanism acting through the 
CCL3L1 and CCR5 axis. 

	 Our study118 on CCL3L1 copy number 
polymorphism has revealed that Indian population has 
a relatively low CCL3L1 copy number as compared to 
the Japanese counterparts (2.34 vs 5 in controls) (2.13 
vs 3.35 in HIV +ve cohrts). The copy number of this 
protective gene was found higher in chimpanzees (>7) 
compared to both Indian and Japanese populations 
which is in concordance with their natural resistance 
against infection and progression. However, our study 
did not reveal any association with susceptibility to 
HIV infection as far as this copy number mutation is 
concerned.

Genetic risk groups: Chemokines & their receptors

	 On the basis of various protection and risk conferring 
genetic variants of chemokines and their receptors 
Ahuja et al119 have defined various risk groups as ‘low’ 
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(CCL3L1 high, CCR5 non detrimental), ‘moderate’ 
(CCL3L1 high, CCR5 detrimental) and (CCL3L1 low, 
CCR5 non detrimental) and ‘high risk’ genetic groups 
(CCL3L1 low, CCR5 detrimental). They observed 
significant influence of these risk groups on (i) CD4 
depletion before HAART120, (ii) CD4 recovery after 
HAART, and (iii) assessment of AIDS risk119 (Fig. 6).

Cytokine gene variants in HIV-1/AIDS 

	 Cytokines are low molecular weight proteins that 
act as soluble mediators and regulators of the immune 
response. These molecules are secreted by a variety 
of cells, bind specific membrane bound receptors on 
target cells and act in a paracrine or autocrine manner. 
One cytokine can have a range of differential effects on 
different target cells (pleiotropy). Further, two different 
cytokines can have the same effect (redundancy). 
Cytokines are able to regulate production and function 
of other cytokines in a positive or negative manner. 

	 Since the launch of HapMap project, several 
polymorphisms have been found in genes encoding 
cytokines and their receptors, leading to differential 
production of cytokines and, therefore, are responsible 
for the observed inter-individual differences in cytokine 
production. For example, the G to A transition at site 
-308 in the human TNF-α promoter region results in 
six to seven fold increase in transcriptional activity121. 
Based on distribution of cytokine gene variants, 
each person can be considered as a mosaic of high, 
intermediate and low producing phenotypes. The same 
has been reported for IL-10 (-1082 A/G, -819 C/T and 
-592 C/A), TGF-β (codon 10 C/T, codon 25 G/C), 

TNF-α (-308 G/A), TNF-β (+252 A/G), IFN-γ (+874 
T/A), IL-6 (-174 G/C) and IL-4Rα (+1902 G/A)122. 
This in turn influences susceptibility and/or resistance 
to various infectious and autoimmune diseases via 
variable immunomodulation. In case of HIV, it is now 
becoming clearer that the rate of transition from one 
stage to the other during the course of HIV infection 
is characterized by TH1 to TH2 shift. An optimal 
balance between type 1/type 2 responses is associated 
with long-term nonprogressive HIV-1 infection123. 
However, unlike chemokine and their receptors, only 
limited numbers of studies have been conducted on 
pro- and anti-inflammatory cytokine gene variants and 
their possible role in HIV pathogenesis41,114,124-126. 

	 (i) Pro-inflammatory cytokines - Pro-inflammatory 
cytokine IL-1α enhances HIV-1 production through 
NF-kB-mediated activation of viral replication127. In 
fact, elevated levels of IL-1 have been earlier reported 
in AIDS patients128 and also have been correlated with 
predicting viraemia in AIDS patients129. 

	 γ-IFN is another important cytokine that 
plays a pivotal role in defense against viruses and 
intracellular pathogens and in the induction of immune 
mediated inflammatory responses130. A 12CA repeat 
microstatellate allele at the first intron of the IFN-γ gene 
and the +874T polymorphisms are associated with a 
higher level of in-vitro cytokine production131. Further, 
decreased frequency of IFN-γ high producer genotype 
(+874TT) has also been reported in the Korean HIV 
infected population41. 

	 The gene for tumour necrosis factor- α lies between 
the HLA class I and class II loci and in view of its 
biological effects, polymorphism within this gene might 
contribute to some of the associations seen between 
HLA and various diseases132. Haplotypes containing 
HLA-DR3 and HLA-DR4 have been reported to be 
associated with higher levels of TNF132,133. Both TNF-α 
and lymphotoxin (TNF-β) are involved in the activation 
of transcription factor NF-kB and increased levels of 
TNF-α have been observed in AIDS patients134.

	 (ii) Anti-inflammatory cytokines - IL4 is a 
pleiotropic cytokine with various immune-modulating 
functions including induction of immunoglobulin 
E (IgE) production in B cells and downregulation 
of primary co-receptor CCR5, and upregulation of 
CXCR4135. An increased frequency of IL4-590T (high 
producer) allele and IL4-590TT genotype in HIV+ 
cohort suggests that this polymorphism could be a risk 
factor for susceptibility to HIV infection in the Indian 

Fig. 6. Genetic risk groups in CCL3L1-CCR5 axis categorized as 
low, moderate and high risk conferring depending on their influence 
on HIV/AIDS outcome. VL, viral load; CMI, cell mediated 
immunity; HAART, highly active antiretroviral therapy.
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population. Also, IL4-590T allele has been reported 
with susceptibility to TB in south India136.

	 Another important anti-inflammatory cytokine is 
IL10, its gene is highly polymorphic, and is thought to 

contribute upto 75% of inter-individual variability in 
IL10 production. Genetic variants documented at IL10 
-1082, -819, -592 loci constitute three well conserved 
haplotypes: GCC (high producer), ACC and ATA (low 
producer)137. Several studies have highlighted that 
elevated levels of IL-10 (Th2) lead to faster progression 
of HIV diseases42. 

	 We have reported the population distribution of 
various pro and anti- inflammatory cytokine gene 
polymorphisms in the north Indian population138. Table 
III summarizes the distribution pattern of some of the 
cytokine alleles/genotypes associated with high/low 
expresser phenotypes as studied in major population 
groups139 as compared to our observations made on 
north Indians.

	 The analyses reveal interesting results: (i) the high 
secretion IL 2 genotype IL-2 (-330 GG) was found to 
be predominant in Indians, while the low secretion 
–genotype TT is found predominantly in the Blacks, 
(ii) The TNFa-308 low secretion genotype (GG) occur 
more frequently in north Indians, and (iii) The high 
secretor genotype for IL 6 (-174 GG) found under 
represented in Caucasians. 

Advances in gene discovery: genome wide scans

	 Recently, there has been a shift from candidate-gene 
studies to genome-wide studies to identify novel host 

Table III. Per cent frequency distribution of cytokine alleles/
genotypes associated with high/low expresser phenotypes in major 
population groups, including the study in north Indians
Cytokine 
variant

Genotype 
(expression)

Frequency* in populations (%)

North 
Indians

Asian White Black

IL-2  
(-330 G/T)

GG (high) 29 14 6 0

GT 50 48 43 12
TT (low) 21 38 51 88

TNFα  
(-308 A/G)

AA (high) 2 3 6 4

GA 13 21 27 18
GG (low) 85 76 67 78

IL-6  
(-174 C/G)

GG (high) 82 93 40 80

GC 31 7 44 18
CC (low) 8 0 16 2

*Refs 24, 138 study on north Indians

Table IV. Summary of GWAS results in association with HIV/AIDS
Year Identified SNP (gene in proximity) &  

Chromosomal loci
Effect Study group (Refs)

2007 rs2395029 (HCP5),  6p21.3
rs9264942 (HLA-C), 6p21.3
rs3869068 (ZNRD1), 6p21.3

Lower viral loads
Lower viral loads
Loss of CD4+ cells 

Euro-CHAVI140

2008 rs2572886 (LY6), 8q24 Higher viral loads Swiss HIV cohort144

2008 rs2395029 (HCP5), 6p21.3
rs10484554 (HLA-C), 6p21.3
rs6503919 (DDX40), chr17
rs2575735 (YPEL2 Syndecan2), 

β=-0.92
β=-0.53
β=-0.21
β=-0.18

ANRS 01 PRIMO141

2009 rs4118325 (PRMT6), chr1
rs1522232 (SOX5), chr12
rs10800098 (RXRG), chr1
rs1020064 (TGFBRAP1), chr2

OR=0.24
OR=0.45
OR=3.29
OR=0.34

ANRS 03142

2009 rs2395029 (HCP5), 6p21.3
rs10484554 (HLA-C), 6p21.3
rs8321 (ZNRD1), 6p21.3

OR=3.47
NA
NA  

ANRS 02143

ANRS, Agence Nationale de Recherches sur le Sida et les He´ patites Virales (France); CEPH; Centre d’E´ tude de Polymorphism Humain 
(France); CHAVI, Center for HIV-AIDS Vaccine Immunology (USA); FDR, false discovery rate; NA, not applicable; OR, odds ratio; SC, 
seroconverter; SNP, single nucleotide polymorphism; VL, virus load.
Source: As modified from Ref. 47
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factors required for HIV replication and to understand 
immunopathogenesis. These advances in identifying 
disease associated genes via functional and genetic 
approaches are briefly described as follows:

	 (i) Genome wide association studies (GWAS) - The 
approach towards genome wide association studies is 
valuable in identifying novel SNPs implicated in HIV/
AIDS. However, these studies have been limited to 
European or European-descent individuals. Various 
specialized cohorts have been studied extensively 
(Table IV). Fellay et al140 used progression to a CD4 
count of <350 or virus set-point as outcomes in their 
longitudinal study. In another study, SNP association 
was assessed with plasma HIV-RNA and HIV-DNA 
levels in peripheral blood mononuclear cells (PBMCs) 
during the primary infection141. Further, some studies 
are based on comparison of AIDS-free survival 
between rapid and long-term nonprogressors142,143. 
Despite differences in the study designs, the HLA 
region emerged as the major factor influencing the 
HIV/AIDS.

Genome-wide functional scanning-RNA interference 
(RNAi) 

	 The use of silencing RNA (siRNA) and small 
hairpin (sh) RNA technologies to knock-down gene 
transcription are powerful tools to identify HIV disease 
associated genes and dependency factors. Different 
studies have knocked-down about 20000 genes one 
by one and then analyzed transient HIV infection of 
the cells in vitro145-147. Yeung et al148 used shRNA to 
chronically silence each of 54509 mRNAs in Jurket T 
cell clones. Although in each of these studies >250 genes 
were identified as HIV dependency factors, three genes 
(MED6, mediator complex subunit 6 that participates 
in RNA polymerase II transcription, MED7, a cofactor 
that involves in Sp1 transcriptional activation, and 
RELA, a component of NF-kB complex) overlapped 
in most of the studies.

Concluding remarks and future perspectives

	 Several immunoregulatory genes that include 
HLA, cytokines, chemokines and their receptors 
have been implicated for the discriminative host 
responsiveness and are considered as “AIDS restriction 
genes” in various candidate gene based studies. The 
population specific genetic differences could result in 
varying influences on virus acquisition, transmission 
and progression, ultimately modulating the disease 
outcome. In recent years there has been a shift towards 
genome wide genetic and functional studies. Most 

studies defining the influence of host genetic factors 
in HIV infection have been carried out on Caucasian 
subjects and those of Mongoloid ethnic background, 
with almost little or no information on the Indian 
population which is characterized by infection with the 
HIV clade C virus. It is essential to have large well 
categorized cohorts comprising exposed uninfected 
individuals, rapid, long term nonprogressors and elite 
viraemic controllers. Analysis of these independent 
and potentially interactive variables may shed light on 
the underlying pathophysiology to help define potential 
targets for population specific diagnostics and therapy. 
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