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Abstract

Clinical evidence suggests a link between fibrosis in the left atrium (LA) and atrial fibrillation

(AF), the most common sustained arrhythmia. Image-derived fibrosis is increasingly used

for patient stratification and therapy guidance. However, locations of re-entrant drivers

(RDs) sustaining AF are unknown and therapy success rates remain suboptimal. This study

used image-derived LA models to explore the dynamics of RD stabilization in fibrotic regions

and generate maps of RD locations. LA models with patient-specific geometry and fibrosis

distribution were derived from late gadolinium enhanced magnetic resonance imaging of 6

AF patients. In each model, RDs were initiated at multiple locations, and their trajectories

were tracked and overlaid on the LA fibrosis distributions to identify the most likely regions

where the RDs stabilized. The simulations showed that the RD dynamics were strongly influ-

enced by the amount and spatial distribution of fibrosis. In patients with fibrosis burden

greater than 25%, RDs anchored to specific locations near large fibrotic patches. In patients

with fibrosis burden below 25%, RDs either moved near small fibrotic patches or anchored

to anatomical features. The patient-specific maps of RD locations showed that areas that

harboured the RDs were much smaller than the entire fibrotic areas, indicating potential tar-

gets for ablation therapy. Ablating the predicted locations and connecting them to the exist-

ing pulmonary vein ablation lesions was the most effective in-silico ablation strategy.

Author summary

Atrial fibrillation (AF) is the most common cardiac arrhythmia and a huge healthcare

problem, but its mechanisms are incompletely understood, and clinical therapies such as

catheter ablation (CA) have poor long-term outcomes. This is due to the empirical nature

of the procedure and lack of mechanistic knowledge of optimal ablation sites and strate-

gies in patients whose atria is altered by AF-induced structural remodelling. In this study,
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we developed 3D atrial models with patient-specific geometry and distribution of fibrosis

obtained from AF patient imaging and applied the models to explore the mechanisms of

re-entrant drivers (RD) sustaining AF. Moreover, we used the novel mechanistic knowl-

edge to simulate CA based on the model predictions and compared its success with exist-

ing clinical CA strategies. We discovered that the RD dynamics were strongly influenced

by the spatial distribution of fibrosis, and RDs typically anchored to specific locations

near large fibrotic patches. Virtual ablations of such anchoring locations by connecting

them with linear lesions to the nearest pulmonary veins (PV) had superior efficacy com-

pared to clinically used strategies such as the PV isolation. After incorporating further

patient-specific information and careful validation, the proposed in-silico approach can

help evaluate and potentially guide CA therapy in the clinic.

Introduction

The prevalence of atrial fibrillation (AF) is increasing to epidemic proportions: worldwide

over 33 million individuals have AF [1]. Rhythm control strategies for maintaining sinus

rhythm, such as antiarrhythmic drugs, can lead to significant improvements of cardiac output

and quality of life. Over recent decades, catheter ablation (CA) therapy has also become a first-

line treatment for AF. Radiofrequency CA is aimed at destroying arrhythmogenic tissue areas

in the atria via high energy delivery through a catheter, and it is the only treatment with a

proven long-term curative effect [2]. However, treatments of AF are complicated by its mecha-

nisms for self-sustenance, such as the presence of AF-induced electrical and structural remod-

elling that generates more treatment-resistant arrhythmia [3,4]. Therefore, even advanced CA

procedures have suboptimal long-term outcomes in patients with chronic forms of AF: over

half of the patients return for additional treatment within three years [5]. This can be explained

by the highly empirical nature of CA therapy, which targets “usual suspect” areas without

knowledge of the underlying arrhythmogenic mechanisms. Thus, CA therapy based on electri-

cal isolation of the pulmonary veins (PV) has low success rates in chronic AF patients, where

extensive ablation of remodelled non-PV areas is commonly applied [6].

AF has been strongly linked with structural changes of the atria, especially with the develop-

ment of atrial fibrosis identified from medical imaging [7]. Mechanistically, fibrosis is a prod-

uct of structural remodelling of atrial tissue, which results in the deposition of a collagenous

matrix in response to mechanical stress on the atria during AF. Since collagen is non-conduc-

tive, it can slow down or completely block propagation of electrical excitation waves, thus pro-

viding a substrate for AF [8]. Since the progression of AF has been linked with high levels of

atrial fibrosis, the quantification of fibrosis from late-gadolinium enhanced magnetic reso-

nance imaging (LGE MRI) has been applied for the stratification of AF patients, and a higher

fibrotic burden has been associated with more severe AF and reduced success rate of CA pro-

cedures [9,10]. Moreover, areas of patchy fibrosis in the atria show high levels of arrhythmo-

genic electrical activity and ablation around such patient-specific areas can improve therapy

success [11]. Recent clinical studies have reported that low-voltage areas, identified from atrial

tissue mapping and associated with the presence of fibrosis, can be directly targeted by CA to

improve patient outcomes [12,13]. However, such areas can be quite large, and their ablation

can result in substantial damage of the atria, impairing its function.

Thus, image-guided CA procedures are increasingly used to move away from empirical

therapy and improve the patient outcomes. However, even advanced imaging systems do not

provide crucial functional information about the origins of arrhythmogenesis, and the success
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of image-based patient stratification and CA guidance remains suboptimal. Image-based

computational modelling can provide such information by predictive simulations of 3D atrial

function in a given patient, particularly by linking their distribution of fibrosis with AF

arrhythmogenesis.

Recent computational studies of patient-specific atrial models, based on the reconstruction

of fibrosis from LGE MRI, have provided first insights into for the role of fibrosis in the

dynamics of electrical re-entrant drivers (RDs) sustaining AF. Thus, McDowell et al. [14]

showed that patient-specific distribution of fibrosis was a critical component of AF initiation

and maintenance, with RDs only induced in atrial models with high level of patchy fibrosis.

Moreover, patient-specific models demonstrated that AF was sustained by RDs persisting in

fibrosis border zones characterized by specific regional fibrosis architecture metrics Zahid

et al. [15]. Recent work from our group provided mechanistic insights into these effects, dem-

onstrating that RDs stabilize in border zones (BZ) of patchy fibrosis, where slow electrical con-

duction facilitated the development of re-entrant circuits within relatively small regions

[16,17]. These computational model predictions have been validated by a recent clinical study

that linked the patient-specific LGE areas with locations of RDs recoded using electrocardiog-

raphy [18]. Moreover, recent computational modelling studies by Boyle et al. [19,20] have

illustrated correlations between the locations of RDs predicted by patient-specific atrial models

and the respective locations found with electrocardiographic imaging (ECGI) and focal

impulse rotor modulation (FIRM). In addition to shedding light into the role of fibrosis in the

RD dynamics, these studies pave the way to the identification of patient-specific RDs locations

from image-based 3D atrial models.

In this study, patient-specific atrial models were applied to explore links between MRI-

derived fibrosis distributions and RD locations. Specifically, the aims of this study were to 1)

apply 3D left atrial (LA) models based on LGE MRI to explore the dynamics of RD stabiliza-

tion in patient-specific fibrotic areas, 2) generated personalized RD location maps–potential

ablation targets–that identify the regions with the highest probability of RDs anchoring. The

maps were correlated with the image-based Utah fibrosis score [7]. The first aim can help clar-

ify what characteristics of fibrotic distributions affect the RD dynamics, while the second may

in a longer term predict patient-specific CA targets that do not require extensive atrial voltage

mapping and ablation in a patient, and hence can facilitate faster and more efficient therapy.

Finally, we simulated virtual CA of the targets identified in the image-based LA models in a

subset of AF patients and compared these to clinical CA strategies.

Methods

The study applied fibrosis distributions derived from patient LGE MRI data to build realistic

3D LA models and simulate the patient-specific RD dynamics. The models were generated

using the general image-based computational workflow illustrated in Fig 1.

Atrial electrophysiology model

All simulations were performed by solving the monodomain equation with the Fenton-Karma

model [21] modified to accurately describe basic electrophysiological properties of AF-remod-

elled atrial cells [22]. This atrial Fenton-Karma (aFK) cell model, despite being simple and

phenomenological, accurately captures the main characteristics of atrial action potential and

its restitution properties. The simplification enables keeping computational time to be kept rel-

atively short, which is crucial for large-scale 3D atrial simulations. A finite-difference PDE

solver based on central finite differences and explicit Euler schemes were used with spatial and

temporal resolutions of 0.3 mm and 0.005 ms, respectively, as described in previous modelling
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studies [23,24]. The computer code implementing the PDE solver was parallelized under MPI

and run on a 64-core local HPC server: simulations of 1 s of activity in the left atrium took

approximately 1 hour. Our model was isotropic and the diffusion tensor was replaced by a sca-

lar diffusion coefficient D of 0.1 mm2 ms-1, chosen to match an atrial conduction velocity of

0.6 ms-1 typical of AF [25].

3D patient-specific LA models

Briefly, the patient specific LA geometries and fibrosis distribution were reconstructed from

LGE-MRI to generate patient-specific LA models. RDs were initiated at multiple (8–12) loca-

tions in each LA model using a cross field protocol and their tip was tracked for 6s. The loca-

tion where each RD stabilised after 6s was identified and labelled as being part of: (i) healthy

tissue, (ii) PV region or (iii) fibrotic patches. Each tissue voxel was additionally assigned a

probability value, by investigating how many times it was visited by an RD tip over the course

of the simulation. The most likely locations of RDs are expected to be prime targets for CA

and were thus defined as the target areas (TA) (see workflow in Fig 1). Note that the RDs

which anchored to the PV openings, which resulted from clipping of the PVs near their ostia

and were non-physiological, were excluded from the definition of the TAs. Finally, virtual CA

was performed on the identified TA regions and compared to existing clinical strategies.

Imaging of patient-specific LA geometries and fibrosis distribution

Two persistent AF (PsAF) and four paroxysmal AF (PAF) patients (see Table 1) were imaged

under ethical approval and following written informed consent as a part of the study by Chubb

et al. [26]. All imaging was performed on a 1.5T Phillips MRI scanner and included a LGE

MRI sequence: a 3D inversion recovery spoiled gradient echo, acquired 20–30 min after the

administration of the extra-cellular gadolinium-based contrast agent Gadovist (Bayer Health-

care Pharmaceuticals). These images were acquired using cardiac and respiratory gating, with

a spatial resolution of 1.3 x 1.3 x 4 mm3. Further information about the used LGE sequence

can be found in [26].

The LA geometries were obtained by manual segmentation of the LGE MR images (Fig 1A)

using MITK Workbench [27], where the endocardial wall was identified by segmenting the LA

Fig 1. Workflow for identifying patient-specific target areas with the highest probability of harbouring RDs. The personalized left atrial models are generated by

segmentation of patient-specific LA geometry and fibrotic regions from LGE-MRI scans.

https://doi.org/10.1371/journal.pcbi.1008086.g001
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blood pool (Fig 1B). The epicardial wall was generated by dilating the endocardial wall by 3

mm (Fig 1C), which is reported as the average LA wall thickness in AF patients [28]. The PV

sleeves were removed, and patient-specific LA geometries were synthesized with a resolution

of 0.3 mm, to be used in finite difference simulations.

The patient-specific fibrosis distribution in the LA of each AF patient was generated based

on the image intensity of the LGE MRI data (Fig 1D–1F). A voxel was considered to be part of

a fibrotic patch when the ratio of the voxel intensity to the mean blood pool intensity, the

image intensity ratio (IIR), (Fig 1E) exceeded an empirical threshold [29,30]. Voxels were

labelled as being healthy tissue (IIR < 1.08, white region of the histogram in Fig 2), dense

fibrosis (IIR > 1.24, red region of the histogram) and the region around the dense fibrotic

patch corresponds to the BZ (1.08 < IIR< 1.24, histogram with colours blue to yellow). The

lower IIR threshold of 1.08 was obtained as an average of the previously proposed values of 1.2

[30] and 0.97 [29]. While, the upper IIR threshold limit of 1.24 was chosen for the models as

all the LGEs were post ablation and therefore, the IIR threshold value reported for dense scar,

1.32 [30] which represents pre-exiting ablation lesions was reduced by 6%. The fibrosis maps

obtained by intensity thresholding of LGE MRI data for all the 6 AF patients are depicted in

Fig 3. These fibrotic regions were registered (Paraview, Kitware) and subsequently projected

Table 1. Characteristics of the 6 AF patients whose LA models were used in the study.

Patient AF Age Gender % Fibrosis Utah Score

P1 PsAF 71 Male 39 4

P2 PsAF 65 Male 29 3

P3 PAF 72 Male 25 3

P4 PAF 57 Male 22 3

P5 PAF 58 Male 16 2

P6 PAF 53 Male 11 2

PsAF: persistent AF, PAR: paroxysmal AF. The patients have been labelled 1 to 6 (column 1), in the decreasing order of their fibrosis burden (column 5) and assigned a

Utah score.

https://doi.org/10.1371/journal.pcbi.1008086.t001

Fig 2. Segmentation and modelling of fibrosis. Labelling of voxels in the LA patient geometries according to their LGE MRI intensity ratio (IIR) relative to the

blood pool. Voxels with IIR>1.24 are considered to be part of a fibrotic core. IIR<1.08 corresponds to healthy tissue and the intermediate values of IIR form a

fibrotic border zone with intermediate properties.

https://doi.org/10.1371/journal.pcbi.1008086.g002
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onto the LA geometry (Matlab, Mathworks Inc), such that the fibrosis patches were fully trans-

mural (Fig 1H).

Each of 6 patients was classified into one of the following four groups [31] depending on

their relative fibrosis burden (FB): Utah 1 (FB� 5%), Utah 2 (5% < FB� 20%), Utah 3 (20%

< FB� 35%) or Utah 4 (FB> 35%). As summarized in Table 1, the patients were labelled 1 to

6 in decreasing order of their FB.

Fibrosis implementation in the computational LA models

To study how the RDs localize in fibrotic regions and design a novel tool to identify regions

where they stabilize relative to the patient-specific fibrosis distribution, we modelled patchy

fibrosis as regions of slow conduction [16]. Furthermore, in the fibrotic tissue the decrease in

conduction velocity (CV) was set in proportion to the recorded LGE MRI intensity, as

reported in in-vivo experimental studies [32]. This was achieved by altering the diffusion coef-

ficient, D, in these regions proportionally to the IIR. Thus, healthy tissue with an IIR< 1.08

had D = [32]1 mm2/ms, dense fibrotic tissue with IIR� 1.24 had D = 0.017 mm2/ms (which is

~83% lower than the value D value of healthy tissue) and in the fibrotic BZ with 1.08 < IIR<

1.24 D had intermediate values calculated via linear interpolation between 0.1 and 0.017 mm2/

ms (Fig 2). Note that the values of D chosen for modelling the dense fibrotic region and the

surrounding border-zone were not validated due to a lack of experimental data. However, a

correlation between decrease in conduction velocity (which is proportional to D) with increase

in IIR has been reported [32]. Therefore, our approach of gradually decreasing CV with

increasing IIR across fibrosis regions is in agreement with patient studies.

The value of D for dense fibrotic regions was not set to 0, since there is no experimental evi-

dence suggesting that dense fibrotic regions are completely non-conductive. In control models

without fibrosis, the patient-specific LA geometry was preserved, but D was set to 0.1 mm2/ms

for all patients. In the resulting LA models, CV in healthy tissue was 0.6 m/s, while in fibrotic

tissues CV ranged between 0.1–0.6 m/s.

Fig 3. Patient-specific fibrosis distribution in 6 AF patients with Utah scores from 2 to 4. The fibrotic regions are colour-coded to show dense fibrotic tissue (red)

surrounded by a BZ of intermediate properties. The healthy atrium is shown in white. LIPV: left Inferior PV, RIPV: Right Inferior PV, LSPV: left Superior PV, RSPV:

Right Superior PV and LAA: Left Atrial Appendage.

https://doi.org/10.1371/journal.pcbi.1008086.g003
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AF simulation protocol and data analysis

Each patient-specific LA model was paced 7 times at a basic cycle length (BCL) of 130 ms at

different locations near the PVs. A plane wave was initiated in 20 ms after the last ectopic beat.

The interaction between the plane wave and the ectopic beats allowed for the generation of

RDs. By varying the pacing site, the direction of the plane wave and the time interval between

them, RDs were initiated in 8 to 12 different locations in each LA model. In each simulation,

we (i) tracked the RD tips for a duration of 6 s, (ii) identified regions where they were located

in the last 1 s of the simulation, and (iii) constructed a RD tip frequency map by recording the

number of times each tissue voxel was visited by the RD tips over the course of the simulation.

For each patient, all the RD tip frequency maps obtained in the AF simulations were com-

bined to construct patient-specific RD probability maps, showing the relative frequency with

which each voxel was visited by the RDs (see S1 Fig). The normalised tip probability maps

were thresholded and locations with a normalised probability over 0.2 were identified as TAs.

The threshold value of 0.2 was computed using a standardised approach of taking 2-standard

deviation from the mean of the normalised tip probability map. In future, this value will be val-

idated using EAM data.

The simulations and the analysis process were performed in all the 6 LA models with and

without the presence of fibrotic tissue. The TAs identified from both the cases were compared

using the Dice score [33], a standard metric for measuring the degree of spatial overlap.

Catheter ablation strategies

As a proof-of-concept, virtual CA was simulated in a subset of the LA models: Patient 2 and 3

with a FB in Utah 3 category. The choice of these patient models was motivated by the highest cor-

relation found between the RD location and fibrotic region in Fig 4A. However, Patient 1 was not

ablated as the atrial tissue was severely fibrotic (Utah 4), and ablation would not leave much

healthy tissue. The CA lesions were modelled as transmural regions of unexcitable tissue with a

cylindrical shape with a diameter of 3 mm [34] to account for the catheter tip shape. The continu-

ous CA lesions were implemented using five strategies; Strategy 1 and 2 are used clinically [5],

Strategy 3 is based on our model predictions and Strategies 4 and 5 are combinations of the

model predictions with clinical strategies. Further details of each strategy are provided below:

1. Strategy 1: PV isolation (Fig 5A)

The 2 right and 2 left PVs were electrically isolated by a continuous set of ablation lesions

encircling the PVs and isolating them from the remaining LA body.

2. Strategy 2: PV isolation with linear lesions (Fig 5B)

If the RDs still persisted after the application of Strategy 1, additional linear lesions were

applied: one on the LA roof to connect the left and right circular PVI lesions and another to

connect the roof lines with the mitral valve (MV) opening.

3. Strategy 3: TA guided ablation (Fig 5C)

Ablation lesions were applied to the voxels within the TAs identified in the patient-specific

AF simulations. This approach has similarities to DECAAF II, an ongoing prospective mul-

ticentre randomised trial in which all fibrotic regions identified from LGE-MRI are targeted

by CA. However, our approach only targets TAs that typically are located near fibrotic

regions but are much smaller than the entire area of fibrosis.

4. Strategy 4: TA guided ablation with linear lesions (Fig 5D)

If the RDs still persisted after the application of Strategy 3, additional linear lesions were

applied to join the TAs to the nearest anatomical boundary–the PVs or the MV.
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5. Strategy 5: TA guided ablation with linear lesions and PVI (Fig 5E)

If the RDs still persisted after the application of Strategy 4, additional Strategy 1 (PVI) was

applied.

All CA lesions were applied after 6s of the AF simulation, and the ability of these lesions to

terminate the existing RDs within the following 2 s was analysed. The CA strategy was consid-

ered successful if either AF converted to atrial tachycardia (AT) or all RDs were completely ter-

minated. Here we referred to AT as a single RD anchored around scar tissue or an anatomical

boundary such as the MV or the PVs. The mean frequency (MF) of activations in the LA

model before and after CA was recorded for all the strategies and conversion of AF to AT was

evaluated by reduction in the MF [35]. The MF was computed by averaging, across all voxels

in the LA geometry, the dominant frequency calculated during or the last 1s of the simulation.

Moreover, for TA guided CA strategies 3 and 4, we also tested if the applied CA lesions pre-

vented AF inducibility. To achieve this, the protocol used for AF initiation was repeated again

after the application of the CA lesions.

Fig 4. Regions of RD stabilisation in patient-specific LA models. The image shows bar chart with percentage of RDs

found in different LA regions (blue: fibrosis, orange: PVs and grey: healthy LA tissue) after 6s of the simulation in the 6

patient-specific LA models with (A) and without fibrosis (B). A) In Utah 2 patients, the primary location for the RDs is the

PVs. In Utah 3 patients, RDs are distributed between fibrotic regions and the PVs. In Utah 4 patients with severe fibrosis,

the primary location of RDs are the fibrotic regions. FB: fibrotic burden.

https://doi.org/10.1371/journal.pcbi.1008086.g004
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Result

Patient-specific fibrosis distribution in 3D atrial models

The LGE-MRI intensity-based reconstruction yielded different fibrosis distributions in all 6

AF patients, as shown in Fig 3. Large variations in the extent and severity of fibrosis were

observed across the LA models (Table 2). Amongst the PsAF patients, P1 had the highest FB of

39% and was classified into Utah 4 category, and P2 with 29% FB was in Utah 3 category. In

the PAF patients, P3 and P4 with a moderate FB of 25% and 22%, respectively, were in Utah 3

category; P5 and P6 with mild FB were in Utah 2 category.

In addition to differences in severity, a large variation in the size distribution of the fibrotic

patches was also observed across all patient-specific LA models, as summarised in Table 2.

These estimates suggested the size of the largest fibrotic patch recorded per patient increased

with increasing the overall FB. Moreover, each individual patient LA was characterised by the

presence of a primary fibrotic patch with a volume significantly greater than the secondary

Fig 5. CA strategies tested using virtual ablation platform. (A) Strategy 1: Circumferential PVI, (B) Strategy 2: PVI

plus additional linear lesions at the LA roof and a line joining the PV to the MV, (C) Strategy 3: ablation on the TAs,

(D) Strategy 4: TA guided ablation with additional linear lesions leading to unexcitable boundaries (PV and MV) and

(E) Strategy 5: TA guided ablation with linear lesions (Strategy 4) plus PVI (Strategy 1).

https://doi.org/10.1371/journal.pcbi.1008086.g005

Table 2. Characteristics of the 6 AF patients whose LA models were used in the study.

Patient % FB % Volume of largest patch % FB of PVs % FB of LA wall % Volume� of dense tissue

P1 39 37.95 28.84 71.16 12.98

P2 29 18.27 42.86 57.14 6.38

P3 25 16.63 35.31 64.69 6.37

P4 22 8.54 63.28 36.82 8.18

P5 16 6.42 42.10 52.10 6.48

P6 11 4.08 64.53 35.47 0.24

Properties of patient-specific fibrosis distributions. The size of the primary fibrotic patch decreases with the fibrotic burden (FB).

� All volumes are reported as percentage of the atrial wall volume to standardise the measurements.

https://doi.org/10.1371/journal.pcbi.1008086.t002
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surrounding patches. The distribution of fibrotic regions between the PV regions and remain-

ing LA wall was recorded across the patient-specific LA models. Here the PV region was

defined as a 3 mm spherical region around each PV opening. In P1 (Utah 4), P2 and P3 (both

Utah 3) with the highest FB, the majority of the fibrotic regions were at the LA wall. While, as

the FB decreased the fibrotic regions were mostly located in the PV region.

Atrial fibrosis influences the distribution of RDs in patient-specific LA

models

In the patient-specific LA models, AF was successfully initiated in all 6 patients using the

cross-field protocol with and without the presence of fibrosis. The RD initiation protocol was

applied to each patient-specific LA model, either with or without fibrosis, and resulted in the

formation of either 1–2 RDs in the first 1s of simulation. In the following 5s, these RDs mean-

dered and eventually stabilised at distinctive locations in the atrial wall. In models without

fibrosis, these locations were influenced by the atrial geometry only, while in the presence of

fibrosis, these were dependent on both, the patient-specific fibrosis distribution and geometry.

To get a better understanding of how the distribution of RDs across the patient-specific geom-

etries was affected by the overall FB, we classified the RDs in every model into 3 groups accord-

ing to the region where they stabilised in the last 1s of the 6s-long simulations. The outcomes

of this classification are summarised in Fig 4 with a bar plot showing the % of the total RDs

anchored to: (i) fibrotic patch in blue, (ii) PVs in orange and (iii) healthy non-PV tissue in

grey for all 6 patient-specific LA models with (A) and without fibrosis (B).

Persistent AF Patients (Utah 4 &3: FB > 25%). In these patients (Fig 4A, Patient 1 and

2), the RDs stabilised primarily at fibrotic regions (P1: 56%, P2: 79%), compared to lower prob-

abilities of stabilisation in the PVs region (P1: 17%, P2: 21%). However, when the same LA

simulations were repeated for these patients without fibrosis, the RDs stabilised primarily at

the PVs (Fig 4B, P1: 65%, P2: 79%). This suggests that in these PsAF patients with very high

FB, the presence of large quantities of slow conducting fibrotic tissue influenced the RD loca-

tions, facilitating their anchoring to the fibrotic patches instead of the PVs.

Paroxysmal AF Patients (Utah 3: 20% < FB < 25%). In this category of AF patients with

intermediate levels of fibrosis (Patients 3 and 4), the RDs stabilised with similar probability in

all three regions (Fig 4A). Comparing the distribution of RDs across different regions in simu-

lation with (Fig 4A) and without fibrosis (Fig 4B) suggests that fibrosis around the PVs in

these patients facilitated anchoring of RDs to the PVs. Moreover, despite having similar FB,

the variation is distribution of the RDs across the patient-specific LA models (Fig 4A, P3 &

P4) can be explained by the difference in spatial distribution and sizes of fibrotic patches in the

respective LA models. In Patient 4, the majority of RDs anchored to the PVs (Fig 4A, P3: 38%,

P4: 48%), as the amount of fibrosis in regions adjacent to the PVs were relatively greater than

Patient 3 (Table 2, P3: 35% and P4: 63%).

Paroxysmal AF Patients (Utah 2: FB < 20%). In this category of AF patients with the

lowest FB (Fig 4A, Patients 5 and 6), the number of RDs anchoring to PVs (P5: 57%, P6: 35%)

was higher than that in the fibrotic regions (P5: 25%, P6: 6%). This agrees with clinical obser-

vations that in PAF patients with lower FB, RDs are likely to be located at the PVs. In the

absence of strong fibrosis effects, the distributions of RDs across different region in simulation

with (Fig 4A) and without fibrosis (Fig 4B) showed similar trends. In Patient 5, the PV region

had the highest percentage of RDs either with or without fibrosis, and in Patient 6 the LA wall

had the highest percentage of RDs either with or without fibrosis. The results suggest that

other factors, such as the LA and PV shape, specifically changes in curvature of the underlying

geometry, can influence the RD dynamics [36,37].
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Patient-specific fibrosis determines the RD anchoring locations

In the previous section, we reported the overall distribution of the RDs across different regions

of the atrial wall in the patient-specific LA models and found that RDs are most likely to be

present at fibrotic regions in patients with FB from Utah category 3 and 4. However, the basic

knowledge that RDs are present at fibrotic regions is insufficient to guide CA–we need to pin-

point the exact locations within the fibrotic patches where the RDs are localised. This warrants

a detailed analysis of the mechanisms that affect RDs anchoring to specific fibrotic patches.

To illustrate the concept, Fig 6A, B shows voltage maps and RD tip locations in a simulation

of AF maintained by a single RD anchored to a fibrotic patch in the anterior LA wall. After the

initial meandering, the RD tip (represented by a yellow dot) remained at a specific location

inside the fibrotic patch for the entire duration of the simulation. Similar RD behaviour has

observed in other patients. However, the specific location where the RDs anchored to fibrotic

regions was dependent on the size and distribution of fibrotic patches. Moreover, the same

Fig 6. The effect of fibrosis on the RD dynamics in a patient-specific LA model. A & C: the colour-coded voltage maps (normalised, so that 0 is rest

state and 1 is maximal activation) in the LA of Patient 3 over 6s of simulation with the yellow dot indicating the RD tip and the arrow pointing to the

direction of rotation. B & D: the corresponding RD trajectories (in black) superimposed on the fibrosis distribution. In simulations with fibrosis

(A-B), the primary RD drifts around and across the fibrotic patch within the first 1s and thereafter stabilises at a distinctive location within the fibrotic

BZ. However, in the same simulation without fibrosis (C-D), the primary RD remains at the location of its initiation.

https://doi.org/10.1371/journal.pcbi.1008086.g006
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protocol when repeated in the absence of fibrosis resulted in the formations of RDs that either

stabilised at the region where they were initiated (as in Fig 6C and 6D) or they drifted towards

the PVs and MV, under the influence of the underlying curvature of the atrial geometry.

Further examples of RD trajectories under the influence of fibrotic patches for each of 6

patients are presented in Fig 7. Here, in Patient 1 from Utah 4 category, more complex activa-

tion patterns in the voltage map were observed in addition to anchoring of RDs to fibrotic

patches (Fig 7, A1). This was due to the breakdown of the initial single RD into three new

ones, which all stabilised at various locations around the largest fibrotic patch and surrounding

BZ. In Patients 2, 3 and 4 from Utah 3, the RDs were found to stabilise at distinct regions of

fibrotic patches (Fig 7, A2-A4 and B2-B4). In Patients 5 and 6 from Utah 2, the fibrotic patches

were much smaller compared to those in patients from Utah 3 and 4 categories. Here, the RDs

often stabilised between two small fibrotic patches (Fig 7, A5 and B6), and if fibrotic patches

were in regions surrounding the PVs (Fig 7, A6 and B5), fibrotic tissue aided the RD moving

towards and anchoring to the PV opening. All these examples highlight the patient-specific

characteristics of fibrotic patches play an important role in detaining the dynamics and ulti-

mate anchoring locations of RDs.

Targets for ablation identified from patient-specific LA models

In the patient-specific LA models, as presented in the previous section, the RD anchoring loca-

tions were strongly dependent on the highly heterogeneous patterns of fibrosis distributions

across the patient-specific LA models. Moreover, the anchoring locations were specific to indi-

vidual patches. Therefore, by analysing all the RD tip trajectories obtained from numerous

locations in each of the 6 patient-specific LA models (using the protocol illustrated in S1 Fig),

we identified specific locations near fibrotic regions where the RDs were most likely to be

found–the areas of high probability of the tip localisation–the TAs.

The TAs obtained in all 6 patient-specific models are shown in Fig 8. An example of TA dis-

tribution computed from the normalized RD tip probability maps for the LA model of Patient

2 is provided in the S2 Fig with different values of threshold. The TAs are computed by thresh-

olding the probability maps such that only locations that are most likely to be visited by the

RDs are captured. On average 5.33 ± 2.94 TAs were identified per patient-specific LA model.

Moreover, by further analysing the distribution of the TAs (Fig 9A), we found that a higher

percentage of TA were located within the fibrotic tissue region in patients in Utah 3 and 4 cate-

gories compared to patients in Utah 2 category. However, all TAs were relatively small and the

total volume of TAs was much lower than that of fibrosis in all patients (Fig 9B). The differ-

ence in the volume of fibrotic tissue and TAs was highest in Utah 4 patients, and lowest in

Utah 2 patients, where RDs often stabilised around the PVs rather than fibrosis.

Additionally, we repeated all patient-specific LA simulations without fibrosis (S3 Fig) and

compared the TA locations to those in the respective LA models with fibrosis using the Dice

score, a standard metric for the degree of spatial overlap. We did not find any link between the

number of RDs and the presence of fibrosis. This could be due to the use of cross-field protocol

for the RD initiation, which makes the number of RDs independent of the presence of fibrosis.

However, the Dice score comparing the TAs between these two models was found to decrease

with increasing FB. Thus, Patient 6 (FB: 11%) had Dice score of 0.52 compared to Patient 1

(FB: 39%), who had an extremely low Dice score of 0.06. This means that, in the presence of

large fibrotic areas, the RDs rarely were found in the same locations where they would be

found in the absence of fibrosis. These results provide further evidence for the role of fibrosis

in determining the RD locations. However, we did not find any link between the number of

RDs and the presence of fibrosis. This could be due to the use of cross-field protocol for RD
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Fig 7. The anchoring of RDs to fibrotic patches in patient-specific LA models. For all the 6 AF patients (rows), sections A and B show the AF simulation

outcomes for 2 different RD initiation sites. In each section, on the left are the colour-coded voltage maps and on the right, the respective RD trajectories

(black) superimposed on the fibrosis distributions. The yellow arrows indicate the direction in which the RD drifted over 6s of the simulation. The colour

map used in the figure is the same as Fig 6.

https://doi.org/10.1371/journal.pcbi.1008086.g007

PLOS COMPUTATIONAL BIOLOGY Re-entrant drivers for atrial fibrillation identified from patient fibrosis distribution

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008086 September 23, 2020 13 / 25

https://doi.org/10.1371/journal.pcbi.1008086.g007
https://doi.org/10.1371/journal.pcbi.1008086


initiation in both the models which makes the number of RDs independent of the presence of

fibrosis.

Ablation strategies

The outcomes for all virtual CA strategies in both patients are summarised in Fig 10 and

described in detail below in regard to Fig 11 and Fig 12.

Ablation of the PVs (in Strategy 1) failed to terminate RDs in the majority of cases (P2: 6/

10, P3: 4/8). As shown in Fig 11 (A1 and B1), RDs located far from the PVs were unaffected.

These RDs persisted even after additional linear lesions were applied at the roof and the MV

(Fig 11, C1 and D1, in Strategy 2). In the few cases where AF did terminate, the RDs were

Fig 8. Patient-specific RD location maps–potential CA targets. The images show colour-coded fibrosis distributions in the 6 patient-

specific LA models (A-F), with the TAs superimposed. In Utah 3 and 4 categories (Patients 1, 2 and 3), TAs are seen at specific locations

within fibrotic patches and at their BZs. In Utah 2 category (Patients 5 and 6), TAs are seen on the LA wall near small patches.

Additionally, the TAs identified from simulations performed without fibrosis in the same LA model are presented in S3 Fig.

https://doi.org/10.1371/journal.pcbi.1008086.g008
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present inside or near the isolated PV regions. After CA, these RDs either anchored to the

lesions encircling the PVs (P2: 1/10, P3: 2/8) resulting in AT or terminated (P2: 3/10, P3: 2/8).

Ablation of the TAs was performed using Strategies 3, 4 and 5. In Strategy 3, the application

of CA lesions on top of the TAs either resulted in the RDs anchoring around the newly formed

ablation scar (Fig 12, A1 and B1) and AF converting to AT (P2: 4/10, P3: 4/8) or had no effect

(P2: 5/10, P3: 4/8). Examples of the conversion from AF to AT in Patient 2 and 3 are shown in

Fig 12, A2 and B2. Here, MF dropped by 26% and 41%, respectively. However, Strategy 4 con-

necting the TAs with linear ablation lesions to the nearest boundary (the PVs or MV) termi-

nated AF in the majority of the cases (P2: 6/10, P3:4/8). In the case of Patient 2, all RDs were

terminated (Fig 12, C1), while in Patient 3, the RDs anchored to scar after ablation tissue con-

verting AF to AT (Fig 12, D1), with a reduction in MF by 59%. In Strategy 5, application of

PVI in addition to Strategy 4 resulted in a further increase of AF termination rate in both

patients (P2: 9/10, P3: 8/8). However, it should be noted that the percentage of ablated tissue

was increased with additional lesions. For example, the percentage of ablated tissue in Patient

2 was 6%, 7% and 14% for strategies: 1, 3 and 5, respectively.

AF recurrence after CA is a huge clinical problem. In order to check for AF recurrence, we

tested for AF inducibility after virtual CA Strategies 3 and 4. To achieve this, the protocol used

for AF initiation (described in the Method section) was repeated after the application of the

ablation lesions from 10 different sites. CA performed using Strategy 3 did not prevent the

RDs from being initiated in either patient. In Patient 3, for all 10 cases of initiation, the RDs

anchored to scar tissue resulting in AT. In Patient 2, 8 out of 10 cases resulted in AT and in the

other 2 cases AF was induced. Finally, after using Strategy 4, neither AF nor AT was inducible

Fig 9. Comparison of the fibrosis burden to TA volume of in each patient-specific LA models. A: distribution of TAs across different regions of the

atrial wall; dense fibrotic region (black), border zone (BZ—dark grey) and healthy tissue (light grey). The majority of TAs lie in the fibrotic region in

Patients 1, 2 and 3 (FB> 25%, Utah 4 and 3), compared to much lower numbers in Patients from 4, 5 and 6 (FB< 25%, Utah 3 and 4). B: bar chart

with FB (blue) and volume of all identified TAs (orange) in each model. The difference between FB and TA volume decreases with the decrease in

Utah score, showing that the predicted TAs can be most efficient in improving CA in Utah 3 and 4 patients.

https://doi.org/10.1371/journal.pcbi.1008086.g009
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in the LA model of Patient 2 in 9 out of 10 cases, while in Patient 3, all 10 cases resulted in AT

with a lower MF (~ 5 Hz) compared to Strategy 3.

Discussion

This study developed a novel image-based computational workflow for the identification of

patient-specific locations of RDs sustaining AF. Specifically, we: 1) developed 3D LA models

with patient-specific geometry and distribution of fibrosis obtained from LGE-MRI of 6 AF

patients, 2) applied the models to explore the dynamics of RD stabilisation in the presence of

slow-conducting fibrotic patches, 3) identified patient-specific TAs for CA using the RD loca-

tions, relative to the distribution of fibrosis and 4) evaluated AF termination by simulating sev-

eral ablation protocols, including TA-guided ones.

The main observations of this study were as follows: (i) in AF patients from Utah 4 and 3 with

high FB (>25%) RDs were more likely to be found at fibrotic regions compared to PVs (Fig 4A),

(ii) RDs anchored to specific regions within the atrial walls–TAs identified from RD tip probabil-

ity maps (Fig 8), (iii) a higher percentage of TAs were located within the fibrotic tissue region in

patients in Utah 3 and 4 categories compared to patients in Utah 2 category (Fig 9A), and (iv) per-

forming virtual CA of the TAs and connecting them with linear lesions to the nearest PVs or MV

Fig 10. The outcome of CA using different strategies in Patient 2 (A) and Patient 3 (B). The summary of MF recorded

for these cases are presented in the S1 Table.

https://doi.org/10.1371/journal.pcbi.1008086.g010

PLOS COMPUTATIONAL BIOLOGY Re-entrant drivers for atrial fibrillation identified from patient fibrosis distribution

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008086 September 23, 2020 16 / 25

https://doi.org/10.1371/journal.pcbi.1008086.g010
https://doi.org/10.1371/journal.pcbi.1008086


had superior anti-fibrillatory effect compared to ablating the TAs alone, as well as compared to

clinically accepted strategies such as PVI. Fibrosis-based ablation in Utah 3 and 4 patients would

result in extensive damage of the atria, and therefore tailoring CA strategies to TA regions pre-

dicted by the image-based models may help improve CA therapy.

These results agree with recent computational studies that provided the first evidence for

the anchoring of RDs near atrial fibrotic regions [15,16,38]. McDowell et al. [14] first showed

that in patient-specific LA models with fibrosis the localization of RD tips during AF (linked

with the RD movement) was independent of the pacing locations from which AF was induced.

Zahid et al. [15] then used similar models to demonstrate that AF was perpetuated by RDs that

persist in spatiallsy confined regions, with the latter constituting boundary zones between

fibrotic and non-fibrotic tissue. Finally, Morgan et al. [16] explained the mechanisms of RD

Fig 11. CA with the clinical used ablation Strategies 1 and 2 failed to terminate AF in the majority of cases. Left: Voltage maps showing the behaviour of RDs

after: (A1-B1) Strategy 2 and (C1-D1) Strategy 2 in Patient 2 and 3, respectively. Right: Transmembrane voltage at the point indicated by � in the respective LA

models, plotted before (red) and after (blue) CA. Both strategies failed to terminate RDs in all cases and MF remained unaffected. Here and in the next figure, the

white arrow indicates the directions of RD movement.

https://doi.org/10.1371/journal.pcbi.1008086.g011
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anchoring to the fibrotic BZ by slow-conducting properties of the latter, which enabled the

development of re-entrant circuits within relatively small regions. The current study builds on

these results, exploring how the specific size of fibrotic patches and their BZ provides a more

favourable substrate for the RDs, and therefore provides the basis for the creation of patient-

specific maps of the RD locations.

Influence of atrial fibrosis on the distribution of RDs

Our computational results are also in good agreement with clinical studies that have reported

high levels of arrhythmogenic activity around patches of atrial fibrosis [11] and targeted low-

voltage areas, identified from atrial mapping and associated with the presence of fibrosis, to

Fig 12. Target area guided ablation with Strategy 5 successfully terminated AF. Voltage maps showing the behaviour of RDs after CA of: (A1-B1) TAs and

(C1-D1) TAs plus linear lesions joining them to the PVI lesions and the mitral valve (MV) in Patient 2 and 3, respectively. Panels on the right (A2-D2) show the

voltage at the point indicated by � in the respective LA models, before (red) and after (blue) CA. Out of the two strategies, PVI plus TA guided ablation successfully

terminated AF in both patients.

https://doi.org/10.1371/journal.pcbi.1008086.g012
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improve CA outcomes [12,13]. Moreover, a recent clinical study has directly correlated the

patient-specific enhanced LGE MRI areas with locations of RDs recoded using electrocardiog-

raphy [18]. Our image-based LA models provide in-depth insights into the links between

fibrosis properties and RD behaviour, which are virtually impossible to achieve even using

advanced imaging systems in a clinical setting.

We also found a strong link between fibrosis burden and the probability of RDs anchoring

to fibrotic regions. Thus, in Patient 1 with 39% fibrosis burden (Utah 4 category), the fibrotic

regions were identified as the primary clustering location of RDs compared to PVs. In Patient

6 with low fibrosis burden of 11% (Utah 2 category), RDs were mostly anchored around the

PVs. These results are in agreement with clinical studies which have correlated the success of

PVI to fibrosis burden [10] and computational studies that showed the sustenance of AF pri-

marily in patient from Utah 4 category [14]. Hence, the higher FB translates into a higher

probability of RD localization in fibrotic regions and may increase benefits of fibrosis-based

CA compared to PVI in these patients.

However, it is worth noting that RDs locations between patients with similar fibrotic bur-

den can be critically influenced by a specific fibrosis distribution. Thus, for Patients 3 and 4

(both from Utah 3 category) with a similar fibrosis burden, there was significant difference in

the locations of RD stabilization (Fig 4). This could be explained by the differences in the spa-

tial distribution of fibrosis among the two patients, leading to RDs stabilization in only a few

patient-specific regions (Fig 8). Similar effects of fibrosis on the RD dynamics have been

reported in studies by Zahid et al. [15] and Morgan et al. [16]. These results provide mounting

evidence that unique patient-specific distributions of fibrotic tissue can determine RDs loca-

tions and help identify TAs for ablation.

Other studies have also incorporated the electrotonic effects of fibroblast-myocyte coupling

[16], ionic changes due to paracrine effects [15] and represented the deposition of collagenous

fibres using the percolation method [39] or discontinuous finite elements [40], and showed collo-

cation between RDs and fibrotic boundary zones [16,41]. Computational studies that compared

different fibrosis modelling methodologies have reported that these additional factors further facil-

itated the anchoring of RDs to the fibrotic areas and their BZ [42,43]. This may explain why those

simulations found a larger number of RDs located at the fibrotic BZ compared to ours. However,

slow conduction in fibrotic BZ has been shown to be more important for RD anchoring mecha-

nisms than myocyte-fibroblast coupling or ionic remodelling [16]. We believe that, although our

representation of fibrotic tissue is simple, it is adequate for patient-specific models derived from

clinical imaging data in the absence of more-detail patient recordings.

Note also that Vandersikel et al. [44] have demonstrated a new mechanism that facilitated

the anchoring of RDs to fibrotic regions in ventricular tissue via dynamical reorganization of

the excitation pattern. However, we were unable to identify such mechanism in our atrial

models. Potential reasons include electrophysiological differences between the chambers, as

well as differences arising from the variable methodologies adopted for the modelling of

fibrotic regions. In our study, patchy fibrotic regions had low conductivity inversely propor-

tional to the underlying LGE intensity, while Vandersickel et al. [44] modelled fibrotic regions

with electrically uncoupled unexcitable nodes depending on the LGE intensity. Adoption of

uniform methodologies and comparison of RD anchoring mechanisms in the atria and ventri-

cles can shed further light on the general fibrillatory mechanisms in the heart.

Virtual ablation on the predicted TAs

Virtual CA of the predicted TAs was performed on a subset of patient-specific LA models and

its success was compared with existing clinical CA strategies.
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We tested two clinical strategies: (1) PVI and (2) PVI with additional linear lesions at the

LA roof and MV. The former is considered a cornerstone of CA in PAF patients [45], while

the latter has been used in combination with PVI in patients with chronic forms of AF [46].

We then compared the outcomes of these two CA strategies with three TA guided ablation

strategies: (3) ablation of the TAs only, (4) ablation of the TAs with additional application of

linear lesions joining the TAs to the nearest boundary (the PVs or MV), and (5) the ultimate

strategy that combined TA guided ablation with PVI and a connecting set of linear lesions.

Our simulation results demonstrated that in cases where RDs are present in regions far

away from the PVs, clinical CA strategies (Strategies 1–2) were unable to terminate AF. Virtual

ablation of TAs alone (Strategy 3) resulted in the stabilisation of meandering RDs in the vicin-

ity of ablated regions, and the conversion of AF to AT with a lower MF (Fig 12A and 12B).

Similar findings have been reported in a study by Bayer et al. [47], where CA directly targeted

the RD tip. Although Strategy 3 reduced MF to about 6 Hz in some simulations, in most cases

the patients remained in rapid AT with MF of up to 8 Hz (see S1 Table). Strategy 4 successfully

terminated AF in majority of these cases for both patient-specific LA models either by elimi-

nating the RDs and AF or by converting AF to AT (P2: 60%, P3: 50%). Strategy 5, combining

Strategies 1 with Strategy 4, resulted in an increase in AF termination rate (P2: 90%, P3: 100%)

compared to Strategies 1 only (P2: 40%, P3: 50%).

Note that a recent clinical study by Calvo et al. [48] have used a similar approach, where

ablation on RD domains identified using electroanatomic mapping (EAM) was performed

with limited linear lesions joining the identified RD domains with the unexcitable boundaries

(PVI lesion in the LA). Their results showed a reduction in dominant frequency and acute ter-

mination to sinus rhythm in 15% of persistent AF patients, and at 1 year follow up showed

70% of patients were free from AF. Our simulation results are consistent with these findings

and can explain the mechanism underlying its success. Note also that Calvo et al. relied on

EAM to identify the RD domains, which can be unreliable due to limitations of EAM technol-

ogy (e.g., poor atrial coverage and mapping resolution). Our personalised image-based compu-

tational models can enable the identification of these regions with greater accuracy, which

further highlights the potential of such models for improving the efficiency of CA in chronic

AF patients.

The image-based computational workflow presented in this paper is a promising tool

which can build up on mechanistic knowledge and help improve CA therapy in the future. To

facilitate future clinical application, it needs to be further developed and clinically validated

using EAM techniques such as FIRM or ECGI, which allow for identifying patient-specific RD

locations. Indeed, these tools have been used by previous computational studies investigating

RD locations by Boyle et al. [19,20] to validate their findings and show a fair correlation

between model predictions and clinical findings. Moreover, our workflow can be extended to

incorporate further patient-specific details, such as atrial fibre orientation and electrophysio-

logical heterogeneity. Such details have been shown to play important roles in the genesis of

AF [23,24,49], and their integration may substantially increase the predictive power of the

models.

Limitations

Previous computational modelling studies have reported the dynamics of RDs to be dependent

on the methodology for modelling fibrosis [43]. We adopted an approach where atrial models

relied on information obtained from patient MR imaging. Our study did not consider the

influence of other patient-specific factors such as atrial anisotropy and electrophysiological

heterogeneity, which may contribute to drift of the RDs observed in the realistic LA geometries
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[50]. Atrial fibre orientation is known to be complex [51] and can also have significant effects

on atrial conduction [23,50]. However, fibre orientation was not incorporated in this study

due to the absence of patience-specific data in this regard. Future studies will aim to incorpo-

rate information about fibre orientation into patient-specific atrial models based on recently

proposed rule-based approaches [52]. The modelling approach presented in the current study

is entirely based on patient imaging-derived data available in the clinic.

Note that, although we have used a simple and phenomenological aFK model for the LA

simulations, our results are consistent with other studies [14,15,53] performed using more

detailed atrial myocyte model such as Coutemanche-Ramirez-Nattel (CRN) model [54], which

have also reported anchoring of RDs to fibrotic regions. Moreover, we tested our protocol on

3D slab with the CRN atrial cell model and demonstrated similar behaviour of the RDs (fur-

ther details provided in the S4 Fig).

In this study we have only considered fully transmural fibrosis. However, experimental

recordings by Verheule et al. [55,56], have demonstrated the existence of endomysial fibrosis

which develops exclusively within the epicardial layer and accompanies the transition from

persistent to permanent AF in goats. Moreover, a recent computational study by Gharaviri

et al. [57] in a human atrial model has proven that such fibrotic patterns could result in

increased breakthroughs and endo-epicardial dissociations. In future studies, intramural fibro-

sis should be incorporated into atrial models to analyse its effects on the RD dynamics and CA

strategy. However, the non-invasive imaging of such fibrotic regions is limited by current reso-

lution of LGE-MRI technology, which is comparable to the transmural distance in thin atrial

walls.

In the virtual ablation study, all the CA lesions were applied simultaneously. However, in

the clinic they are applied in a sequential manner. This could potentially influence the outcome

of virtual ablation. Furthermore, the virtual lesions were ‘perfect lesions’ that were fully trans-

mural and maintain a complete conduction block. This is hard to achieve clinically and

depends on the operator and the location of ablation. Another limitation of this study is that

our AF simulation workflow used the cross-filed protocol rather than fast pacing (e.g., by

McDowell et al. [14]) to initiate AF. Although the workflow is designed to predict the ultimate

RD anchoring sites rather than the initiation sites, the latter may also be important for AF ter-

mination and its recurrence prevention. However, our workflow could be easily adjusted to

include fast pacing for the evaluation of both RD anchoring and initiation mechanisms.

Conclusion

Patient-specific LA model simulations showed that RD sustaining AF typically anchored to

large fibrotic patches or their BZ, with specific pattern of the RD movement through/around a

patch influenced by the size and shape of the patch. Therefore, typical RD locations were deter-

mined by unique patient-specific distributions of fibrotic tissue, identifying areas that may

potentially be targeted by therapy. These results may be particularly relevant to AF patients

with high fibrosis burden in the LA, where the model-predicted TAs could inform CA. Per-

forming virtual ablations on the TAs and connecting them to the nearest PVs or MV has supe-

rior anti-fibrillatory effect compared to ablating the TAs alone, as well as compared to

clinically accepted strategies such as PVI.

Supporting information

S1 Text. Supplementary Material, including Courtemanche-Ramirez-Nattel (CRN) model.

(PDF)
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S1 Table. The mean frequencies (MF) calculated before and after virtual CA in Patient 2 (bot-

tom) and 3 (top).

(PDF)

S1 Fig. The pipeline for identifying TAs from the RD probability map. Sim: simulation.

(TIF)

S2 Fig. Identifying RD location maps from patient-specific tip probability maps. (A)

Shows the tip probability map across the entire LA model of patient P1 and (B) shows the

locations of target areas identified by thresholding the normalised probability map (A)

at two levels (yellow, Th1: 0.2) and (orange, Th2: 0.15) and overlaid on the fibrosis map

(greyscale).

(TIF)

S3 Fig. Patient-specific RD location maps–catheter ablation targets. The images show col-

our-coded fibrosis distributions (greyscale) in the 6 patient-specific LA models, with the TAs

(with fibrosis: yellow and without fibrosis: orange) superimposed. In Utah 4 patient (P1), TAs

are seen at specific locations within fibrotic patches. In Utah 3 patients (P2, P3 and P4), TAs

are distributed at the BZ between fibrotic patches and healthy tissue. In Utah 2 patients (P5

and P6), TAs are seen mostly on the LA wall with some near small patches.

(TIF)

S4 Fig. Anchoring of RDs to fibrotic patches with CRN atrial cell model. (A) The voltage

map for RD is shown with positions of initiation marked as (1) and (2). The tip trajectories

of the RDs initiated from these positions are shown in (B) and (C). The target areas

computed for this scenario is shown in panel (D), marked in yellow and fibrotic patch in

black.

(TIF)
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48. Calvo D, Rubı́n J, Pérez D, Morı́s C. Ablation of Rotor Domains Effectively Modulates Dynamics of

Human: Long-Standing Persistent Atrial Fibrillation. Circ Arrhythmia Electrophysiol. 2017 Dec 1; 10

(12).

49. Zhao J, Butters TD, Zhang H, Pullan AJ, LeGrice IJ, Sands GB, et al. An image-based model of atrial

muscular architecture effects of structural anisotropy on electrical activation. Circ Arrhythmia Electro-

physiol. 2012 Apr; 5(2):361–70.

50. Varela M, Colman MA, Hancox JC, Aslanidi O. Atrial Heterogeneity Generates Re-entrant Substrate

during Atrial Fibrillation and Anti-arrhythmic Drug Action: Mechanistic Insights from Canine Atrial Mod-

els. Doessel O, editor. PLoS Comput Biol. 2016 Dec 16; 12(12):e1005245. https://doi.org/10.1371/

journal.pcbi.1005245 PMID: 27984585

51. Ho SY, Sánchez-Quintana D. The importance of atrial structure and fibers. Clin Anat. 2009 Jan; 22

(1):52–63. https://doi.org/10.1002/ca.20634 PMID: 18470938

52. Fastl TE, Tobon-Gomez C, Crozier A, Whitaker J, Rajani R, McCarthy KP, et al. Personalized computa-

tional modeling of left atrial geometry and transmural myofiber architecture. Med Image Anal. 2018 Jul

1; 47:180–90. https://doi.org/10.1016/j.media.2018.04.001 PMID: 29753182

53. Boyle PM, Zghaib T, Zahid S, Ali RL, Deng D, Franceschi WH, et al. Computationally guided personal-

ized targeted ablation of persistent atrial fibrillation. Nat Biomed Eng. 2019; 3(11):870–9. https://doi.org/

10.1038/s41551-019-0437-9 PMID: 31427780

54. Courtemanche M, Ramirez RJ, Nattel S. Ionic mechanisms underlying human atrial action potential

properties: insights from a mathematical model. Am J Physiol. 1998 Jul; 275(1 Pt 2):H301–21.

55. Verheule S, Wilson E, Banthia S, Everett IV TH, Shanbhag S, Sih HJ, et al. Direction-dependent con-

duction abnormalities in a canine model of atrial fibrillation due to chronic atrial dilatation. Am J Physiol

—Hear Circ Physiol. 2004 Aug; 287(2 56–2).

56. Verheule S, Tuyls E, Gharaviri A, Hulsmans S, Van Hunnik A, Kuiper M, et al. Loss of continuity in the

thin epicardial layer because of endomysial fibrosis increases the complexity of atrial fibrillatory conduc-

tion. Circ Arrhythmia Electrophysiol. 2013 Feb; 6(1):202–11.

57. Gharaviri A, Bidar E, Potse M, Zeemering S, Verheule S, Pezzuto S, et al. Epicardial Fibrosis Explains

Increased Endo–Epicardial Dissociation and Epicardial Breakthroughs in Human Atrial Fibrillation.

Front Physiol. 2020 Feb 21; 11:68.

PLOS COMPUTATIONAL BIOLOGY Re-entrant drivers for atrial fibrillation identified from patient fibrosis distribution

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008086 September 23, 2020 25 / 25

https://doi.org/10.1109/TBME.2013.2292320
http://www.ncbi.nlm.nih.gov/pubmed/24557691
https://doi.org/10.1161/JAHA.117.005922
https://doi.org/10.1161/JAHA.117.005922
http://www.ncbi.nlm.nih.gov/pubmed/28862969
https://doi.org/10.3389/fphys.2018.01207
https://doi.org/10.3389/fphys.2018.01207
http://www.ncbi.nlm.nih.gov/pubmed/30246796
https://doi.org/10.1093/europace/euw365
https://doi.org/10.1093/europace/euw365
http://www.ncbi.nlm.nih.gov/pubmed/28011842
https://doi.org/10.1371/journal.pcbi.1006637
http://www.ncbi.nlm.nih.gov/pubmed/30571689
https://doi.org/10.1007/s10840-012-9672-7
https://doi.org/10.1007/s10840-012-9672-7
http://www.ncbi.nlm.nih.gov/pubmed/22382715
https://doi.org/10.3389/fphys.2016.00108
http://www.ncbi.nlm.nih.gov/pubmed/27148061
https://doi.org/10.1371/journal.pcbi.1005245
https://doi.org/10.1371/journal.pcbi.1005245
http://www.ncbi.nlm.nih.gov/pubmed/27984585
https://doi.org/10.1002/ca.20634
http://www.ncbi.nlm.nih.gov/pubmed/18470938
https://doi.org/10.1016/j.media.2018.04.001
http://www.ncbi.nlm.nih.gov/pubmed/29753182
https://doi.org/10.1038/s41551-019-0437-9
https://doi.org/10.1038/s41551-019-0437-9
http://www.ncbi.nlm.nih.gov/pubmed/31427780
https://doi.org/10.1371/journal.pcbi.1008086

