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Background: Peritoneal recurrence (PR) is the predominant pattern of relapse after curative-intent surgery in gastric cancer (GC)
and indicates a dismal prognosis. Accurate prediction of PR is crucial for patient management and treatment. The authors aimed to
develop a noninvasive imaging biomarker from computed tomography (CT) for PR evaluation, and investigate its associations with
prognosis and chemotherapy benefit.
Methods: In this multicenter study including five independent cohorts of 2005GCpatients, the authors extracted 584 quantitative features
from the intratumoral and peritumoral regions on contrast-enhanced CT images. The artificial intelligence algorithms were used to select
significant PR-related features, and then integrated into a radiomic imaging signature. And improvements of diagnostic accuracy for PR by
clinicians with the signature assistance were quantified. Using Shapley values, the authors determined the most relevant features and
provided explanations to prediction. The authors further evaluated its predictive performance in prognosis and chemotherapy response.
Results: The developed radiomics signature had a consistently high accuracy in predicting PR in the training cohort (area under the curve:
0.732) and internal and Sun Yat-sen University Cancer Center validation cohorts (0.721 and 0.728). The radiomics signature was the most
important feature in Shapley interpretation. The diagnostic accuracy of PR with the radiomics signature assistance was improved by
10.13–18.86% for clinicians (P<0.001). Furthermore, it was also applicable in the survival prediction. In multivariable analysis, the radiomics
signature remained an independent predictor for PR and prognosis (P<0.001 for all). Importantly, patients with predicting high risk of PR
from radiomics signature could gain survival benefit from adjuvant chemotherapy. By contrast, chemotherapy had no impact on survival for
patients with a predicted low risk of PR.
Conclusion: The noninvasive and explainable model developed from preoperative CT images could accurately predict PR and
chemotherapy benefit in patients with GC, which will allow the optimization of individual decision-making.
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Introduction

Peritoneal recurrence (PR) is one of the most common patterns
of disease relapse and the primary cause of cancer-related
death in gastric cancer (GC)[1–3]. The 5-year PR rate for
patients with advanced GC after curative surgery is ~50%[4].
The median survival time from recurrence to death is
4–6 months[5,6]. PR indicates a poor prognosis and is often
accompanied by complications, such as ascitic fluid, abdom-
inal distension, and obstruction, which cause significant dis-
comfort to GC patients[5–7]. The controlling strategies for PR
in recent years have been more focused on preventing its
recurrence by offering additional treatment alternatives[4,8–12].
Whether patients receive intensive treatment after surgery
often depends on the clinical judgment of surgeons. However,
such judgments often require extensive experience and are
accompanied by randomness. Thus, there remains an unmet
need to develop machine learning tools for prediction of PR
risk to augment decision-making.

New strategies have been actively investigated in PR prevention,
including hyperthermic intraperitoneal chemotherapy (HIPEC)
and extensive intraoperative peritoneal lavage (EIPL)[11–17].
However, not all GC patients will develop PR after surgery, and
thus a considerable number of patients are ineligible for these
treatments. The findings of several investigations on HIPEC
and EIPL remain controversial in survival benefit and suggest an
increase in postoperative complications[11–17]. Lack of individua-
lized risk prediction of PR to identify patients who may potentially
benefit from these treatments could be the reason.

Although peritoneal metastasis can be diagnosed, prediction
of future postoperative relapse is different and more challen-
ging in clinic. Cytologic examination of peritoneal lavage was
used to determine peritoneal metastasis, but it was reported to
be invasive, time consuming, and expensive[18–20]. Other
conventional imaging modalities, including computed tomo-
graphy (CT), positron emission tomography-computed tomo-
graphy (PET-CT), or ultrasonography, yielded unsatisfactory
accuracy for PR prediction[21]. Thus, a novel biomarker to
assess the risk of PR in patients with GC after surgery is
urgently needed.

Previous data showed that radiomics, which extracted multi-
dimensional quantitative data from standard medical imaging,
could accurately predict cancer dissemination and prognosis[22–24].
Radiomics features from the center and contour of the tumor
regions of interest (ROI) were governed by both cancer cell-intrinsic
biological processes and tumor microenvironment, which were
strongly correlated with tumor heterogeneity[25–28]. Therefore,
we hypothesized that intratumoral and peritumoral radiomics
features are excellent noninvasive biomarkers to predict PR and
prognosis of GC.

This study aimed to develop a noninvasive and explainable
artificial intelligence model to predict PR based on intratumoral
and peritumoral radiomics features from preoperative CT images
in GC patients after gastrectomy. The improvements of diag-
nostic accuracy for PR by clinicians with the assistance of non-
invasive image model were further evaluated. We also
investigated its performance in predicting prognosis and identi-
fying which patients could benefit from adjuvant chemotherapy.

Materials and methods

Study design and data retrieval

Five independent cohorts of 2005 patients diagnosed with stage
I–III GC were enrolled in this study. All patients underwent
contrast-enhanced abdominal CT examination within 2 weeks
before surgery. The main inclusion and exclusion criteria are
given in the Supplementary Methods (Supplemental Digital
Content 1, http://links.lww.com/JS9/A669). The training cohort
(Nanfang Hospital of Southern Medical University (SMUNFH)
cohort 1, 433 patients) was retrospectively recruited from
SMUNFH (Guangzhou, China) (2005–2010). The internal vali-
dation cohort (SMUNFH cohort 2, 471 patients) was retro-
spectively recruited from SMUNFH (2011–2014). And the
prospective validation cohort (SMUNFH cohort 3, 136 patients)
was prospectively recruited from SMUNFH (2017–2019). The
training cohort comprised cohort 1 (SMUNFH cohort 1A) and
cohort 2 (SMUNFH cohort 1B). Given that logistic regression
performs best in a 1:1 case-to-noncase ratio, we designed training
cohort 1 with 50 PR-positive patients and 50 PR-negative patients
randomly selected from the 433 GC patients. The remaining 333
patients in training cohort 2 were assigned to penalized Cox
regression. The Sun Yat-sen University Cancer Center (SYSUCC)
validation cohort of 922 patients was collected from the SYSUCC
(2008–2012). The TCIA cohort (43 patients) was obtained from
The Cancer Immunome Atlas and The Cancer Genome Atlas
databases (downloaded in 2022). This study had been reported in
line with the REMARK criteria.

Baseline information was obtained from the medical record
system. The threshold values of carcinoembryonic antigen (CEA)
and carbohydrate antigen 19-9 (CA19-9) were 5.0 μg/ml and
37 U/ml, respectively. The pathologic stages were determined
following the Eighth edition of the American Joint Committee on
Cancer[29]. Adjuvant chemotherapy was mainly fluorouracil
based. PR was diagnosed by CT, PET-CT, abdominal ultra-
sonography, or clinical signs, such as ascites or even reoperation
during follow-up. Patients had a follow-up every 3months for the
first 2 years and every 6 months thereafter.

Radiomics feature extraction and reproducibility assessment

Portal venous-phase enhanced CT images were acquired using
the multidetector-row CT system. Details about CT acquisition
and image pre-treatment were presented in the Supplementary
Methods (Supplemental Digital Content 1, http://links.lww.com/
JS9/A669). Two-dimensional ROI of the tumors with the largest
lesion diameter was manually delineated by two radiologists

HIGHLIGHTS

• This is the first study using radiomics approach to develop
a noninvasive biomarker from computed tomography
images for predicting peritoneal recurrence (PR) of gastric
cancer after gastrectomy.

• This noninvasive imaging biomarker improved the clinician’s
diagnosis of PR after gastrectomy by 10.13–18.86%.

• This noninvasive imaging biomarker can predict survival
outcome and identify patients who can benefit from
chemotherapy after gastrectomy.
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(C.C. andQ.Y.) using the ITK-SNAP software. Any discrepancies
were resolved by a senior radiologist (Y.X.). Both the center and
contour of the tumor ROI were manually delineated, which was
similar to the definition in our previous paper[30].

Radiomics features for ROIs were extracted and calculated
using Matlab R2016a software using a package at GitHub
(https://github.com/mvallieres/radiomics/). A total of 584 quan-
titative imaging features were computed for each tumor ROI,
including the intratumoral and peritumoral areas. The reprodu-
cibility and robustness of imaging features were assessed
according to intraclass and interclass correlation coefficients and
shown in Supplementary Methods (Supplemental Digital
Content 1, http://links.lww.com/JS9/A669). The radiomics fea-
tures included shape features, first-order intensity features, and
second and higher-order textural features. The detailed mathe-
matical description of all extracted features was presented in
Supplementary Methods (Supplemental Digital Content 1, http://
links.lww.com/JS9/A669). This study followed the Image
Biomarker Standardization Initiative (IBSI) guidelines, and the
software used was IBSI-compliant[31].

PR-related feature selection and radiomics signature
building

We designed a five-step protocol to select PR-related radiomics
features based on the training cohort. Firstly, redundant
features were removed using the Max-Relevance and Min-
Redundancy (mRMR) algorithm. Secondly, Pearson correla-
tion matrices were performed to eliminate the features with a
low correlation with the PR in highly correlated paired-
features. Thirdly, the features were further narrowed using the
Least Absolute Shrinkage and Selector Operation (LASSO)
logistic algorithm and the Support Vector Machine-Recursive
Feature Elimination (SVM-RFE) algorithm with 10-fold cross-
validation[32–35]. Fourthly, penalized Cox regression was used
to further refine the features identified in the preceding steps.
Finally, multiple features with nonzero coefficients at optimal
lambda were integrated into a radiomics signature, also
referred to as radiomics score (Rad-score). Patients were
classified into high or low Rad-score group based on the
threshold using X-tile in the training cohort, and then
the validation cohorts were assigned the same threshold[36].
The detailed data processing is illustrated in Figure 1.

Model interpretability

To interpret how each radiomics feature and the integrated
signature influenced the model prediction for PR, we used
Shapley values[37]. The artificial intelligence SHapley Additive
exPlanations (SHAP) provided a unified method for interpreting
machine learning models. Based on the SHAP package in
Python[38], we were able to get the importance of the radiomics
features and other clinicopathologic characteristics with inter-
pretations on how they participated in the prediction of PR.

Evaluation of the image model for predicting PR

We evaluated the performance of radiomics model in predicting
PR using the receiver operating characteristic (ROC) curve,
calibration curves, and decision curve analysis (DCA). The
Hosmer–Lemeshow (H–L) test was used to evaluate the fit of the
predicted and true values. And the prediction for 1, 3, and 5-year

PR by radiomics signature was evaluated using time-dependent
ROC analysis. The specific evaluation metrics were the area
under the ROC curve (AUC), specificity, sensitivity, accuracy,
positive predictive value (PPV), and negative predictive value
(NPV). The multivariate analysis was also performed to assess
this signature. Additionally, Fine and Gray’s competing-risk
regression analysis[39] was used to assess PR-free survival (PRFS),
and deaths, local recurrence, or distant metastasis before PRwere
identified as competing events. We also assessed the ability of the
radiomics signature to improve the accuracy of clinicians (Z.H.,
5 years of experience, and H.L., 15 years of experience) for pre-
dicting PR. To evaluate the impact of the radiomics signature on
clinician performance for individual prediction, two oncologists
(Z.H. and H.L.) independently evaluated the PR status of each
patient, and then re-evaluated recurrence status after considering
the radiomics signature. And the statistical difference with or
without assistance from radiomics signature for predicting PR
was evaluated by independent sample t-test.

Evaluation of the image model for predicting prognosis and
chemotherapy benefit

Performance of the radiomics signature for predicting disease-free
survival (DFS) and overall survival (OS) was also assessed
through time-dependent ROC analysis. Furthermore, we con-
structed the combined models, integrated radiomics signature
and clinicopathological characteristics, to predict the PR and
prognosis. Additionally, we investigated the ability of the radio-
mics signature in predicting the benefit of adjuvant chemotherapy
in patients with stage II and III disease. Based on the aforemen-
tioned classification, we divided patients into low Rad-score or
high Rad-score group. In two defined groups, a 1:1 nearest
matching strategy of propensity score matching (PSM) was per-
formed for patients with or without chemotherapy to balance
confounding factors including age, sex, CEA, CA19-9, tumor
grade, tumor location, T stage, N stage, tumor size, and histology
type. We also evaluated the chemotherapy benefit in all patients
of each group without PSM.

Statistical analysis

Continuous variables were expressed as mean ± standard devia-
tion (X ± SD), and compared among groups using t-test orMann–
Whitney test. Enumeration data were expressed as percentages
and compared among groups by χ2 or Fisher’s exact test. Survival
curves were generated according to the Kaplan–Meier method
and compared using the log-rank test. Univariate and multi-
variate analyses were performed using the Cox proportional
hazards model. Interaction between the radiomic signature and
adjuvant chemotherapy was assessed by the Cox model. All sta-
tistical analyses were performed using R software (version 3.5.3),
SPSS statistical software (version 26.0), and Python software
(version 3.6). A two-sided P<0.05 was considered statistically
significant.

Results

Clinicopathological characteristics

The present study included 2005 patients with GC from five inde-
pendent cohorts of three centers. The overall study design is shown in
Figure 1. Patients (n=1826) in the training cohort, internal validation
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cohort, and SYSUCC validation cohort were used to evaluate the
predictive value of Rad-score for PR, survival outcome, and che-
motherapy response. Moreover, patients in the prospective validation
cohort (n=136) or TCIA cohort (n=43) were used to assess rela-
tionships between Rad-score and survival outcome.

Among the training cohort, internal validation cohort, and
SYSUCC validation cohort, 1252 patients (68.6%) were male,
and the median (interquartile range) age was 57.0 (49.0–64.0)
years. Most patients [1404 (76.9%)] had stage II–III disease; 806
(44.1%) patients had received postoperative chemotherapy. The

Figure 1. Study design. LASSO, Least Absolute Shrinkage and Selector Operation; mRMR, Max-Relevance and Min-Redundancy; SVM-RFE, Support Vector
Machine-Recursive Feature Elimination.
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median follow-up period (IQR) was 62 (47–73) months. There
were 491 (26.9%) patients with PR and 379 (20.8%) patients
with competing events till the last follow-up. The median dura-
tion (IQR) to PR was 21 (11–36) months, and the median time

from PR to death was 5 months for all patients. Moreover, the
median duration (IQR) to PR was 19 (11–37) months, 12 (5–28)
months, and 24 (15–38) months in the training cohort, internal
validation cohort, and SYYUCC validation cohort, separately.

Table 1
Clinicopathological characteristics of patients with gastric cancer in the training and validation cohorts.

Training cohort (N= 433) Internal validation cohort (N= 471) SYSUCC validation cohort (N= 922)

Variables N (%) N (%) N (%)

Age (years)
< 60 262 (60.5) 281 (59.7) 520 (56.4)
≥ 60 171 (39.5) 190 (40.3) 402 (43.6)

Sex
Female 137 (31.6) 149 (31.6) 288 (31.2)
Male 296 (68.4) 322 (68.4) 634 (68.8)

Tumor size
< 4 cm 217 (50.1) 312 (66.2) 378 (41.0)
≥ 4 cm 216 (49.9) 159 (33.8) 544 (59.0)

Histology type
Intestinal 205 (47.3) 211 (44.8) 320 (34.7)
Diffuse and mixed 228 (52.7) 260 (55.2) 602 (65.3)

Tumor grade
Well 49 (11.3) 82 (17.4) 14 (1.5)
Moderate 116 (26.8) 103 (21.9) 150 (16.3)
Poor or undifferentiated 268 (61.9) 286 (60.7) 758 (82.2)

Tumor location
Cardia 91 (21.0) 63 (13.4) 323 (35.0)
Body 88 (20.3) 86 (18.3) 179 (19.4)
Antrum 234 (54.0) 284 (60.3) 381 (41.3)
Whole 20 (4.6) 38 (8.1) 39 (4.2)

CEA
Normal 388 (89.6) 420 (89.2) 746 (80.9)
Elevated 45 (10.4) 51 (10.8) 176 (19.1)

CA19-9
Normal 380 (87.8) 390 (82.8) 753 (81.7)
Elevated 53 (12.2) 81 (17.2) 169 (18.3)

pT stage
T1 103 (23.8) 126 (26.8) 129 (14.0)
T2 44 (10.2) 71 (15.1) 122 (13.2)
T3 52 (12.0) 14 (3.0) 203 (22.0)
T4a 193 (44.6) 154 (32.7) 413 (44.8)
T4b 41 (9.5) 106 (22.5) 55 (6.0)

pN stage
N0 199 (46.0) 222 (47.1) 337 (36.6)
N1 78 (18.0) 108 (22.9) 164 (17.8)
N2 57 (13.2) 53 (11.3) 159 (17.2)
N3a 56 (12.9) 66 (14.0) 179 (19.4)
N3b 43 (9.9) 22 (4.7) 83 (9.0)

pM stage
M (− ) 433 (100) 471 (100) 922 (100)
M (+ ) 0 (0) 0 (0) 0 (0)

pTNM stage
IA 92 (21.2) 102 (21.7) 98 (10.6)
IB 35 (8.1) 8 (1.7) 87 (9.4)
IIA 30 (6.9) 14 (3.0) 91 (9.9)
IIB 68 (15.7) 74 (15.7) 180 (19.5)
IIIA 98 (22.6) 181 (38.4) 195 (21.1)
IIIB 54 (12.5) 44 (9.3) 175 (19.0)
IIIC 56 (12.9) 48 (10.2) 96 (10.4)

Postoperative peritoneal recurrence
Negative 330 (76.2) 329 (69.9) 676 (73.3)
Positive 103 (23.8) 142 (30.1) 246 (26.7)

Chemotherapy
Yes 212 (49.0) 209 (44.4) 385 (41.8)
No 221 (51.0) 262 (55.6) 537 (58.2)

CA19-9, carbohydrate antigen 19-9; CEA, carcinoembryonic antigen; pTNM stage, based on the eighth edition NCCN guideline.

Sun et al. International Journal of Surgery (2023) International Journal of Surgery

2014



The median time from PR to death was 6 months, 3 months, and
5 months in the training cohort, internal validation cohort, and
SYYUCC validation cohort, separately. The clinicopathological
characteristics of patients were summarized in Table 1 and Table
S1 (Supplemental Digital Content 1, http://links.lww.com/JS9/
A669).

Table S2 (Supplemental Digital Content 1, http://links.lww.
com/JS9/A669) lists the detailed clinicopathological features of
the prospective validation cohort (n= 136). In this cohort, 94
patients (69.1%) were male, and the median age (interquartile
range) was 55.0 (49.0–65.0) years; 49 patients (36.0%) had
stage I GC; 37 patients (27.2%) had stage II GC; 50 patients
(36.8%) had stage III GC. Only 11.7% (16/136) of patients
suffered from PR at the last follow-up. Therefore, this cohort
was merely used to evaluate the predictive value of the Rad-
score for prognosis.

In the TCIA cohort, 36 patients (83.7%) were male, and the
median age (interquartile range) was 67.0 (59.0–70.0) years.
Most patients (n= 42; 97.7%) had stage II or III disease, except
for one patient with stage I GC. And their clinicopathological
characteristics are shown in Table S3 (Supplemental Digital
Content 1, http://links.lww.com/JS9/A669).

Feature selection and radiomics signature establishment

Initially, a total of 584 radiomics features were extracted from the
tumor ROI of each patient. After removing features with unsa-
tisfactory intra- and interclass correlation coefficientss and
redundant features, 157 independent features were retained for
further analysis (Fig. S1, Supplemental Digital Content 1, http://
links.lww.com/JS9/A669). Then, 36 PR-related features were
identified using the LASSO logistic algorithm and SVM-RFE
algorithm in training cohort 1. Finally, six robust radiomics
features, including one intratumoral feature and five peritumoral
features, were selected using penalized Cox regression in the
training cohort 2 for construction of the PR-related Rad-score
(Fig. 2). The selected features were GLCM_IMC2, Extent,
Perimeter, NGTDM_Coarseness, GLRLM_LGRE_1.0, and
GLSZM_LZHGE_2.5. For example, the Extent was defined as
the ratio of pixels in the region to pixels in the total bounding box,
returned as a scalar, and the Perimeter was defined as the distance
around the boundary of the region. The definitions for
GLCM_IMC2, NGTDM_Coarseness, GLRLM_LGRE_1.0, and
GLSZM_LZHGE_2.5 are presented in the Supplementary
Materials (Supplemental Digital Content 1, http://links.lww.com/
JS9/A669).

Explanations via artificial intelligence SHAP

Risk estimates can be extracted from the predictionmodel by SHAP
values to allow an explanation of risk on a global level. The most
important features to predict PR were NGTDM_Coarseness,
Perimeter, Extent, GLCM_IMC2, and GLRLM_LGRE_1.0 in
SHAP interpretation. The seventh most important feature was
GLSZM_LZHGE_2.5. T stage, N stage, age, sex, tumor size,
location, tumor grade, histology type, CEA, and CA19-9 were not
among the top five features (Fig. 3A). Furthermore, when six
radiomics features were integrated into a signature, the importance
had been further enhanced (Fig. 3B).

Assessment of the radiomics signature with PR

There was no significant difference in Rad-score [mean (95%
CI)] between the training [ − 0.023 (− 0.080 to 0.033)], internal
validation [ − 0.011 (− 0.055 to 0.033)], and SYSUCC valida-
tion [− 0.049 (− 0.087 to − 0.012)] cohorts (P= 0.44). The
optimal threshold generated by X-tile was − 0.02 (Fig. S2,
Supplemental Digital Content 1, http://links.lww.com/JS9/
A669), and all 1826 patients were classified into high or low
Rad-score group. Rad-score [mean (95% CI)] in PR-positive
was significantly higher compared with PR-negative in the
training [0.344 (0.238–0.451) vs. − 0.138 (− 0.200 to
− 0.076)], internal validation [0.233 (0.160–0.306) vs. − 0.117
(− 0.167 to − 0.066)], and SYSUCC validation [0.292
(0.226–0.358) vs. − 0.174 (− 0.216 to − 0.133)] cohorts (all
P< 0.001) (Fig. 4A). The clinical characteristics’ distribution
of patients according to the PR status in the training and two
validation cohorts was shown in Table S4 (Supplemental
Digital Content 1, http://links.lww.com/JS9/A669). A sig-
nificantly higher PR rate at 1, 3, and 5 years was found in
patients with a high Rad-score in all three cohorts (all
P< 0.001) (Fig. 4B). The risk of PR increased as the Rad-score
increased with an odds ratio of 3.762–6.302 (P< 0.001) in the
multivariable analysis [Table 2 and Table S5 (Supplemental
Digital Content 1, http://links.lww.com/JS9/A669)].

Artificial intelligence interaction for diagnosis of PR

The Rad-score had a consistently high accuracy in predicting PR,
with an AUC of 0.732 (0.677–0.787) in the training cohort, 0.721
(0.672–0.771) in the internal validation cohort, and 0.728
(0.692–0.764) in the SYSUCC validation cohort, which were
superior to TNM stage (0.625) [Fig. 5A and Table S6
(Supplemental Digital Content 1, http://links.lww.com/JS9/A669)].
By analyzing the sub-queue of the training cohort, a comparable
AUC was found in cohorts 1 (0.703, 0.601–0.806) and 2 (0.758,
0.688–0.827), which was also shown in Figure S3 (Supplemental
Digital Content 1, http://links.lww.com/JS9/A669). The specificity,
sensitivity, accuracy, PPV, and NPV of the Rad-score in the vali-
dation cohorts were 68.4–79.4%, 59.2–61.4%, 66.2–67.6%,
43.0–44.7%, and 79.5–83.4%, respectively, when the optimal
Youden index was selected (Table S7, Supplemental Digital
Content 1, http://links.lww.com/JS9/A669).

The AUC of the Rad-score for 1, 3, and 5-year PR evaluation
was 0.770 (0.692–0.848), 0.773 (0.711–0.835), and 0.799
(0.744–0.854), respectively, in the training cohort. Similar AUC
values for Rad-score were observed in the internal [0.786
(0.737–0.835) at 1-year, 0.779 (0.726–0.832) at 3-year, and
0.775 (0.716–0.834) at 5-year] and SYSUCC validation cohorts
[0.784 (0.715–0.853) at 1-year, 0.723 (0.682–0.764) at 3-year,
and 0.792 (0.751–0.833) at 5-year] (Table S8, Supplemental
Digital Content 1, http://links.lww.com/JS9/A669). Rad-score
was a better predictor for 1, 3, and 5-year PR than other clin-
icopathological characteristics (Figs S4–S6, Supplemental Digital
Content 1, http://links.lww.com/JS9/A669).

The Rad-score had the best predictive performance for PR, and
improvement in prediction was observed when combined with
clinicopathological characteristics (Fig. 5A). DCA also showed
that the Rad-score had a better net benefit than any clinical factor
at probability thresholds ranging from 0.20 to 0.80 (Fig. 5B).
Additionally, the combined models integrating Rad-score and
clinical factors were developed for individualized prediction of
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PR, with good agreements between the predictive and actual
probability in calibration curves (Figs S7 and S8, Supplemental
Digital Content 1, http://links.lww.com/JS9/A669). The H–L test
also showed a good fit between the predicted and true values

[P> 0.05; Table S9 (Supplemental Digital Content 1, http://links.
lww.com/JS9/A669)].

We also found that, with the assistance of radiomics signature,
diagnostic performance of PR was significantly improved

Figure 2. Intratumoral and peritumoral ROI segmentation and feature extraction (A). Cluster analysis of incorporation of peritoneal recurrence-related radiomics
features that were selected from the LASSO or SVM-RFE algorithms in the training cohort 1 (B). Penalized Cox regression analysis to select robust radiomics
features in the training cohort 2 (C). A radiomics signature is built based on the radiomics features (D). LASSO, Least Absolute Shrinkage and Selector Operation;
SVM-RFE, Support Vector Machine-Recursive Feature Elimination.
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(Fig. 5C). For the junior clinician, the accuracy increased from
53.34 to 68.36% in the training cohort, 49.36 to 68.22% in
the internal validation cohort, and from 50.76 to 67.46% in the
SYSUCC validation cohort. Similarly, for the senior clinician, the
accuracy increased from 60.74 to 71.35% in the training cohort,
60.12 to 70.25% in the internal validation cohort, and from
58.74 to 69.49% in the SYSUCC validation cohort. A significant
statistical difference was observed in the diagnostic accuracy for
predicting PR by clinicians with or without the assistance of
noninvasive radiomics tools [P< 0.001; Table S10 (Supplemental

Digital Content 1, http://links.lww.com/JS9/A669)]. These results
indicated that with the help of this radiomics model, the diag-
nostic accuracy of junior clinicians could reach a level compar-
able to expert clinicians.

Prognostic value of the radiomics signature

The relationship between Rad-score and prognosis was then
explored. Kaplan–Meier analysis revealed a significantly higher 1,
3, and 5-year PRFS, DFS, and OS rate in patients with a low

Figure 3. The features to predict the risk of peritoneal recurrence. SHAP for radiomics features and clinicopathologic characteristics (A). SHAP for radiomics
signature and clinicopathologic characteristics (B). On the x-axis, the contribution of each feature is shown. A feature with a negative Shapley value will favorably
impact the prediction (decrease the risk of peritoneal recurrence). The influence of the value of the feature itself is shown on the y-axis, for example, for radiomics
signature, a high value (in red) is associated with a positive Shapley value that will increase the risk of peritoneal recurrence, while a low value (in blue) will decrease
the Shapley value and the risk of peritoneal recurrence.
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Figure 4. Distribution of radiomics scores regarding the status of peritoneal recurrence (PR− and PR+ ) in the training cohort, internal validation cohort, and
SYSUCC validation cohort (A). Cumulative peritoneal recurrence rate stratified by the radiomics scores in the training cohort, internal validation cohort, and
SYSUCC validation cohort using a Mantel–Haenszel’s Hazard Ratio (MHR) test (B).

Table 2
Multivariable logistic analysis for postoperative peritoneal recurrence and multivariable Cox regression analysis for peritoneal
recurrence-free survival in the training and validation cohorts.

Multivariable logistic analysis Multivariable cox analysis

Variables OR (95% CI) P HR (95% CI) P

Training cohort
Tumor size (< 4 cm vs. ≥ 4 cm) 0.884 (0.526–1.486) 0.642 1.110 (0.740–1.664) 0.614
CEA (< 5.0 μg/ml vs. ≥ 5.0 μg/ml) – – 1.897 (1.123–3.203) 0.017
CA19-9 (< 37 U/ml vs. ≥ 37 U/ml) 1.272 (0.649–2.492) 0.484 1.114 (0.662–1.876) 0.684
pTNM stage (IA vs. IB vs. IIA vs. IIB vs. IIIA vs. IIIB vs. IIIC) 1.257 (1.090–1.450) 0.002 1.255 (1.112–1.417) < 0.001
Rad-score 3.762 (2.340–6.047) < 0.001 3.390 (2.388–4.813) < 0.001

Internal validation cohort
Histology type (intestinal vs. diffuse/mixed) – – 1.502 (1.063–2.122) 0.021
Tumor location (cardia vs. body vs. antrum vs. whole) 1.611 (1.217–2.132) 0.001 1.603 (1.287–1.997) < 0.001
CEA (< 5.0 μg/ml vs. ≥ 5.0 μg/ml) – – 0.992 (0.574–1.713) 0.976
CA19-9 (< 37 U/ml vs. ≥ 37 U/ml) 2.144 (1.231–3.733) 0.007 2.503 (1.612–3.886) < 0.001
pTNM stage (IA vs. IB vs. IIA vs. IIB vs. IIIA vs. IIIB vs. IIIC) 1.131 (0.997–1.283) 0.055 1.260 (1.139–1.393) < 0.001
Rad-score 6.302 (3.579–11.096) < 0.001 4.722 (3.304–6.747) < 0.001

SYSUCC validation cohort
Sex (female vs. male) 1.299 (0.910–1.855) 0.150 1.328 (0.991–1.779) 0.057
Tumor location (cardia vs. body vs. antrum vs. whole) – – 1.047 (0.914–1.200) 0.510
Tumor size (< 4 cm vs. ≥ 4 cm) 0.783 (0.547–1.122) 0.183 0.952 (0.721–1.257) 0.727
CEA (< 5.0 μg/ml vs. ≥ 5.0 μg/ml) – – 0.972 (0.714–1.322) 0.856
CA19-9 (< 37 U/ml vs. ≥ 37 U/ml) 1.605 (1.089–2.364) 0.017 1.475 (1.096–1.985) 0.010
pTNM stage (IA vs. IB vs. IIA vs. IIB vs. IIIA vs. IIIB vs. IIIC) 1.267 (1.141–1.406) < 0.001 1.326 (1.214–1.447) < 0.001
Rad-score 4.836 (3.478–6.725) < 0.001 3.739 (2.972–4.703) < 0.001

Bold values denote significant variables.
CA19-9, carbohydrate antigen 19-9; CEA, carcinoembryonic antigen; CI, confidence interval; HR, hazard ratio; OR, odds ratio; Rad-score, based on continuous values.
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Rad-score (Fig. 6), which was confirmed when patients were
stratified by pathological stage (Fig. S9, Supplemental Digital
Content 1, http://links.lww.com/JS9/A669). Furthermore, in

multivariable analysis, the Rad-score was identified as the most

important prognostic factor for PRFS (Table 2), DFS (Table S11,

Supplemental Digital Content 1, http://links.lww.com/JS9/A669),
and OS (Table S12, Supplemental Digital Content 1, http://links.
lww.com/JS9/A669). Fine and Gray’s competing-risk regression
analysis also showed that the Rad-score remained a significant
predictor for PFRS (Table S13, Supplemental Digital Content 1,

Figure 5.Receiver operating characteristic curves to predict peritoneal recurrence in the training cohort, internal validation cohort, and SYSUCC validation cohort (A).
Decision curves to predict peritoneal recurrence in the training cohort, internal validation cohort, and SYSUCC validation cohort (B). Improvements in the performance
of the clinician to predict peritoneal recurrence with the radiomics model’s assistance. Striped bar indicates the result with the radiomics model’s assistance (C).
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http://links.lww.com/JS9/A669). In addition, the Rad-score
exhibited a consistently high accuracy for evaluating DFS and OS
at 1, 3, and 5 years, with high AUCs in the training cohort (DFS:
0.773–0.823; OS: 0.801–0.827), internal validation cohort (DFS:
0.800–0.824; OS: 0.801–0.834), and SYSUCC validation cohort
(DFS: 0.771–0.810; OS: 0.768–0.813) [Tables S14 and S15
(Supplemental Digital Content 1, http://links.lww.com/JS9/
A669), Figs S10 and S11 (Supplemental Digital Content 1, http://
links.lww.com/JS9/A669)]. Furthermore, as shown in Figure S12
(Supplemental Digital Content 1, http://links.lww.com/JS9/
A669), the median DFS (18.4 vs. 9.7 months) and OS (34.3 vs.
21.0 months) were longer in GC patients with low Rad-score,
compared to patients with high Rad-score, although the differ-
ence was not statistically significant. It may be attributed to the

small sample size and short follow-up time. Besides, in the
SMUNFH cohort 3 including prospective CT data, we found that
patients with low Rad-score also had a better prognosis
(P<0.006) (Fig. S13, Supplemental Digital Content 1, http://
links.lww.com/JS9/A669). In multivariable analysis, the Rad-
score was also identified as an independent predictor for survival
outcome (Table S16, Supplemental Digital Content 1, http://links.
lww.com/JS9/A669).

Predictive value of the radiomics signature for chemotherapy
response

We next investigated the association between Rad-score and
adjuvant chemotherapy in stage II–III patients. Firstly, patients

Figure 6. Kaplan–Meier plots for peritoneal recurrence-free survival (A), disease-free survival (B), and overall survival (C) in the training cohort, internal validation
cohort, and SYSUCC validation cohort.
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were divided into high or low Rad-score groups, as mentioned
above. After a 1:1 patient matching, clinical characteristics
of patients with or without chemotherapy in each group
were similar. We found that postoperative chemotherapy sig-
nificantly increased OS and DFS in patients with high Rad-
score in the internal validation cohort [OS:(HR: 0.540,
P= 0.002); DFS:(HR: 0.657, P= 0.039)] and SYSUCC

validation cohort [OS:(HR: 0.528, P< 0.001); DFS:(HR:
0.644, P= 0.004)] (Fig. 7). By contrast, chemotherapy had no
impact on survival for patients with low Rad-score. A formal
statistical interaction test was then performed between the
Rad-score and chemotherapy, which confirmed a significant
interaction regarding the impact on DFS and OS. We also
conducted the above analyses using all stage II–III patients

Figure 7.Chemotherapy benefits in stage II–III gastric cancer compared using disease-free survival (DFS) and overall survival (OS). Kaplan–Meier survival curves for
patients with gastric cancer in different Rad-score subgroups, which were stratified by the receipt of chemotherapy. Internal validation cohort (A) and SYSUCC
validation cohort (B). Forest plot of effect of chemotherapy versus no chemotherapy on OS and DFS among patients with stage II and stage III disease after
propensity score matching (PSM) in the internal validation cohort (C) and SYSUCC validation cohort (D). aIndicates the mean time (95% CI). CT, chemotherapy.
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without matching and obtained similar results (Fig. S14,
Supplemental Digital Content 1, http://links.lww.com/JS9/
A669). However, the predictive ability of radiomics signature
for chemotherapy response had not been observed in patients
with stage I disease (Fig. S15, Supplemental Digital Content 1,
http://links.lww.com/JS9/A669).

Discussion

In this retrospective study, we developed and validated an explain-
able CT image-based artificial intelligence model that enabled accu-
rate prediction of PR and prognosis after radical surgery in GC. This
image model could provide assistance to clinicians in the judgment
of PR. We further observed that it could identify patients who
could benefit from adjuvant chemotherapy in stage II and III GC.
Given the heterogeneous outcomes of patients with similar clinico-
pathologic characteristics, the developed image model could
guide decision-making for individualized treatment and follow-up
management of patients with GC after surgery.

PR is the most common pattern of relapse and indicates a
dismal prognosis in patients with GC after radical gas-
trectomy, which accounts for 32–54% of all GC recurrence
and has a median survival time of 4–6 months[40–42]. A long-
running controversy is present on whether local treatments
can prevent PR in patients with GC after curative-intent
surgery, including intraperitoneal chemotherapy (IPC) and
EIPL[8–17,43]. Masuda et al.[15] revealed that EIPL could pre-
vent peritoneal metastasis and improve survival in patients
with GC after potentially curative surgery. However, data
from Yang et al.[16] suggested that EIPL had no survival benefit
for patients with GC undergoing curative gastrectomy. IPC has
been reported to eliminate potential free cancer cells from the
peritoneal cavity[20]. Several studies had found that IPC could
reduce peritoneal metastases and improve the survival out-
come of patients with GC[7–14]. Whereas, not all GC patients
develop PR after surgery and a considerable number of
patients are ineligible for IPC therapy[11–13]. Additionally, IPC
is an invasive procedure that is costly and has the potential to
exacerbate postoperative complications[9–11]. Thus, the key
question is how to identify patients at a high risk of PR who
could potentially benefit from intensified treatments.

To our knowledge, this is the first study using radiomics analysis
of CT images to predict PR in patients with GC after gastrectomy.
Additionally, unlike other radiomics researches using a single
algorithm[23,24,44], our study combined SVM-RFE, LASSO, and
penalized Cox regression algorithm. This strategy could maximize
the likelihood of reserving important features[45] to generate a more
robust radiomics signature. And we provided the radiomics features
and integrated signature with explanations on how they participated
in the prediction with a unified method of SHAP. In this multicenter
study, we enrolled a cohort of nearly 2000 patients and developed an
artificial intelligence model to predict PR based on widely available
preoperative CT images. Our image model exhibited a high accuracy
in predicting PR for patients with GC after gastrectomy.
Furthermore, the diagnostic accuracy of PR with the model assis-
tancewas improved by 10.13–18.86% for clinicians with 5–15 years
of clinical experience. Therefore, this model could reassure clinicians
to select the appropriate patients for intensified treatments.

Beyond predicting PR, our radiomics signature demonstrated a
good predictive ability for DFS andOS in GC after curative-intent

surgery. This signature predicted survival outcomes indepen-
dently of clinicopathological characteristics. And the signature
could stratify patients with the same clinical characteristics into
subgroups with different survival risks. Additionally, the dis-
criminating performance was improved when the signature was
integrated into the combined model along with the clin-
icopathological factors. Further, our image model can identify
patients who can benefit from postoperative adjuvant che-
motherapy in stage II and III GC. Patients with a signature indi-
cating high risk of PR could gain significant survival benefit from
adjuvant chemotherapy, while patients with a signature indicating
low risk of PR gained no benefit. Using our image model, low-risk
patients can be protected from the side effects of adjuvant treat-
ments, and conversely, high-risk patients would receive aggressive
regimens and frequent surveillance to prevent cancer recurrences.

However, the present study still has several limitations. First,
the primary point is its retrospective nature. Although the tem-
poral sampling strategy and a cohort with prospective CT data
are adopted to mimic a prospective situation, a prospective trial is
a future requirement. Second, the model was developed and
validated using a multi-cohort, most of whom were Chinese,
necessitating validationwith other diverse populations and ethnic
groups. Third, CT images were obtained from several scanners
with varied acquisition protocols, while this could conversely
improve the possibility of reproducibility in multi-institution.

In conclusion, we developed a noninvasive artificial intelli-
gence model based on intratumoral and peritumoral features
from preoperative CT images, which exhibited a high accuracy
for predicting PR of GC after curative-intent surgery.
Furthermore, it could predict prognosis and identify patients who
can benefit from postoperative adjuvant chemotherapy.
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