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Enterobacteria impair host p53 tumor suppressor activity
through mRNA destabilization
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Increasing evidence highlights the role of bacteria in the physiopathology of cancer. However, the underlying molecular
mechanisms remains poorly understood. Several cancer-associated bacteria have been shown to produce toxins which interfere
with the host defense against tumorigenesis. Here, we show that lipopolysaccharides from Klebsiella pneumoniae and other
Enterobacteria strongly inhibit the host tumor suppressor p53 pathway through a novel mechanism of p53 regulation. We found
that lipopolysaccharides destabilize TP53 mRNA through a TLR4-NF-κB-mediated inhibition of the RNA-binding factor Wig-1.
Importantly, we show that K. pneumoniae disables two major tumor barriers, oncogene-induced DNA damage signaling and
senescence, by impairing p53 transcriptional activity upon DNA damage and oncogenic stress. Furthermore, we found an inverse
correlation between the levels of TLR4 and p53 mutation in colorectal tumors. Hence, our data suggest that the repression of p53
by Enterobacteria via TLR4 alleviates the selection pressure for p53 oncogenic mutations and shapes the genomic evolution of
cancer.
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Over the last decades, the human microbiome has emerged as an
important regulator of the physiopathology of cancer and it has
been estimated that infections could be the main driver for over
20% of cancers [1]. Recent evidence highlights the role of the
bacterial microbiota in cancer initiation, progression and response
to therapy [2]. Enrichment of specific bacterial species has been
found in cancer patients by metagenomics study, linking bacterial
dysbiosis to cancer [3, 4]. Moreover, the ability for oncogenic
bacteria to act as cancer drivers and to initiate tumorigenesis has
been demonstrated for Helicobacter pylori [5] as well as for
genotoxin-producing bacteria [6, 7]. Several other bacterial species
have also been experimentally associated to increased cancer risk,
such as Fusobacterium nucleatum [8]. Overall, the essential role of
the bacterial microbiota in cancer is now well established.
However, despite recent advances, the underlying molecular
mechanisms by which our microbiota influences cancer remain
elusive.
Bacteria produce multiple toxins, metabolites and pro-

inflammatory molecules which directly or indirectly target host
signaling pathways involved in all the cancer hallmarks and
thereby interfere with the host defense against tumorigenesis,
such as the p53 pathway. The tumor suppressor p53, encoded by
the TP53 gene, is a transcription factor which acts as a cell
signaling hub to integrate various cell stresses into an appropriate
cell response [9]. Upon stress, phosphorylation events lead to the
dissociation of p53 from its ubiquitin-ligase MDM2, preventing its
degradation by the proteasome and leading to its accumulation in
the nucleus. p53 controls transcription programs regulating

multiple cell functions including apoptosis, cell cycle arrest and
DNA damage response, and acts as the main barrier against
tumorigenesis. Additionally, p53 has been long known to be
involved in host defense against viral infection, due to its role in
the DNA damage response, and hence it is specifically targeted by
oncogenic viruses [10, 11]. Interestingly, known oncogenic
bacteria such as H. pylori [12–14], Chlamydia trachomatis [15]
and several Mycoplasma species [16] also interfere with the p53
pathway. Altogether, these studies suggest that p53 inactivation
could be a more general hallmark of microbes with tumorigenic
potential.
Klebsiella pneumoniae is an opportunistic pathogen of the

digestive and upper respiratory tract. Metagenomics and clinical
epidemiologic data suggest that K. pneumoniae could play a role
in cancer initiation and progression. K. pneumoniae has been
shown to be enriched in the gut of colorectal cancer patients
(CRC) [17]. Moreover, hypervirulent strains of K. pneumoniae,
which cause pyogenic liver abscesses, have been associated with
increased risk of CRC [18, 19]. Interestingly, several hypervirulent K.
pneumoniae strains harbor the pks locus encoding for the
genotoxin colibactin which could be involved in K. pneumoniae
tumorigenic potential [20]. However, the mechanisms that link K.
pneumoniae and cancers are still poorly understood. In this study,
we investigate the impact of K. pneumoniae on the host p53
pathway. We find that lipopolysaccharide (LPS) from K. pneumo-
niae and other Enterobacteria inhibits p53 through the TLR4-NF-
κB pathway, and we uncover a novel mechanism of p53 regulation
whereby p53 inhibition occurs at the mRNA level.
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RESULTS
Klebsiella pneumoniae inhibits p53
To investigate the effect of K. pneumoniae on the host p53
pathway, we infected human immortalized fibroblasts (BJ
hTERT) with live bacteria. We observed a robust downregulation
of p53 protein level, concomitant with the activation of NF-κB,
as demonstrated by Ser536 phosphorylation of the NF-κB
subunit p65 (RelA) (Fig. 1a). Interestingly, p53 downregulation
was bacteria-cell contact independent and was recapitulated
when treating the cells with supernatant from K. pneumoniae
culture (KpSN), independently of the K. pneumoniae strains used

(Fig. 1b and Supplementary Fig. S1a-b). Pathway analysis of
gene expression changes in human fibroblasts exposed to KpSN,
measured by RNA-seq, highlighted a robust activation of the
canonical immune and inflammatory pathways involved in
the host response to bacteria, as expected (Fig. 1c-d). Notably,
the analysis of genes downregulated upon KpSN revealed a
significant inhibition of the p53 signaling pathway and
DNA damage response (Fig. 1d). These data suggest that
K. pneumoniae-mediated p53 protein decline is sufficient to
impair the biological function of p53.
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Fig. 1 Klebsiella pneumoniae inhibits p53. a NF-κB activation (followed by p65 phosphorylation) and p53 protein level in BJ hTert cells upon
infection by the K. pneumoniae (Kp) strain MGH78758 at different m.o.i. b Western blot of BJ hTert cells upon exposure to supernatant from K.
pneumoniae culture (KpSN), from different K. pneumoniae strains. c RNA-seq data of BJ hTert cells exposed to KpSN, highlighting top15
upregulated (orange) and downregulated genes (blue). d GO pathway enrichment analysis of the top up- and downregulated genes upon
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Fig. 2 Klebsiella pneumoniae impairs p53 response to DNA damage. a Western blot of BJ hTert cells treated with the DNA-damaging agent
doxorubicin (Dox) and with KpSN. b High confidence set of p53 target genes obtained by intersecting the core p53 target gene set define by
Fisher et al. with genes upregulated by doxorubicin and downregulated upon p53 knock-down in our RNA-seq data from BJ hTert cells. c RNA-
seq data of high-confidence p53 target genes expression upon doxorubicin and KpSN. d Expression change of selected well-characterized p53
target genes in RNA-seq data of BJ hTert cells exposed to KpSN. e RT-qPCR validation of selected p53 target genes in BJ hTert cells upon
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Klebsiella pneumoniae impairs the p53 response to DNA
damage and oncogenic stress
To confirm that K. pneumoniae-induced downregulation of p53
impacts its transcriptional activity, we investigated the effect of
KpSN on p53 level and activity upon doxorubicin-induced DNA
damage, which is well known to stabilize p53 and activate its
target genes. First, we confirmed that upon DNA damage, the
stabilization of p53 is impaired in KpSN treated cells (Fig. 2a). Then,
we investigated how it affects p53-dependent transcription. The
set of genes regulated by p53 is highly dependent on the cell
context [21]. Therefore, we defined a gene set of 161 high
confidence p53 targets in our model. We intersected genes
upregulated upon DNA damage in a p53-dependent manner in
BJ-hTERT fibroblasts (which were not induced by doxorubicin
upon p53 shRNA according to our RNA-seq data) with the p53
core targets gene set defined by Fisher et al. [22] (Fig. 2b). Then,
we compared how KpSN affected doxorubicin-induced activation
of our gene set of 161 high confidence p53 targets. Our analysis
revealed an overall inhibition of p53 targets by KpSN upon DNA
damage (Fig. 2c). Using RT-qPCR, we investigated the expression
of well characterized p53 target genes PMAIP1 (NOXA), CDKN1A
(p21), TP53I3 (PIG3), SESN1, as well as ZMAT3 (Wig-1) and TP53INP1
which have been recently highlighted as major effectors of p53-
mediated tumor suppression [23, 24] (Fig. 2d-e). Interestingly, both

PMAIP1 and CDKN1A were upregulated by KpSN in a p53-
independent manner. However, KpSN partially prevented a robust
p53-mediated induction of CDKN1A upon doxorubicin and
strongly impaired the induction of TP53I3, SESN1 and TP53INP1.
Notably, while we observed a diminished ZMAT3 induction upon
DNA damage, ZMAT3 was repressed by KpSN in a p53-
independent manner (Fig. 2e). We then confirmed the KpSN-
induced impairment of the p53 response to DNA damage at
protein level (Fig. 2f).
To investigate the biological consequences of K. pneumoniae-

induced inhibition of p53, we used BJ fibroblasts with an inducible
oncogenic Ras system (BJ hTert HRasV12ER-Tam) as a model of
oncogenic stress. In these cells, activation of oncogenic Hras by
4-hydroxytamoxifen (4-OHT) induces a strong p53- and p21-
dependent senescence [25]. We monitored senescence by
increase in β-galactosidase activity (Fig. 3a-b) and by cell
replication arrest revealed by EdU incorporation assay (Fig. 3c-d).
We found that KpSN impairs p53-dependent induction of
senescence upon oncogene activation, as well as prevents
accumulation of p53 and p21 (Fig. 3e).
Overall, our data show that secreted factors from K. pneumoniae

downregulate p53 protein level upon DNA damage and onco-
genic stress, which impairs its transcriptional activity and its tumor
suppressive function.
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Klebsiella pneumoniae lipopolysaccharide (LPS) is sufficient to
inhibit p53
We then investigated which K. pneumoniae secreted factor is
responsible for host p53 downregulation. We performed a
molecular weight fractionation of KpSN and heat treatment (Fig.
4a). The effect on p53 was recapitulated by the heat-resistant
fraction of high molecular weight (>100 kDa). This fraction
contains bacterial outer membrane vesicles (OMVs) associated

with LPS, suggesting that LPS could be the signal for p53
downregulation. Indeed, purified LPS from K. pneumoniae induced
a robust downregulation of p53 protein in immortalized
fibroblasts in a dose-dependent manner (Fig. 4b). We confirmed
this effect in primary human fibroblasts, M1 and M2 monocytes-
derived macrophages, and melanoma cell line A375 (Supplemen-
tary Fig. S2a). Moreover, addition of polymyxin B to the culture
medium, known to block the effects of LPS through binding to
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indicate different blood donors. g Luciferase reporter assay using TP53 promoter-Luc construct transfected in BJ hTert cells. Transfection rate
was normalized by co-transfection of Renilla luciferase vector. Endogenous TP53 mRNA level was measured in the same samples. h Luciferase
reporter assay using a construct expressing the luciferase flanked by p53 UTRs, transfected in BJ hTert cells. Transfection rate was normalized
by co-transfection of Renilla luciferase vector. Endogenous TP53mRNA level was measured in the same samples. i Upper panel: structure of the
TP53 gene with the two alternative promoters P1 and P2. Lower panel: mRNA level of P1 and P2 p53 isoforms in BJ hTert cells upon treatment
with KpSN or 100 ng/mL LPS (8 h). *p < 0.05; ***p < 0.01; NS non-significant.
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lipid A, completely rescued the downregulation of host p53 (Fig.
4c). To confirm the involvement of lipid A, we generated a K.
pneumoniae deletion mutant for the lpxM gene, which encodes a
myristoyl transferase that catalyzes the final step of lipid A
biosynthesis (Supplementary Fig. S2b). Deletion of lpxM did not
affect bacterial growth nor the amount of LPS secreted
(Supplementary Fig. S2c, d). However, K. pneumoniae ΔlpxM was
unable to affect p53 protein level in host cells, neither upon direct
infection nor upon treatment with bacterial supernatant, while the
complemented strain restored the downregulation (Fig. 4d).
Altogether, these results demonstrate that K. pneumoniae inhibits
p53 through the lipid A of its LPS.
To further examine which host pathway is involved, we

performed similar experiments while inhibiting the classical LPS
signaling pathway, including its receptor TLR4 or the major cellular
mediator NF-κB. Both TLR4 inhibitor and Tet-inducible knockdown
of the NF-κB subunit p65 completely rescued the inhibition of host
p53 (Fig. 4e, f). As the TLR4-NF-κB axis is a canonical signal
transduction pathway activated by LPS from most Gram-negative
bacteria, we investigated if the effect on p53 is shared with other
bacterial species (Fig. 4g and Supplementary Fig. S2e). Indeed,
culture supernatants from other Enterobacteria (Salmonella
typhimurium, Shigella flexneri, Escherichia coli) also strongly
repressed p53. In contrast, p53 was activated by Gram-positive
Streptococcus pneumoniae. Importantly, we did not observe p53
repression by LPS from commensal Gram-negative Bacteroides
fragilis, which is known to have a penta-acetylated lipid A
structure acting as TLR4 antagonist [26]. However, p65 was
phosphorylated to a similar extent, suggesting that besides the
canonical NF-κB pathway, other transduction pathways are
involved in p53 repression.
Next, we explored if the inhibition of p53 by LPS/TLR4 could

play a role in tumor initiation or progression, using data from
cancer patients deposited in the Cancer Genome Atlas (TCGA). We
hypothesized that inhibition of p53 by bacterial signaling could
alleviate the selection pressure for p53 mutation in TLR4
expressing tumors. Hence, we investigated the relationship
between the TLR4 expression level and the p53 mutation rate in
early-stage colorectal adenocarcinoma (grade I-II). We observed a
robust correlation (p < 0.0001) between TLR4 mRNA level and
absence of a p53 mutation in the tumors (Fig. 4h). Moreover,
comparison between tumors with high TLR4 (Z-score > 0.75) and
low TLR4 (Z-score <−0.75) revealed a striking inversion of the p53
mutation rate (Fig. 4i). While these data could be explained by a
transcriptional control of TLR4 by wild-type p53, as previously
suggested by Menendez et al. [27], we did not observe the same
correlation in other tumor contexts known to have no or low
bacterial load (such as breast and liver cancers) or with a lower
abundance of Gram-negative bacteria (such as lung cancer) [28]
(Supplementary Fig. S3a, b). These data suggest that activation of
the TLR4-NF-κB by LPS from the microbiota could contribute to
tumorigenesis by restricting p53 tumor suppressive function and
shed a new light on the known pro-tumorigenic effect of LPS [29].

p53 inhibition occurs at the mRNA level
p53 has been extensively described to be regulated solely at the
protein level, through modification of its stability, conformation
and/or protein interactions [9]. To ensure a fast response to stress,
p53 is constantly produced and targeted to proteasomal
degradation through MDM2-dependent polyubiquitination. Sev-
eral bacterial toxins have been described to enhance p53
degradation through AKT-mediated activation of MDM2 [30].
Calpain-cleavage of p53 by bacteria has also been reported [31].
Surprisingly, we found that downregulation of p53 by KpSN did
not involve enhanced proteasomal degradation. While p53 was
indeed stabilized upon proteasome inhibition by MG132 or MDM2
inhibition by Nutlin, we did not observe any prevention of the p53
decline induced by KpSN or by K. pneumoniae direct infections

(Fig. 5a-b). Similarly, doxorubicin-induced DNA damage (which
leads to disruption of the p53-MDM2 complex and
p53 stabilization) did not rescue KpSN-induced p53 downregula-
tion (Fig. 2a). Inhibition of AKT or calpain also both failed to rescue
p53 protein level (Supplementary Fig. S4a). Moreover, analysis of
p53 protein stability by cycloheximide chase assay did not reveal
any significant change in p53 stability when cells were exposed to
KpSN or LPS (Fig. 5c).
Since our data showed that p53 protein stability was not

affected, we investigated the TP53 mRNA by RT-qPCR and found
that KpSN strongly decreased TP53 mRNA level in human
immortalized fibroblasts (BJ hTert) (Fig. 5d-e), normal primary
fibroblasts (HNF) and in A375 melanoma cells (Supplementary Fig.
S4b-c). This effect was recapitulated in a dose-dependent manner
upon treatment of cells with K. pneumoniae LPS (Fig. 5e and
Supplementary Fig. S4d). We also observed the repression of TP53
mRNA level in M1 and M2 monocytes-derived macrophages upon
treatment with KpSN or LPS (Fig. 5f and Supplementary Fig. S4e).
Finally, inhibition of TLR4 or deletion of K. pneumoniae lpxM
prevented TP53 mRNA downregulation (Supplementary Fig. S4f, g).
TP53 gene transcription has previously been described to be

repressed by phosphorylated STAT3 upon LPS [32]. However, we
did not observe a rescue of TP53 mRNA in STAT3-depleted cells
(Supplementary Fig. S4h-i). Taken together, our results suggest a
novel mechanism of p53 regulation by LPS-TLR4-NF-κB through
STAT3-independent regulation of TP53 mRNA.
To identify the mechanism of TP53 mRNA inhibition by K.

pneumoniae, we tested whether TP53 mRNA expression was
affected at the promoter level or post-transcriptionally through
TP53 mRNA UTRs. We performed dual luciferase reporter assays
using a construct where the luciferase expression is under the
control of the TP53 promoter (TP53 promoter-Luc) and another
construct constitutively expressing the luciferase mRNA flanked by
TP53 untranslated regions (Luc-TP53 UTRs). Inhibition of endo-
genous TP53 was controlled in the same sample by RT-qPCR. We
did not observe any change in luciferase expression of TP53
promoter-Luc upon treatment with KpSN or LPS (Fig. 5g),
suggesting that the promoter activity of TP53 is not affected.
However, both KpSN and LPS induced a robust decrease in
luciferase from the Luc TP53 UTRs plasmid (Fig. 5h), indicating that
KpSN and LPS might regulate TP53 mRNA stability through its
UTRs. To find out which UTR was involved, we investigated the
regulation of different p53 isoforms (Fig. 5i). TP53 gene encodes
two families of p53 isoforms through an alternative promoter P2
located in intron 4, which regulates the expression of short
isoforms (Δ133 and Δ160 p53 isoforms), while the full length
isoforms are regulated by its main promoter P1 [33]. P1 and P2
isoforms share their 3ʹ-UTR but have different 5ʹ-UTR sequence
and different promoter regulation. Using RT-qPCR with isoform-
specific primers, we found that both isoform families are similarly
repressed by KpSN and LPS, suggesting a regulation of the TP53 3ʹ-
UTR (Fig. 5i).

LPS-induced downregulation of ZMAT3 destabilizes TP53
mRNA
We then investigated the expression of genes known to regulate
TP53 mRNA by binding its 3ʹUTR (Fig. 6a) [34]. Interestingly, we
observed that several genes encoding factors stabilizing TP53
mRNA (such as ZMAT3 or CPEB1) [35, 36] were repressed upon
exposure to KpSN, while factors known to inhibit its translation
(such as Tia1) [37] where activated. Strikingly, ZMAT3, which
encodes the RNA binding protein Wig-1, was one of the top
repressed genes in our RNA-seq data (Fig. 1c). Wig-1 has been
shown to bind to an A/U-rich element (ARE) on TP53 3ʹUTR to
stabilize TP53 mRNA [35]. Moreover, ZMAT3 forms a regulatory
feedback loop with p53 since it is a p53 target gene crucial for p53
tumor suppression [23, 24]. As we already showed that ZMAT3
repression upon KpSN is p53 independent (Fig. 2e), we tested if
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Wig-1 was inhibited at earlier time points (8 h) than other p53
target genes. We observed the downregulation of both isoforms
of Wig-1 at the same time frame as TP53 mRNA but before other
p53 targets such as PIG3 (Fig. 6b and Fig. 2f). Moreover, Wig-1 was
repressed at mRNA and protein level in M1 and M2 monocytes-
derived macrophages (Fig. 6c, d and Supplementary Fig. S5a-b).
Analysis of RNA-seq data from PBMC-derived macrophages from
60 different blood donors infected by Salmonella thyphimurium
[38] confirmed the robust inhibition of both TP53 and ZMAT3 upon
direct infection of macrophages by another Enterobacterial
species (Fig. 6e).
To confirm the role of Wig-1 in p53 downregulation, we validated

the binding of Wig-1 to TP53 mRNA by RIP-qPCR in our model (Fig.
6f). Then, we established fibroblasts stably overexpressing wild type
Wig-1 (BJ hTert pLV Wig-1) or a zinc-finger mutant unable to bind
TP53 mRNA [35] (BJ hTert pLV Wig-1*H88A). Overexpression of wt
Wig-1, but not of the H88A mutant, partially rescued both TP53
mRNA and p53 protein levels (Fig. 6g-h), demonstrating that
repression of ZMAT3 gene by KpSN participates in the destabilization
of TP53 mRNA. Finally, ZMAT3 repression also affected the stability of
several others mRNA, previously described to be either stabilized
(such as EIF4B and RRM1) [39] or destabilized by Wig-1 (such as FAS)
[40], suggesting a broader effect than p53 inhibition (Supplementary
Fig. S5c, d). We then investigated the mechanism of ZMAT3
repression. We found that knock-down of p65 rescued Wig-1
downregulation, confirming the NF-κB involvement in ZMAT3
repression by KpSN (Fig. 7a). LPS-induced repression of genes
through NF-κB has been recently shown to be regulated by histone
deacetylases (HDACs) [41]. Using two different pan-HDACs inhibitors,
vorinostat and belinostat, we could rescue the downregulation of
ZMAT3 mRNA upon KpSN as well as Wig-1 and p53 proteins (Fig. 7b,
c), confirming HDACs-dependent repression of ZMAT3. Altogether,
our results demonstrate that activation of the TLR4-NF-κB pathway
by bacterial LPS leads to destabilization of TP53 mRNA through its 3′
UTR, mediated by inhibition of RNA-stabilizing factors such as Wig-1.

In conclusion, our data reveal a novel mechanism of p53
inhibition during the cell response to K. pneumoniae and other
Enterobacteria, through NF-κB-dependent destabilization of TP53
mRNA, p53 protein downregulation and impairment of its
transcriptional activity and tumor suppressive function.

DISCUSSION
In this study, we discovered that K. pneumoniae strongly inhibit
p53 and prevent its anti-tumorigenic functions. Interestingly, we
found that K. pneumoniae LPS was sufficient to inhibit p53.
Moreover, our data point out to a more general mechanism of
TP53 mRNA repression by TLR4 agonist LPS from Enterobacteria,
which elicits the canonical LPS-TLR4-NF-κB pathway. Our results
shed a new perspective on published data about p53 response to
bacteria, where inhibition of p53 downstream of microbe-
associated molecular patterns (MAMPs) and pattern recognition
receptors (PRRs) signaling has not been investigated [15, 42].
The mechanisms controlling p53 protein stability have been

extensively characterized and accepted as the major level of p53
regulation [43]. Only few studies addressed the regulation of TP53
mRNA during the host response to stress [44–46]. Our findings
reveal that TP53 mRNA serves as an important regulatory platform
to turn off p53 activity upon infection and NF-κB activation. The
NF-κB and p53 pathways have long been known to be tightly
intertwined and to antagonize each other at multiple levels
[47, 48]. p53 activation impairs NF-κB function, including in
response to LPS [49, 50], and conversely, loss of p53 increases NF-
κB activity [51]. Therefore, p53 inhibition in innate immune cells
and fibroblasts exposed to MAMPs could be crucial to ensure a
proper NF-κB-dependent inflammation and innate immune
response. Supporting this hypothesis, p53 KO mice infected by
K. pneumoniae display an enhanced bacterial clearance by
neutrophils and macrophages [52]. Additionally, post-
transcriptional mRNA processing have recently emerged as a

b

c

Re
la

�v
e 

ZM
AT

3
m

RN
A

le
ve

l(
FC

)

1.0

0.6

0.0

0.2

0.4

0.8

1.2

1.4

KpSN - + - + - +
Vorinostat

(5μM)
Belinostat

(1μM)

NSNS
*

pS536-p65

p53

β-ac�n

KpSN - + - +

Wig-1

HDAC inhibitor - - + +
- + - +
- - + +

- 70
kDa

- 55

- 40

- 35

Vorinostat (5 μM) Belinostat (1 μM)

1.0

0.6

0.0

0.2

0.4

0.8

1.4

Re
la

�v
e 

p5
3 

pr
ot

ei
n

le
ve

l
(n

or
m

al
ize

d
to

 β
-a

c�
n)

KpSN - + - + - +
Vor. Bel. 

1.2 NS

NS

***
1.0

0.6

0.0

0.2

0.4

0.8

1.4

Re
la

�v
e 

W
ig

-1
 p

ro
te

in
le

ve
l

(n
or

m
al

ize
d

to
 β

-a
c�

n)

KpSN - + - + - +
Vor. Bel. 

1.2
NS

NS
***

a

pS536-p65

Wig-1

β-ac�n

- 70
kDa

- 40

- 35

-KpSN + - +

BJ hTERT shp65 Tet-on
-Doxycycline - + +

Re
la

�v
e 

W
ig

-1
 p

ro
te

in
le

ve
l

(n
or

m
al

ize
d

to
 β

-a
c�

n)

1.0

0.6

0.0
0.2
0.4

0.8

1.2 *

***
NS

-KpSN + - +
shp65 ON

Fig. 7 LPS-induced downregulation of ZMAT3 is NF-κB and HDAC-dependent. a NF-κB dependency of Wig-1 downregulation upon KpSN
assessed by Western blot using Tet-inducible p65 knock-down BJ hTert cells. p65 shRNA was induced by doxycycline for 48 h before the
experiment. Right panel: densitometric quantification of Wig-1 Western blots bands normalized to β-actin level. b RT-qpCR for KpSN-induced
differential expression of ZMAT3 in BJ hTert cells upon HDAC inhibition by pan-HDAC inhibitors vorinostat and belinostat. c Left panel:
Western blot of BJ hTert cells exposed to KpSN upon HDAC inhibition. Right panels: densitometric quantification of p53 and Wig-1 Western
blot bands normalized to β-actin level. *p < 0.05; ***p < 0.01; NS non-significant.

M.-S. Aschtgen et al.

2181

Oncogene (2022) 41:2173 – 2186



key level of regulation to coordinate the switch from immune cell
proliferation to activation during innate immune response [38].
Our finding that RNA binding factors such as Wig-1 are among the
top differentially expressed genes is consistent with this idea.
Importantly, Wig-1 forms a positive feedback loop with p53 and it
is an important p53 target gene [23, 24]. Thus, our data suggest
that TP53 mRNA destabilization and Wig-1 downregulation
cooperate during acute inflammation to robustly activate NF-κB
to fight bacterial infection, simultaneously weakening tumor
barrier (Fig. 8).
Importantly, CRC patients have elevated circulating LPS and

systemic inflammation [53]. Moreover, CRC-associated dysbiosis is
usually enriched in Gram-negative bacteria [54], which suggests
that LPS secretion is an important factor linking bacterial dysbiosis
and tumorigenesis. We found that commensal bacteria expressing
a TLR4 antagonist LPS, such as B. fragilis, do not downregulate
p53, which could contribute to their protective role in colitis-
associated colorectal cancer [55]. In addition, colonization of the
gut by Enterococcus faecalis, a Gram-positive bacterium, induces
inflammatory response and colitis similarly to Enterobacteria
colonization but does not induce tumorigenesis [56]. Altogether, it
suggests that activation of the TLR4-mediated signaling by LPS
plays a critical role in promoting cancer not only by inducing
inflammation but also by inhibiting p53.
Chronic inflammation linked to bacterial dysbiosis could cause

persistent impairment of p53 tumor suppressor function in innate
immune cells, which might create a cellular context favorable for
oncogenesis. Supporting this idea, mouse models with genetic
inactivation of p53 specifically in myeloid cells are more prone to
tumorigenesis [57]. Additionally, inactivation of p53 in the tumor
microenvironment have profound consequences on the tumor cells
themselves in a non-cell autonomous fashion [58, 59]. As tumor
progression is associated with disruption of the epithelial layer and
invasion of the tumor by bacteria, MAMPs signaling and down-
stream inhibition of p53 in cancer-associated fibroblasts and tumor-
associated macrophages could fuel tumor development. Accord-
ingly, several studies have shown that LPS activation of TLR4
accelerates tumor growth [29, 60]. Interestingly, our analysis of
cancer patient data demonstrated an inverse correlation between
TLR4 expression and p53 mutation rate in CRC. Our results support

the idea that TLR4 activation disables p53 function in the absence
of mutation. Moreover, it suggests that the cancer-associated
bacterial microbiota exerts a selection pressure on cancer cells and
drives tumor evolution. In line with this hypothesis, recent
metagenomics analysis of lung cancer microbiota have shown
significant differences in bacterial populations associated with p53
wild-type versus p53-mutant tumors [61]. Further analyses of
metagenomics data from cancer patients in connection with tumor
genome profiling are required to understand the connection
between the microbiota and host genomic alterations.

METHODS
Bacterial strains
All bacterial strains used in this study are listed in Supplementary Table S1.
K. pneumoniae SHG4 and SGH10 strains were a gift from Y.-H. Gan [62, 63],
IA565 strain was a gift from G. Huffnagle [64]. Enterobacteria were grown
either in DMEM 10% FBS, Luria Broth or low salt Luria Broth at 37 °C.
S. pneumoniae was grown on agar blood plates at 37 °C with 5% CO2.

B. fragilis was grown on agar blood plates at 37 °C under anaerobic
conditions. When stated, 100 μg/mL gentamycin, 50 μg/mL hygromycin,
50 μg/mL apramycin was added to the culture.
K. pneumoniae lpxM deletion mutant (ΔlpxM) was constructed using a

previously established allelic exchange method with a few modifications
[65]. Briefly, the apramycin resistance cassette with extensions homologous
to regions adjacent to lpxM was generated by PCR using the pIJ773 plasmid
[65] as a template (primers: forward 5′-CTACACTATCCCATTATCTTGATTAA
GCAGTCGATCTGCGGATTGGGCATGATTCCGGGATCGTCGACC-3′; reverse 5′-
CGAGTAAGCACGGTAGAGATAAAAAAGCCTCCTGACGGAGGCTTTTTTTATGT
AGGCTGGAGCTGCTTC-3′). The PCR product was then electroporated into K.
pneumoniae cells carrying the pSIM18 plasmid [66]. Replacement of the
gene by the apramycin resistance cassette flanked by two Flp recombinase
target sequences was confirmed by PCR. The resulting strain was then
transformed with the pFLP-hyg plasmid (Addgene #87831; [65]) and
incubated for 24 h at 30 °C, allowing excision of the cassette by the Flp
recombinase. Plasmid pFLP-hyg was then eliminated at 42 °C, and the
cassette excision was verified by sequencing. The pBAD33-gent plasmid
producing lpxM was constructed by standard restriction/ligation cloning by
inserting an XbaI-lpxM-HindIII fragment (obtained by PCR using the
primers: forward 5′-GATCCTCTAGAGGATTGGGCATGGAAACGAAAAAAAA
T-3′; reverse 5′-GATCCAAGCTTTTATTTCTTTTTCGTGAACAGCTCTTTGCG-3ʹ)
into the XbaI-HindIII digested pBAD33-gent plasmid (Addgene #65098;
[67]).
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Fig. 8 Schematic representation of p53 inhibition by LPS. Upon oncogenic or genotoxic stress (left panel), p53 is stabilized, and induces
ZMAT3/Wig-1 expression. In turn, Wig-1 stabilizes TP53 mRNA, leading to a robust p53 accumulation, p53 activity and tumor suppression.
Upon LPS signaling (right panel), activation of the canonical TLR4-NF-κB pathway inhibits ZMAT3 transcription via HDACs, preventing TP53
mRNA stabilization and ultimately impairing p53 tumor suppressive function. Additionally, p53 is unable to inhibit NF-κB, allowing a robust
inflammatory response.
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Human cell lines and primary cells
Human immortalized fibroblasts BJ hTert, BJ hTert shp53, BJ hTert
HRasV12ER-Tam and BJ hTert HRasV12ER-Tam shp53 cells were obtained
from R. Agami [68]. Human melanoma cell line A375 was from ATCC.
Primary human normal fibroblasts (HNF) from dermal biopsies were
obtained from A. Falk (Karolinska Institute). Cell authentication was
performed by STR profiling analysis at Eurofin Genomics. Mycoplasma
contamination was tested monthly using MycoAlert Mycoplasma Detec-
tion Kit (Lonza) according to the manufacturer’s instructions. All
experiments were performed within 10 passages from frozen stocks.
BJ hTert cells with stable STAT3 knock-down (BJ hTert shSTAT3), inducible

p65 knock-down (BJ hTert shp65TET-ON) or ZMAT3 overexpression (BJ hTert
pLV Wig-1; BJ hTert pLV Wig-1*H88A; BJ hTert pLV Wig-1-Flag) were generated
by lentiviral transduction and selected 48 h with 2 μg/mL puromycine. Wig-1-
overexpressing lentiviral vector (pLV Wig-1) was purchased from VectorBuilder.
Site-directed substitution of Wig-1 Histidine 88 to Alanine and Flag tag
insertion were introduced by quick change mutagenesis using pLV Wig-1 as
matrix, using the following pairs of mutagenic primers: forward 5ʹ-gcccagg
ctgcttatcagggtaaaaatcatggtaagaaactccgaaattac-3ʹ and reverse 5ʹ- ccctgataag
cagcctgggcttgctgtgcagagttcaaggtgacattgc-3 for H88A mutation; forward 5ʹ-ga
gatggagaatctgggatatgtaGATTATAAAGATGATGATGATAAAtagacccagctttcttgtac
aaagtg-3ʹ and reverse 5ʹ- gctgggtctaTTTATCATCATCATCTTTATAATCtacatatc
ccagattctccatctcattcctgtaccgctgt-3ʹ for Flag insertion. STAT3 shRNA lentiviral
vector (pGIPZ shSTAT3), Tet-inducible p65 shRNA lentiviral vectors (pTRIPZ
shp65TET-ON) and their respective control vectors were purchased from
Dharmacon. shRNA are detailed in Supplementary Table S2.
HRasV12 was induced in BJ-hTert HRasV12ER-Tam cells by adding 200 nM

of 4-hydroxytamoxifen (4-OHT) (Sigma-Aldrich) to the culture medium.
shRNA-mediated knock-down of p65 in BJ hTert shp65TET-ON cells was
induced by 3 μg/mL of doxycycline (Sigma-Aldrich) for 48 h.
For experiments on PBMC-derived macrophages, monocytes were

isolated from anonymous buffy coats of healthy blood donors (Karolinska
University Hospital) using Ficoll gradient and centrifugation. Briefly, blood
was diluted in PBS and layered on to Ficoll-Paque (GE Healthcare) and
centrifuged at 1,200 rpm for 20min. The interface layer containing the
monocytes was collected and monocytes were further washed twice in
PBS. Monocytes were then incubated 2 h for adhesion and unattached
cells were washed with PBS. For differentiation into M1 and M2
macrophages, monocytes were cultured in RPMI 1640, 2 mM I-glutamine,
10% FBS, streptomycin/penicillin (Sigma-Aldrich) supplemented with
increasing concentration of Granulocyte-Macrophage Colony-Stimulating
(Sigma; up to 400 ng/ml) or Macrophage Colony-Stimulating Factor human
(Sigma-Aldrich; up to 40 ng/ml) for 7 days.

Transient infections of BJ hTert cells and bacteria cell free
supernatant preparation
For transient bacterial infections, overnight DMEM cultures of K. pneumoniae
were diluted in fresh medium (DMEM, 10% FBS) and 2.105 BJ hTert cells
seeded in 6-wells plate were infected with a multiplicity of infection (m.o.i.) of
0.1 to 10 as indicated. After 2 h, cells were washed 3–6 times and incubated in
cell culture medium with 200 µg/mL gentamicin for an extra 6 h.
To prepare bacteria cell free supernatant, Enterobacteria strains were

cultivated in DMEM 10% FBS at 37 °C until OD reaches 2. S. pneumoniae and B.
fragilis were grown on Blood agar plate overnight at 37 °C and respectively
incubated with 5% Co2 or under anaerobic conditions. Supernatant was
obtained by centrifugation at 4000 rpm for 15min. The supernatant fraction
was then passed through a 0.22 µm pore size filter (Millipore). Supernatant
fractionation was done using concentrators with 3 kDa and 100 kDa cut-off
(Pierce). Heat treatment was performed at 75 °C for 15min.

Cell treatments
Unless stated otherwise, KpSN and other bacterial supernatants were used
to supplement culture medium to a final concentration of 10% v/v for 8 h
(for RT-qPCR) or 10 h (for Western blots). Purified K. pneumoniae LPS
(Sigma-Aldrich) was used at 100 ng/mL for the same duration. Doxorubicin
(Sigma-Aldrich) was used at 0.2 μM. For treatments with TAK242, Nutlin,
MG132, AKT1/2 kinase inhibitor, calpain inhibitor III, vorinostat (Sigma-
Aldrich) and belinostat (VWR), cells were pretreated 2 h with the inhibitor
before co-treatment with KpSN or LPS. For treatment with polymyxin B,
medium containing KpSN or LPS was incubated 24 h at 37 °C with 30 μg/
mL polymixin B sulfate (Sigma-Aldrich) before addition to the cells. For
cycloheximide chase assay, cells were pre-treated 4 h with KpSN or LPS,
and then treated with 10 μM cycloheximide (Sigma-Aldrich) for the
indicated time.

RT-qPCR
Total RNA extraction and cDNA synthesis were performed using Aurum
total RNA and iScript cDNA synthesis kits (Bio-Rad) according to supplier
instructions. Relative mRNA levels were measured by RT-qPCR using
SsoAdvanced Universal SYBRGreen SuperMix (Bio-Rad). GAPDH and RPL13A
were used as housekeeping genes. Error bars represent standard deviation
from mean of at least three independent experiments. The sequences of
RT-qPCR primers used are detailed in Supplementary Table S2.

Western blots
For detection of human proteins, cells were harvested, washed, and lysed in
ice cold RIPA buffer (150mM NaCl; 5 mM Tris pH 8.0; 1% Triton X-100; 0.5%
sodium deoxycholate; 0.1% SDS) supplemented with cOmplete protease
inhibitor cocktail (Roche) and PhosSTOP phosphatase inhibitors (Roche).
Endogenous proteins were detected by standard Western blot using the
following antibodies: IκBα (#9242, Cell Signaling); p21 (#610233, BD
Transduction); p53 (sc-126, Santa Cruz Biotechnology); p65, phospho-S536
(#3033, Cell Signaling); p65, total (#8242, Cell Signaling); PIG3 (sc-166664,
Santa Cruz Biotechnology); Wig-1 (FJ1, raised against a C-terminal Wig-1
peptide, a kind gift from K. Wiman [69]). β-actin (clone C-4, Merk Millipore)
was used as loading control. Densitometric quantifications of the bands
were performed using ImageJ software and normalized to β-actin level.
For detection of K. pneumoniae lpxM, a polyclonal anti-lpxM antiserum

was produced by immunizing rabbits with a synthetic peptide, GEIEPYKR-
KELFTKKK (Singapore Advanced Biologics).

LPS quantification
Cell-free supernatants preparations were serially diluted in pyrogen-free
water, and reactogenic LPS was detected using the Pierce LAL
chromogenic endotoxin quantification kit (LifeTechnologies), according
to the manufacturer’s instructions but halving the suggested volumes.
Reactogenic LPS units for each sample were normalized to the OD600 of
the culture. All data are presented as the mean and standard error of the
mean (SEM) for at least three sets of biological replicates.

Luciferase reporter assays
TP53 promoter-Luc plasmid (pGL2-356bp; Addgene #16292) was a gift from
W. El-Deiry [70]. Luc-TP53 UTRs plasmid (145-pGL3ctrl-3ʹ UTR; Addgene
#16292) was a gift from M. Kastan [45]. Each construct was co-transfected
with a Renilla luciferase-expressing vector in BJ hTert cells using
Lipofectamine 3000 (ThermoFisher) according to supplier’s instructions
24 h before treatment. Luciferase expression was measured by RT-qPCR and
transfection efficiency was normalized using Renilla luciferase expression.

Measurement of oncogene-induced senescence
BJ hTert HRasV12ER-Tam and BJ hTert HRasV12ER-Tam shp53 cells were
seeded in 12-wells plates on glass coverslips, then treated the following
day with 4-OHT and KpSN. The culture medium was renewed every 3 days,
and KpSN was added each day to the culture medium. Senescence was
measured 8 days after the start of the experiments. For β-galactosidase
assay, cells were fixed and stained 24 h using the Senescence Cells
Histochemical Staining kit (Sigma-Aldrich) according to manufacturer’s
instructions. For EdU incorporation Assay, 10 μM EdU was added to the
culture medium 24 h before fixation, then EdU was labeled using the Click-
iT EdU Alexa Fluor 488 Imaging Kit (Thermo Fisher Scientific). For both
assay, quantification was performed by counting positive cells in n ⩾ 200
cells in three independent experiments.

RIP-qPCR
RNA immunoprecipitation (RIP) was performed on 2.107 BJ hTert pLV Wig-
1-Flag cells using the Magna RIP Kit (Merck-Millipore) according to the
supplier instructions. Wig-1-Flag immunoprecipitation was performed
using a monoclonal anti-Flag antibody (F3165, Sigma-Aldrich) and mouse
IgG as control. Isolated RNA was then analyzed by RT-qPCR.

RNA sequencing
BJ hTert and BJ hTert shp53 were treated for 8 h with KpSN and 0.2 μM
doxorubicin in three independent biological replicates. Total RNA was
extracted using the mirVana miRNA isolation kit (Ambion). RNA-seq was
performed by Vertis Biotechnologie AG. Random-primed cDNA libraries were
prepared according to Illumina protocol. The cDNA pool was paired-end
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sequenced on an Illumina NextSeq 500 system using 2 × 150 bp read length.
Quality control was performed using FastQC. nf-core/rnaseq pipeline (v1.4)
was used to process the reads [71]. HISAT2 (v2.1.0) was used to align the raw
RNA-seq fastq reads to the human reference genome (GRCh38.97). Read
quantification was computed using featureCounts (v1.6.4). Differential
analysis was performed with the R package DESeq2. False positive discovery
(FDR) < 0.05 was set as cut-off for differentially expressed genes (DEGs). DEGs
were plotted using R package ggplot2. Gene ontology (GO: biological
process) and pathway enrichment analysis was performed using g:Profiler
[72] and visualized using Cytoscape (v3.6.1) [73] as described by Reimand
et al. [74]. The complete lists of differentially expressed genes and enriched
GO terms upon KpSN treatment are provided in Supplementary Table S3. To
define a high confidence gene set of p53 targets in BJ hTert cells, we
intersected genes upregulated upon doxorubicin treatment, repressed upon
p53 shRNA and p53 core targets genes defined by Fisher et al. [22]. Complete
list of the 161 high confidence p53 target genes is provided in
Supplementary Table S4.

Public database patient data analysis
Patient data from The Cancer Genome Atlas (TCGA; https://www.cancer.
gov/tcga) were analyzed using cBioPortal for Cancer Genomics (http://
cbioportal.org) [75, 76]. Normalized expression data and TP53 mutations
from early stage (grade I-II) Colorectal adenocarcinoma (COAD), Breast
carcinoma (BRCA), Liver hepatocellular carcinoma (LIHC) and Lung
adenocarcinoma (LUAD) from TCGA PanCancer Atlas Studies were
analyzed. Tumors were classified based on TLR4 expression Z-score across
all samples as high TLR4 (Z-score > 0.75) or low TLR4 (Z-score <−0.75).

Statistical analyses
Unless otherwise stated, statistical significance was calculated using two-
tailed Student t-test from at least three independent experiments.

DATA AVAILABILITY
The datasets generated in the study are available in GEO database (https://www.ncbi.
nlm.nih.gov/geo/) under accession number GSE174531.
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