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Abstract

Deep sequencing-based bulked segregant analysis (BSA-seq) has become a popular approach for quantitative trait loci (QTL) mapping in
recent years. Effective statistical methods for BSA-seq have been developed, but how to design a suitable experiment for BSA-seq remains
unclear. In this paper, we show in theory how the major experimental factors (including population size, pool proportion, pool balance, and
generation) and the intrinsic factors of a QTL (including heritability and degree of dominance) affect the power of QTL detection and the
precision of QTL mapping in BSA-seq. Increasing population size can improve the power and precision, depending on the QTL heritability.
The best proportion of each pool in the population is around 0.25. So, 0.25 is generally applicable in BSA-seq. Small pool proportion can
greatly reduce the power and precision. Imbalance of pool pair in size also causes decrease of the power and precision. Additive effect is
more important than dominance effect for QTL mapping. Increasing the generation of filial population produced by selfing can significantly
increase the power and precision, especially from F2 to F3. These findings enable researchers to optimize the experimental design for BSA-
seq. A web-based program named BSA-seq Design Tool is available at http://124.71.74.135/BSA-seqDesignTool/ and https://github.com/
huanglikun/BSA-seqDesignTool.
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Introduction
Bulked segregant analysis based on deep sequencing (BSA-seq) is
an efficient and cost-effective approach for rapid mapping of
quantitative trait loci (QTLs). Since it was first reported in yeast
(Ehrenreich et al. 2010), this approach has been widely applied to
many different species especially in plants, such as rice (Arikit
et al. 2019; Lei et al. 2020), wheat (Xin et al. 2020), tomato
(Ruangrak et al. 2019), groundnut (Pandey et al. 2017), chickpea
(Deokar et al. 2019), sunflower (Imerovski et al. 2019), squash
(Ramos et al. 2020), watermelon (Branham et al. 2018), cricket
(Pascoal et al. 2014), and Hessian fly (Navarro-Escalante et al.
2020). To facilitate BSA-seq for QTL mapping, a number of differ-
ent statistical methods have been proposed, such as G0 test
(Magwene et al. 2011), MULTIPOOL (Edwards and Gifford 2012),
EXPLoRA (Duitama et al. 2014), Hidden Markov Model (Claesen
and Burzykowski 2015), and Nonhomogeneous Hidden Markov
Model (Ghavidel et al. 2015).

Recently, we proposed a new statistical method named block
regression mapping (BRM) for BSA-seq (Huang et al. 2020). The
method uses the simple and intuitional allele frequency differ-
ence (AFD) between two pools as statistic to test putative QTLs.
Most importantly, it proves that smoothing by block regression
can effectively remove the noise of sequencing (i.e., the random
error of resampling) and the expected AFD at a genomic position
estimated by block regression is close to the actual AFD at the po-
sition even under very low sequencing depth. This means that
the variation of AFD is basically determined by the size of the two

pools. Based on this fact, the method reasonably resolves the

problem of multiple testing correction in the estimation of signifi-

cance threshold in BSA-seq, and can obtain both the point esti-

mate and the 95% confidence interval (CI) of a QTL’s position. In

addition, with the expected AFD of a QTL obtained by BRM, the

proportion of variance explained by the QTL, or termed the QTL’s

heritability, can be estimated using a method named Pooled QTL

Heritability Estimater (PQHE; Tang et al. 2018).
Apart from the statistical method, experimental design is also

very important for BSA-seq. An appropriate experimental design

can effectively increase the statistical power of QTL detection

and the precision of QTL mapping. At present, however, how to

make a suitable experimental design for BSA-seq is still a prob-

lem to be solved. The size of population used in the BSA-seq

experiments so far varies from very small (<100; Deokar et al.

2019; Imerovski et al. 2019) to very large (>10,000; Yang et al.

2013), with most being small (around 200; Das et al. 2014; Pandey

et al. 2017; Branham et al. 2018; Luo et al. 2018; Arikit et al. 2019;

Lahari et al. 2019; Ramos et al. 2020), and some medium (around

500; Xin et al. 2020) or large (near or over 1000; Ruangrak et al.

2019; Lei et al. 2020). The pool size used is also very diverse, vary-

ing from very small (only five individuals; Branham et al. 2018) to

very large (>400; Yang et al. 2013), corresponding to a pool propor-

tion (the ratio of pool size to population size) of �10% or less in

most experiments.
In this paper, based on the principle of the BRM method, we in-

vestigate the factors that influence the power (of QTL detection)
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and the precision (of QTL mapping) in BSA-seq through theoretical
derivation and numerical calculation as well as analysis on experi-
mental data from yeast. According to the effects of these influenc-
ing factors, it is possible to optimize the experimental design for
BSA-seq.

Materials and methods
Experimental design for BSA-seq
There are various kinds of populations derived from a bi-parent
cross (P1 � P2) for BSA-seq, including temporal populations such as
Fk (k¼ 2, 3, 4. . .) populations, and permanent populations such as
recombinant inbred line (RIL) population, doubled haploid (DH) pop-
ulation, and haploid (H) population. Fk generation can be produced
from Fk�1 generation either by selfing or by intercrossing (or random
mating). These two different mating ways in Fk�1 generation will re-
sult in different genetic structures of the Fk population when k� 3.
In this paper, we mainly analyze the situation of using the Fk popu-
lation produced by selfing, and the term of Fk only refers to this
type unless otherwise mentioned. Among the permanent popula-
tions, H population is usually used in fungi (e.g., yeast), of which the
life cycle is dominated by gametophyte generation. A pair of distinct
DNA pools, namely, high-trait-value (H) pool vs. low-trait-value (L)
pool (design A) or selected (S) pool vs. random (R) pool (design B), is
established from the population and deeply sequenced. By mapping
the sequencing reads to a reference genome, a very large number of
molecular markers (mainly SNPs) and their counts in each pool can
be found. QTL mapping is performed by comparing the two pools
based on the marker data (Huang et al. 2020). In this paper, we shall
focus on the optimization of design A. The principle should be also
applicable to design B.

Expectation of the power of QTL detection
Suppose a trait (y) is controlled by a QTL with two different alleles,
Q from P1 and q from P2. The trait variation in an Fk or a permanent
population can be described as a mixture distribution as below:

f yð Þ ¼ bfQQ yð Þ þ 1� 2bð ÞfQq yð Þ þ bfqq yð Þ

¼ b/
y� ðl� aÞ

re

� �
þ 1� 2bð Þ/ y� ðlþ dÞ

re

� �
þ b/

y� ðlþ aÞ
re

� �
(1)

where a and d are the additive effect and dominance effect of the
QTL, respectively; l is the population mean; re is the standard de-
viation of the background (including genetic background and en-
vironment) variation; /ð�Þ is the probability density function of
standard normal distribution; and b ¼ 1� 1=2ð Þk�1

h i
=2, where

k!1 in a permanent population.
Let x ¼ ðy� lÞ=re, a0 ¼ a=re, and d0 ¼ d=re. Equation (1) can be

rewritten as:

f xð Þ ¼ b/ xþ a0ð Þ þ 1� 2bð Þ/ x� d0ð Þ þ b/ x� a0ð Þ: (2)

According to Equation (2), the additive effect heritability (h2
a) and

the dominance effect heritability (h2
d) of the QTL are (Tang et al. 2018):

h2
a ¼

2ba2
0

1þ 2ba2
0 þ 2b 1� 2bð Þd2

0

(3)

h2
d ¼

2b 1� 2bð Þd2
0

1þ 2ba2
0 þ 2b 1� 2bð Þd2

0

: (4)

And the total heritability of the QTL is: h2 ¼ h2
a þ h2

d. If the QTL

does not exist, namely, the null hypothesis (H0 : a0 ¼ d0 ¼ 0) is

true, the mixture distribution f xð Þ will degenerate into a standard

normal distribution / xð Þ:
Suppose the proportions of the H pool and the L pool in the

population are pH and pL, and the corresponding cut points for

the H pool and the L pool are xH and xL, respectively. According to

Equation (2), we find:

pH ¼ 1� bU xH þ a0ð Þ � 1� 2bð ÞU xH � d0ð Þ � bU xH � a0ð Þ (5)

pL ¼ bU xL þ a0ð Þ þ 1� 2bð ÞU xL � d0ð Þ þ bU xL � a0ð Þ; (6)

where Uð�Þ is the cumulative distribution function of standard

normal distribution. Equations (5) and (6) indicate that pH and pL

are determined when xH and xL are given and vice versa.

According to Equations (2), (5), and (6), the allele frequency (AF,

referring to the allele from P1) of the QTL in the H pool and that in

the L pool are expected to be:

lfH
¼ 1� 2bU xH � a0ð Þ � ð1� 2bÞU xH � d0ð Þ

2pH
(7)

lfL
¼ 2bU xL � a0ð Þ þ ð1� 2bÞU xL � d0ð Þ

2pL
: (8)

Let p ¼ pH þ pLð Þ=2 and c ¼ pH=pL, we have pH ¼ 2pc= 1þ cð Þ,
and pL ¼ 2p= 1þ cð Þ. Thus, the AFD of the QTL between the two

pools is expected to be:

lDf ¼ lfH
� lfL

¼ 1þ cð Þ½1� 2bU xH � a0ð Þ � 1� 2bð ÞU xH � d0ð Þ�
4pc

�
1þ cð Þ 2bU xL � a0ð Þ þ 1� 2bð ÞU xL � d0ð Þ

h i
4p

: (9)

According to the Central Limit Theorem, the sampled AFD will

approximately follow a normal distribution with mean lDf and

variance

r2
Df ¼ r2

fH
þ r2

fL
¼

lfH
1� lfH

� �
2tpHn

þ
lfL

1� lfL

� �
2tpLn

¼ 1þ c

2tþ1pcn
lfH

1� lfH

� �þ clfL
1� lfL

� �� �
; (10)

where n is the size of the mapping population; t ¼ 0 for perma-

nent populations and t ¼ 1 for Fk populations. However, if the

QTL does not exist (H0 : a0 ¼ d0 ¼ 0), then lfH
¼ lfL

¼ 0:5 and

lDf ¼ 0 according to Equations (5)–(9). In this case, AFD will ap-

proximately follow a normal distribution with mean 0 and vari-

ance r2
0, where, according to Equation (10),

r2
0 ¼ r2

Df lDf ¼ 0
� � ¼ ð1þ cÞ2

2tþ3pcn
: (11)

So, the threshold of AFD at significance level a (two-tail test) is

(Huang et al. 2020):

T6 ¼ 6ua=2r0 ¼ 6
ð1þ cÞua=2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2tþ3pcn
q : (12)

where the 6 sign indicates the upper/lower threshold; ua=2 is the

upper percentile point of a=2 in standard normal distribution,
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which is a constant for a species under a certain overall (genome-
wise) significance level. Thus, the statistical power of detecting
the QTL is expected to be (Figure 1):

Power ¼ 1� U
Tþ � lDf

rDf

 !
þ U

T� � lDf

rDf

 !
: (13)

Expectation of the precision of QTL mapping
The mapping precision of a QTL can be indicated by the size of its
CI. A narrower CI means a higher mapping precision. Consider a
position M linked with a given QTL. No matter in an F2 or in an
H/DH population, the AF at M in the H pool (lfMH

) and that in the
L pool (lfML

) are expected to be:

lfMH
¼ 1� hð ÞlfH

þ h 1� lfH

� � ¼ hþ ð1� 2hÞlfH
(14)

lfML
¼ 1� hð ÞlfL

þ h 1� lfL

� � ¼ hþ 1� 2hð ÞlfL
; (15)

where h is the recombination rate between M and the QTL.
Therefore, the AFD at M between the two pools (lDfM

) is expected
to be:

lDfM
¼ lfMH

� lfML
¼ 1� 2hð Þ lfH

� lfLð Þ ¼ 1� 2hð ÞlDf : (16)

Equation (16) indicates that lDfM
is a function of lDf and h,

which describes the expected AFD curve around a QTL. It can be
seen that lDfM

varies between 0 (when h ¼ 0:5, or M is far from the
QTL) and lDf (when h ¼ 0, or M is just at the position of the QTL).
Therefore, the AFD curve forms a positive peak (when lDf > 0) or
negative peak (when lDf < 0) with the positive/negative top point
being at the position of the QTL.

This AFD curve enables us to estimate the 95% CI (denoted as
CI 95) of the QTL (Huang et al. 2020). Let lDfM

¼ lDf � 1:65rDf (in
the case of lDf > 0) or lDfM

¼ lDf þ 1:65rDf (in the case of lDf < 0).
Substitute it into Equation (16), we find the recombination rate
between the left (or right) border of CI 95 and the QTL:

h ¼
0:825rDf

lDf
; (17)

where lDf and rDf are determined by Equations (9) and (10), re-
spectively. By assuming Kosambi’s mapping function and ignor-
ing the influence of phenotypic selection on recombination rate
(Lin and Ritland 1996), the corresponding genetic distance D (cM)
would approximately be:

D ¼ 25ln
1þ 2h
1� 2h

	 

: (18)

Therefore, the width of CI 95 of the QTL is 2D (cM).
For F3 and F4 populations, the parameter h in Equations (14)–(17)

should be replaced with h3 and h4, the apparent recombination
rates in F3 and F4, respectively, where (Huang et al. 2020):

h3 ¼ h 1þ 1
2
ð1� hÞ2

� �
(19)

h4 ¼ h 1þ 1
2
ð1� hÞ2 þ 1

4
ð1� hÞ4

� �
: (20)

From Equations (19) and (20), the real recombination rate h

can be calculated and thus the width of CI 95 can be calculated
from Equation (18).

Numerical analysis
Equations (13) and (18) describe the relationships of various fac-
tors (parameters) with the power of QTL detection and the preci-
sion of QTL mapping in BSA-seq using the BRM method. To
display how the factors affect the power and precision, we used
Equations (13) and (18) to analyze yeast H population (represent-
ing permanent populations) and rice F2, F3, and F4 populations
(representing Fk populations), respectively. In the analyses, the
value of ua=2 in Equation (12) under the genome-wise significance
level of 0.05 for yeast H population and those for rice F2, F3, and
F4 populations were 3.93 and 3.65, 3.74, and 3.78, respectively, of
which the corresponding nominal significance level (a) was
8.49� 10�5 and 2.62� 10�4, 1.84� 10�4, and 1.57� 10�4, respec-
tively (Huang et al. 2020). For simplicity, equal pool size (namely,
c ¼ 1 or pH ¼ pL ¼ p) was assumed except when the effect of pool
size imbalance (i.e., c 6¼ 1 or pH 6¼ pL) was analyzed.

In addition, to demonstrate the influence of pool proportion in
BSA-seq, we also used the BRM method (Huang et al. 2020) to ana-
lyze a series of simulated BSA-seq experiments based on the ex-
perimental data in an H population from yeast (Bloom et al. 2015).
The data included the genotypes of 28,220 SNPs and phenotypes
of trait GCS (end-point Growth on a medium containing Copper
Sulfate) in 4276 segregants derived from a cross between a labo-
ratory strain BY and a vineyard strain RM (Huang et al. 2020). We
randomly extracted 4000 segregants from the total as the map-
ping population, from which a series of H vs. L pool pairs with dif-
ferent pool proportions (including 0.01, 0.05, 0.1, 0.2, 0.25, 0.3, 0.4,
and 0.5) were made according to the GCS phenotype data. By di-
viding the genome into tandem 200-bp blocks, the actual AFD at

Figure 1 The power of QTL detection in BSA-seq using BRM. The AFD of the QTL follows a normal distribution with mean at AFD ¼ 0 under the null
hypothesis H0 (no QTL) or a normal distribution with mean at AFD ¼ mDf under the alternative hypothesis H1 (there is QTL). The power is equal to the
shaded area (probability) under H1 on the left of the threshold T� when mDf < 0 (A) or on the right of the threshold Tþ when mDf > 0 (B).
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every position (block) in the genome was calculated in each pool

pair based on the SNP genotype data. The AFD thresholds at the
genome-wise significance level of 0.05 were calculated according

to the BRM method (Huang et al. 2020). It was considered that a

QTL existed when the maximum AFD value in a peak region

exceeded the threshold.

Results
Effect of population size
Population size (n) and pool proportion (p) are two major experi-

mental factors affecting the power and precision in BSA-seq.

When p is fixed, depending on the QTL heritability (h2), the power

and the CI 95 width display a series of S-shape curves (Figure 2, A

and B) and L-shape curves (Figure 2, C and D) with n, respec-
tively. So, approximately, the process of power increase along

with the n increase could be divided into three stages: slow-

fast!slow, while the process of CI 95 width decrease along with

the n increase could be divided into two stages: fast!slow.

Obviously, increasing n in the last stage is inefficient for power in-

crease and CI 95 width decrease. This suggests that a value of n
just before the start point of the last stage would be optimal.

However, different QTL may have different optimal n, which is in-

versely proportional to h2 (Figure 2). A larger h2 would have a

smaller optimal n.

Effect of pool proportion
Theoretically, p varies between 0 and 0.5. The extreme situation P

¼ 0.5 means that the population is divided into two pools of equal

size just at the mid-point of the trait. When n is fixed, it is seen

that the power (Figure 3, A and B) and the CI 95 width (Figure 3,

C and D) are neither a monotonic function of p. There is a peak of

power and a valley of CI 95 width, respectively. The highest point

of power is mainly located between P¼ 0.25 and P¼ 0.3, while the

lowest point of CI 95 width is located around P¼ 0.25, depending

on h2. This suggests that 0.25 is a generally suitable, if not the

best, value of p. Nonetheless, the peak top of the power and the

valley bottom of the CI 95 width are broad and flat, especially

when h2 is large. Therefore, the suitable value of p can be flexible

in a wider range. It is noticeable that small p has very strong un-

favorable effects on the power and the CI 95 width. As p

decreases toward zero, the power will quickly drop toward zero

and the CI 95 width will soar toward infinite, no matter how large

h2 is. Therefore, it is inappropriate to use small p.

Effect of interaction between population size and
pool proportion
When the intrinsic factor h2 is fixed, it is seen that the basic fea-

ture of the relationship between the power and p and that be-

tween the CI 95 width and p (Figure 3) remain the same under

different n (Figure 4). The value of P¼ 0.25 still appears to be gen-

erally suitable (Figure 4). However, the effects of p on the power

and the CI 95 width are related to n. As n increases, the peak top

of the power and the valley bottom of the CI 95 width will become

wider and flatter. Therefore, the suitable value of p can be more

flexible under larger n. It is noted that the peak top of the power

also becomes flatter when n is very small (Figure 4, A and B). But

in this case, the power is very low and therefore is meaningless.

A B

C D

Figure 2 Relationships of power and CI 95 width with population size depending on QTL heritability in yeast H population (A, C) and rice F2 population
(B, D).
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A B

C D

Figure 3 Relationships of power and CI 95 width with pool proportion depending on QTL heritability in yeast H population (A, C) and rice F2 population
(B, D).

A B

C D

Figure 4 Relationships of power and CI 95 width with pool proportion depending on population size in yeast H population (A, C) and rice F2 population
(B, D).
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Effect of pool imbalance
In the above analyses, it is assumed that the two pools are bal-

anced in size, namely, c ¼ 1 or pH ¼ pL ¼ p. By fixing p and h2, it is

found that imbalance of pool size (c 6¼ 1) can reduce the power

(Figure 5, A and B) and increase the CI 95 width (Figure 5, C and

D). The more the c deviates from 1, the stronger the effect of pool

imbalance, but increasing n can attenuate the effect of pool im-

balance to some extent. The result suggests that the optimal de-

sign is to use two pools of equal size.

Effects of degree of dominance and generation
In Fk populations, the dominance effect of a QTL may exist and

therefore affect the result of BSA-seq. In the above analyses, it is

assumed that there is no dominance effect (namely, the degree of

dominance rd ¼ 0) in the F2 population. However, if rd > 0 but h2 is

fixed, the power will be reduced (Figure 6A) and the CI 95 width

will be increased (Figure 6B). The larger the rd is, the smaller the

power and the larger the CI 95 width will be. This suggests that

additive effect is more beneficial than dominance effect to QTL

mapping in BSA-seq.
Unlike permanent populations, Fk populations have different

genetic structures in different generations. This can affect the re-

sult of BSA-seq. When other conditions are the same, the power

increases (Figure 6C) and the CI 95 width decreases (Figure 6D)

as the generation increases. The increment of power and the dec-

rement of CI 95 width are particularly significant from F2 to F3.

However, the power increase is attenuated or even disappeared

when the population is large, while the CI 95 decrease remains

significant (the relative decrease from F2 to F3 is always �50%)

with little influence by the population size.

Simulation of BSA-seq based on experimental
data from yeast
To demonstrate the effect of pool proportion in practical popula-
tions, we used a set of experimental data from yeast (Bloom et al.
2015) to simulate BSA-seq using different pool proportions. The
results were consistent with the theoretical expectation
(Figure 7). A total of 15 putative QTLs were detected, with 5, 11,
11, 14, 14, 15, 15, and 13 QTLs detected under the pool proportion
of 0.01, 0.05, 0.1, 0.2, 0.25, 0.3, 0.4, and 0.5, respectively. The num-
ber of detected QTLs was greatly reduced when p was small, but
basically remained stable when P� 0.2, varying only at two QTLs
with small peaks (QTL1 and 11), which were marginally signifi-
cant (just reaching or slightly exceeding the threshold) at the
maximum.

Discussion
We have shown above the effects of several factors, including ex-
perimental factors (population size, pool proportion, pool bal-
ance, and generation) and intrinsic factors (QTL heritability and
degree of dominance), on the power of QTL detection and the pre-
cision (CI 95 size) of QTL mapping in BSA-seq in two different
types of populations, H population (yeast) and F2 population
(rice). The factors display similar relationships with the power
and CI 95 size in the two types of populations (Figures. 2–5), sug-
gesting that the laws of the relationships revealed in this study
are universal in BSA-seq. The intrinsic factors are mainly deter-
mined by the characteristics of QTLs, while the experimental fac-
tors can be managed in experimental design. Hence, according to
the effects of various experimental factors, it is able to optimize
the experimental design for BSA-seq.

Generally speaking, the experimental design for BSA-seq
mainly involves three aspects, namely, population type (what

A B

C D

Figure 5 Relationships of power and CI 95 width with pool-to-pool ratio depending on population size in yeast H population (A, C) and rice F2 population
(B, D). Only the case of c� 1 is shown because pH/pL < 1 is equivalent to pL/pH > 1.

6 | G3, 2022, Vol. 12, No. 1



kind of population), population size, and pool proportion.
Population type is not an issue for fungi because only H popula-
tion is applicable. For plants, however, there are multiple choices,
such as Fk population, RIL population, and DH population.
Among them, the most convenient type is probably F2 popula-
tion. However, we have seen that higher Fk generations are better
for the power and precision (Figure 6, C and D). This is under-
standable because the frequency of homozygous genotypes of a
QTL will increase and more recombination events between the
QTL and flanking markers will occur as the generation increases.
The former will likely increase the AFD between the two pools
and thus increase the power because additive effect generally
contributes more to genetic variation than dominance effect; the
latter will increase the resolution of mapping and thus reduce
the CI 95 size. As the improvements of power and precision are
the most significant from F2 to F3 (Figure 6, C and D), it is recom-
mended using F3 instead of F2 in practice if time permits.
Nonetheless, it is necessary to point out that for the type of Fk

population produced by random mating instead of selfing, the
higher generations (k� 3) all have the same population structure
as F2 in terms of a single locus. In this case, the power does not
increase with generation. Instead, the power may decrease with
generation because the significance threshold of AFD increases
with generation (Huang et al. 2020).

According to the principle of BSA (Michelmore et al. 1991), the
smaller the pool proportion is, the greater the difference between
the two pools will be. However, studies of conventional BSA
method by theoretical analysis based on the infinitesimal model
(Gallais et al. 2007) and computer simulation (Navabi et al. 2009)
and simulation study of BSA-seq based on G0 test (Magwene et al.
2011) all show that the power of QTL detection reach the maxi-
mum value not under small pool proportions but under larger
ones. This was verified in our study (Figures 3, A and B 4, A and

B). The reason is that the power is determined not only by the
AFD between the two pools but also by the variance of AFD.
Decreasing pool proportion can increase AFD and its variance si-
multaneously, which will make the power increase and decrease,
respectively. When the effect of AFD increase is smaller than the
effect of AFD variance increase due to the decrease of pool pro-
portion, the power will decrease. Apart from the effect on power,
we also analyzed the effect of pool proportion on the CI 95 size
(Figures 3, C and D 4, C and D), revealing that pool proportion
affects the power and the CI 95 size correspondingly. So, consid-
ering the power and the CI 95 size simultaneously, we found that
a pool proportion of 0.25 is generally suitable for BSA-seq.
Nonetheless, pool proportion can be flexible in a wide range
when the population size is large.

Intuitively, the two pools are usually set to be equal or bal-
anced in size in BSA-seq. However, the benefit of pool balance
has not been studied. In some studies, the two pools are very dif-
ferent in size. For example, in a BSA-seq experiment for mapping
QTLs underlying the high ethanol tolerance in yeast, the two
pools consisted of 32 and 237 segregants, respectively (Pais et al.
2013). In this study, we proved that imbalance of pool size is
harmful, especially when the difference between the two pools is
large, which can reduce the power and increase the CI95 size sig-
nificantly (Figure 5). Hence, pool balance is important.

We have shown that increasing population size can increase
the power and reduce the CI95 size under a constant pool propor-
tion, but the improvement of power and CI95 size due to popula-
tion size increase is very small when the population is
sufficiently large (Figure 2). In practice, population size is also re-
stricted by the cost of phenotyping. So, it is not that the larger the
population, the better. However, determining the suitable popu-
lation size is not easy because it depends on the heritability of
each QTL. We suggest that the suitable population size can be

A B

C D

Figure 6 Relationships of power and CI 95 width with degree of dominance (A, B) and generation (C, D) depending on population size in rice.
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Figure 7 Actual AFD profiles under different pool proportions in a real yeast H population consisting of 4000 strains. The horizontal dashed lines are
thresholds at the genome-wise significance level of 0.05. The black filled reversed triangles indicate the positions of detected QTLs, which are numbered
from left to right.
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chosen in light of a typical minor QTL (e.g., h2 ¼ 0.03). It can be

seen from Figure 2 that in both yeast H population and rice F2

population, 1500 can be considered to be a suitable population

size for a QTL with h2 ¼ 0.03, at which the power basically

reaches 100% and the CI95 size has been within the slow decrease

stage. In practice, researchers may want to know what the mini-

mum population size is needed to detect a QTL with a given or

higher heritability at a required power, or what the power is

expected for a QTL with a given heritability when the population

size is fixed. To meet these needs, we developed a web-based tool

named BSA-seq Design Tool, which can be visited at http://124.

71.74.135/BSA-seqDesignTool/ or downloaded from https://

github.com/huanglikun/BSA-seqDesignTool. The tool will facili-

tate researchers to optimize their experimental designs of BSA-

seq for QTL mapping.

Data availability
A web-based program named BSA-seq Design Tool is available at

http://124.71.74.135/BSA-seqDesignTool/ and https://github.com/

huanglikun/BSA-seqDesignTool.
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