## **Supplementary materials**

Table S1. Concentrations of antibiotics used in this study.

| Antibiotic      | Concentration (μg/mL) |
|-----------------|-----------------------|
| Tetracycline    | 1.8                   |
| Mitomycin C     | 1.4                   |
| Imipenem        | 0.06                  |
| Ceftazidime     | 0.12                  |
| Kanamycin       | 1.6                   |
| Ciprofloxacin   | 0.012                 |
| Polymyxin E     | 0.4                   |
| Chloramphenicol | 1.1                   |
| Erythromycin    | 7.0                   |

Table S2. Read counts, FPKMs, annotations, and differential gene expression of the transcriptomes.

**Table S3.** Enriched KEGG pathways after antibiotic treatment. *p*-values indicate adjusted *p*-values with the Benjamini-Hochberg procedure.

|                                             | Tetrac                 | cycline                                      |                       |
|---------------------------------------------|------------------------|----------------------------------------------|-----------------------|
| Upregulated KEGG pathways                   |                        | Downregulated KEGG pathways                  |                       |
| KEGG pathways                               | <i>p</i> -value        | KEGG pathways                                | <i>p</i> -value       |
| Ribosome                                    | 1.60×10 <sup>-12</sup> | Glycolysis / Gluconeogenesis                 | 3.15×10 <sup>-4</sup> |
| Valine, leucine and isoleucine biosynthesis | 1.08×10 <sup>-3</sup>  | Histidine metabolism                         | 2.60×10 <sup>-3</sup> |
| C5-Branched dibasic acid metabolism         | 0.023                  | Selenocompound metabolism                    | 2.60×10 <sup>-3</sup> |
| Oxidative phosphorylation                   | 0.039                  | Microbial metabolism in diverse environments | 4.63×10 <sup>-3</sup> |
|                                             |                        | Quorum sensing                               | 6.60×10 <sup>-3</sup> |
|                                             |                        | Sulfur metabolism                            | 0.013                 |
|                                             |                        | Biosynthesis of amino acids                  | 0.014                 |
|                                             |                        | ABC transporters                             | 0.015                 |
|                                             | Mitom                  | ycin C                                       |                       |
| Upregulated KEGG pat                        | hways                  | Downregulated KEGG pa                        | thways                |
| KEGG pathways                               | <i>p</i> -value        | KEGG pathways                                | <i>p</i> -value       |
| Biosynthesis of cofactors                   | 0.015                  | Biosynthesis of secondary metabolites        | 3.95×10 <sup>-6</sup> |
|                                             |                        | ABC transporters                             | 2.59×10 <sup>-5</sup> |
|                                             |                        | Histidine metabolism                         | 3.08×10 <sup>-4</sup> |
|                                             |                        | Valine, leucine and isoleucine biosynthesis  | 4.24×10 <sup>-3</sup> |
|                                             |                        | Monobactam biosynthesis                      | 5.47×10 <sup>-3</sup> |
|                                             |                        | Cysteine and methionine metabolism           | 9.48×10 <sup>-3</sup> |
|                                             |                        | Sulfur metabolism                            | 0.037                 |
|                                             |                        | 2-Oxocarboxylic acid metabolism              | 0.044                 |
| 2                                           | Imip                   | enem                                         |                       |
| Upregulated KEGG pat                        | hways                  | Downregulated KEGG pa                        | thways                |
| KEGG pathways                               | <i>p</i> -value        | KEGG pathways                                | <i>p</i> -value       |
| Ribosome                                    | 1.01×10 <sup>-9</sup>  | Biosynthesis of amino acids                  | 3.46×10 <sup>-5</sup> |
| Purine metabolism                           | 1.06×10 <sup>-4</sup>  | Histidine metabolism                         | 3.46×10 <sup>-5</sup> |
| Biosynthesis of cofactors                   | 2.80×10 <sup>-4</sup>  | ABC transporters                             | 7.89×10 <sup>-4</sup> |
| Peptidoglycan biosynthesis                  | 0.011                  | Sulfur metabolism                            | 1.30×10 <sup>-3</sup> |
| Sulfur relay system                         | 0.029                  | Fructose and mannose metabolism              | 2.95×10 <sup>-3</sup> |
| Nucleotide metabolism                       | 0.032                  | Phosphotransferase system                    | 6.13×10 <sup>-3</sup> |

|                                          |                       | (PTS)                                       |                       |
|------------------------------------------|-----------------------|---------------------------------------------|-----------------------|
| RNA degradation                          | 0.032                 | Glycolysis / Gluconeogenesis                | 0.017                 |
|                                          |                       | Pyruvate metabolism                         | 0.039                 |
|                                          |                       | Amino sugar and nucleotide                  | 0.039                 |
|                                          |                       | sugar metabolism                            | 0.039                 |
|                                          | Ceftaz                | zidime                                      |                       |
| Upregulated KEGG path                    | ıways                 | Downregulated KEGG pa                       | thways                |
| KEGG pathways                            | <i>p</i> -value       | KEGG pathways                               | <i>p</i> -value       |
| beta-Lactam resistance                   | 1.07×10 <sup>-7</sup> | Biosynthesis of amino acids                 | 3.80×10 <sup>-8</sup> |
| Purine metabolism                        | 7.90×10 <sup>-4</sup> | Biosynthesis of secondary metabolites       | 3.49×10 <sup>-5</sup> |
| Biosynthesis of cofactors                | 3.61×10 <sup>-3</sup> | Histidine metabolism                        | 3.49×10 <sup>-5</sup> |
| Nucleotide metabolism                    | 0.017                 | Sulfur metabolism                           | 0.010                 |
|                                          |                       | Valine, leucine and isoleucine biosynthesis | 0.012                 |
|                                          |                       | Starch and sucrose metabolism               | 0.012                 |
|                                          |                       | 2-Oxocarboxylic acid                        | 0.047                 |
|                                          |                       | metabolism                                  | 0.047                 |
|                                          | Kana                  | mycin                                       |                       |
| Upregulated KEGG path                    | ıways                 | Downregulated KEGG pa                       | thways                |
| KEGG pathways                            | <i>p</i> -value       | KEGG pathways                               | <i>p</i> -value       |
| Flagellar assembly                       | 1.94×10 <sup>-8</sup> | Biosynthesis of secondary metabolites       | 1.19×10 <sup>-9</sup> |
| Two-component system                     | 5.40×10 <sup>-8</sup> | Oxidative phosphorylation                   | 1.31×10 <sup>-8</sup> |
| Bacterial chemotaxis                     | 8.48×10 <sup>-4</sup> | Carbon metabolism                           | 4.62×10 <sup>-7</sup> |
| Pentose and glucuronate interconversions | 0.022                 | Biosynthesis of amino acids                 | 1.53×10 <sup>-4</sup> |
|                                          |                       | Glycolysis / Gluconeogenesis                | 2.30×10 <sup>-3</sup> |
|                                          |                       | Glutathione metabolism                      | 2.30×10 <sup>-3</sup> |
|                                          |                       | Pyruvate metabolism                         | 4.50×10 <sup>-3</sup> |
|                                          |                       | Biosynthesis of cofactors                   | 7.53×10 <sup>-3</sup> |
|                                          |                       | Microbial metabolism in                     | 8.86×10 <sup>-3</sup> |
|                                          |                       | diverse environments                        | 0.00^10               |
|                                          |                       | Citrate cycle (TCA cycle)                   | 0.025                 |
|                                          |                       | Cysteine and methionine                     | 0.025                 |
|                                          |                       | metabolism                                  | 0.023                 |
|                                          |                       | Alanine, aspartate and                      | 0.032                 |
|                                          |                       | glutamate metabolism                        | 0.032                 |
|                                          | Ciprof                | loxacin                                     |                       |
| Upregulated KEGG path                    | ıways                 | Downregulated KEGG pa                       | thways                |
| KEGG pathways                            | <i>p</i> -value       | KEGG pathways                               | <i>p</i> -value       |
| Bacterial chemotaxis                     | 2.27×10 <sup>-3</sup> | Biosynthesis of secondary metabolites       | 3.28×10 <sup>-9</sup> |

| Ribosome                                    | 0.028                 | Biosynthesis of amino acids                         | 6.56×10 <sup>-9</sup> |
|---------------------------------------------|-----------------------|-----------------------------------------------------|-----------------------|
| O-Antigen nucleotide sugar                  | 0.045                 | Glutathione metabolism                              | 5.97×10 <sup>-4</sup> |
| biosynthesis                                | 0.043                 | Giutatinone metabolism                              |                       |
| Bacterial secretion system                  | 0.049                 | Carbon metabolism                                   | 6.21×10 <sup>-4</sup> |
|                                             |                       | Histidine metabolism                                | 8.71×10 <sup>-4</sup> |
|                                             |                       | Microbial metabolism in diverse environments        | 3.14×10 <sup>-3</sup> |
|                                             |                       | Glycolysis / Gluconeogenesis                        | 3.64×10 <sup>-3</sup> |
|                                             |                       | Selenocompound metabolism                           | 4.56×10 <sup>-3</sup> |
|                                             |                       | Oxidative phosphorylation                           | 4.56×10 <sup>-3</sup> |
|                                             |                       | Sulfur metabolism                                   | 4.85×10 <sup>-3</sup> |
|                                             |                       | Pyruvate metabolism                                 | 0.011                 |
|                                             |                       | Phenylalanine, tyrosine and tryptophan biosynthesis | 0.012                 |
|                                             |                       | Cysteine and methionine metabolism                  | 0.013                 |
|                                             |                       | Quorum sensing                                      | 0.018                 |
|                                             |                       | Glycine, serine and threonine metabolism            | 0.025                 |
| 2                                           | Polym                 | yxin E                                              |                       |
| Upregulated KEGG path                       |                       | Downregulated KEGG pa                               | thways                |
| KEGG pathways                               | <i>p</i> -value       | KEGG pathways                                       | <i>p</i> -value       |
| Cationic antimicrobial peptide              | 0.017                 | Biosynthesis of siderophore                         | 1.13×10 <sup>-4</sup> |
| (CAMP) resistance                           | 0.017                 | group nonribosomal peptides                         | 1.13^10               |
| Amino sugar and nucleotide sugar metabolism | 0.023                 | ABC transporters                                    | 2.41×10 <sup>-3</sup> |
|                                             |                       | Thiamine metabolism                                 | 2.41×10 <sup>-3</sup> |
|                                             |                       | Monobactam biosynthesis                             | 0.028                 |
|                                             | Chloram               | phenicol                                            |                       |
| Upregulated KEGG path                       | iways                 | Downregulated KEGG pa                               | thways                |
| KEGG pathways                               | <i>p</i> -value       | KEGG pathways                                       | <i>p</i> -value       |
| Oxidative phosphorylation                   | 6.11×10 <sup>-6</sup> | Sulfur metabolism                                   | 0.011                 |
| Nitrogen metabolism                         | 4.52×10 <sup>-5</sup> | Biosynthesis of siderophore                         | 0.013                 |
| Tytuogen metaoonsin                         | 7.52^10               | group nonribosomal peptides                         | 0.013                 |
| Sulfur relay system                         | 3.37×10 <sup>-4</sup> | Biosynthesis of secondary                           | 0.013                 |
| Surrai relay system                         | 3.57*10               | metabolites                                         |                       |
|                                             |                       | Glycolysis / Gluconeogenesis                        | 0.036                 |
|                                             |                       | Biosynthesis of amino acids                         | 0.036                 |
|                                             |                       | omycin                                              | _                     |
| Upregulated KEGG path                       |                       | Downregulated KEGG pa                               |                       |
| KEGG pathways                               | <i>p</i> -value       | KEGG pathways                                       | <i>p</i> -value       |
| Oxidative phosphorylation                   | 4.02×10 <sup>-7</sup> | Glycolysis / Gluconeogenesis                        | 3.02×10 <sup>-4</sup> |
| Nitrogen metabolism                         | 5.88×10 <sup>-5</sup> | Sulfur metabolism                                   | 3.02×10 <sup>-4</sup> |

| Histidine metabolism                        | 9.65×10 <sup>-4</sup> | Biosynthesis of secondary metabolites        | 1.60×10 <sup>-3</sup> |
|---------------------------------------------|-----------------------|----------------------------------------------|-----------------------|
| Ribosome                                    | 4.20×10 <sup>-3</sup> | Microbial metabolism in diverse environments | 5.25×10 <sup>-3</sup> |
| Sulfur relay system                         | 0.021                 | Pyruvate metabolism                          | 0.021                 |
| Mismatch repair                             | 0.026                 | Arginine biosynthesis                        | 0.022                 |
| Valine, leucine and isoleucine biosynthesis | 0.045                 | Cysteine and methionine metabolism           | 0.047                 |
|                                             |                       | Starch and sucrose metabolism                | 0.047                 |
|                                             |                       | Alanine, aspartate and glutamate metabolism  | 0.047                 |

Table S4. Enriched Ecocyc pathways after antibiotic treatment. p-values indicate adjusted p-values with the Benjamini-Hochberg procedure.

|                                                                        | Tetrac                | cycline                                          |                       |
|------------------------------------------------------------------------|-----------------------|--------------------------------------------------|-----------------------|
| Upregulated Ecocyc path                                                | hways                 | Downregulated Ecocyc par                         | thways                |
| Ecocyc pathways                                                        | <i>p</i> -value       | Ecocyc pathways                                  | <i>p</i> -value       |
| ATP biosynthesis                                                       | 6.80×10 <sup>-4</sup> | Degradation/Utilization/Assimi lation            | 0.021                 |
| Nucleoside and nucleotide biosynthesis                                 | 6.50×10 <sup>-3</sup> | Generation of precursormetabolites and energy    | 0.021                 |
| Succinate to cytochrome <i>bo</i> oxidase electron transfer            | 6.50×10 <sup>-3</sup> | L-histidine biosynthesis                         | 0.021                 |
| Purine nucleotide <i>de novo</i> biosynthesis                          | 6.50×10 <sup>-3</sup> | L-histidine biosynthesis                         | 0.021                 |
| Superpathway of purine nucleotides <i>de novo</i> biosynthesis II      | 6.50×10 <sup>-3</sup> | Nitrate reduction VIII (dissimilatory)           | 0.028                 |
| Purine nucleotide biosynthesis                                         | 9.80×10 <sup>-3</sup> | Hydrogen to dimethyl sulfoxide electron transfer | 0.031                 |
| N-acetylneuraminate and N-acetylmannosamine degradation I              | 0.015                 | Electron transfer chains                         | 0.04                  |
| N-Acetylneuraminate and N-acetylmannosamine degradation                | 0.015                 |                                                  |                       |
| Inosine-5'-phosphate biosynthesis                                      | 0.015                 |                                                  |                       |
| Inosine-5'-phosphate<br>biosynthesis I                                 | 0.015                 |                                                  |                       |
| Superpathway of enterobacterial common antigen biosynthesis            | 0.016                 |                                                  |                       |
|                                                                        |                       | nycin C                                          |                       |
| Upregulated Ecocyc path                                                | 1                     | Downregulated Ecocyc par                         |                       |
| Ecocyc pathway                                                         | <i>p</i> -value       | Ecocyc pathway                                   | <i>p</i> -value       |
| Nucleic acid processing                                                | 3.62×10 <sup>-3</sup> | Proteinogenic amino acid biosynthesis            | 2.64×10 <sup>-1</sup> |
| Nucleoside and nucleotide biosynthesis                                 | 7.74×10 <sup>-3</sup> | Amino acid biosynthesis                          | 7.04×10 <sup>-1</sup> |
| Superpathway of pyrimidine ribonucleotides <i>de novo</i> biosynthesis | 7.82×10 <sup>-3</sup> | L-histidine biosynthesis                         | 2.05×10 <sup>-</sup>  |

| Pyrimidine ribonucleotide <i>de</i> |                       | Proteinogenic amino acid          |                       |
|-------------------------------------|-----------------------|-----------------------------------|-----------------------|
| novo biosynthesis                   | 7.82×10 <sup>-3</sup> | degradation                       | 3.01×10 <sup>-3</sup> |
| UMP biosynthesis                    | 0.023                 | Amino acid degradation            | 3.45×10 <sup>-3</sup> |
| UMP biosynthesis I                  | 0.023                 | Alcohol degradation               | $5.06 \times 10^{-3}$ |
| Purine riboucleotide <i>de novo</i> |                       | NADH to cytochrome <i>bd</i>      |                       |
| biosynthesis                        | 0.023                 | oxidase electron transfer I       | 5.06×10 <sup>-3</sup> |
| Superpathway of histidine,          |                       |                                   |                       |
| purine, and pyrimidine              | 0.031                 | Degradation/Utilization/Assimi    | 8.68×10 <sup>-3</sup> |
| biosynthesis                        | 0.031                 | lation                            | 0.00*10               |
| ologyitilesis .                     | /                     | NADH to hydrogen peroxide         |                       |
|                                     |                       | electron transfer                 | 0.017                 |
|                                     |                       | NADH to trimethylamine            |                       |
|                                     |                       | <i>N</i> -oxide electron transfer | 0.036                 |
|                                     |                       | S-adenosyl-L-methionine           |                       |
| /                                   |                       | biosynthesis                      | 0.046                 |
|                                     |                       | L-tryptophan biosynthesis         | 0.046                 |
|                                     |                       | L-tryptophan biosynthesis         | 0.046                 |
|                                     |                       | Superpathway of                   | 0.010                 |
|                                     |                       | S-adenosyl-L-methionine           | 0.046                 |
|                                     |                       | biosynthesis                      | 0.010                 |
|                                     |                       | NADH to dimethyl sulfoxide        |                       |
|                                     |                       | electron transfer                 | 0.046                 |
|                                     |                       | L-leucine biosynthesis            | 0.046                 |
|                                     |                       | L-threonine biosynthesis          | 0.046                 |
|                                     |                       | L-leucine biosynthesis            | 0.046                 |
|                                     |                       | Superpathway of L-threonine       |                       |
|                                     |                       | biosynthesis                      | 0.046                 |
|                                     | Imip                  | enem                              |                       |
| Upregulated Ecocyc patl             | hways                 | Downregulated Ecocyc par          | thways                |
| Ecocyc pathway                      | <i>p</i> -value       | Ecocyc pathway                    | <i>p</i> -value       |
| Nucleoside and nucleotide           | 6.21×10-5             | Detavisaction                     | 5.71×10-5             |
| biosynthesis                        | 6.31×10 <sup>-5</sup> | Detoxification                    | 5.71×10 <sup>-5</sup> |
| Nuclais said massassins             | 6.31×10 <sup>-5</sup> | Proteinogenic amino acid          | 5.71×10 <sup>-5</sup> |
| Nucleic acid processing             | 0.31^10*              | biosynthesis                      | 3./1/10               |
| Duning muglastide higgsmthesis      | 2.30×10 <sup>-4</sup> | Degradation/Utilization/Assimi    | 5.71×10 <sup>-5</sup> |
| Purine nucleotide biosynthesis      | 2.30^10               | lation                            | 3./1/10               |
| Purine riboucleotide de novo        | 3.54×10 <sup>-3</sup> | Alcohol degradation               | 8.96×10 <sup>-5</sup> |
| biosynthesis                        | J.J <del>1</del> ^10  | Alcohol degradation               | 0.90^10               |
| Superpathway of histidine,          |                       |                                   |                       |
|                                     | 3.54×10 <sup>-3</sup> | Amino acid biosynthesis           | 8.96×10 <sup>-5</sup> |
| purine, and pyrimidine              | 1                     |                                   | I                     |
| biosynthesis                        |                       |                                   |                       |
|                                     | 3.54×10 <sup>-3</sup> | L-histidine biosynthesis          | 8.96×10 <sup>-5</sup> |

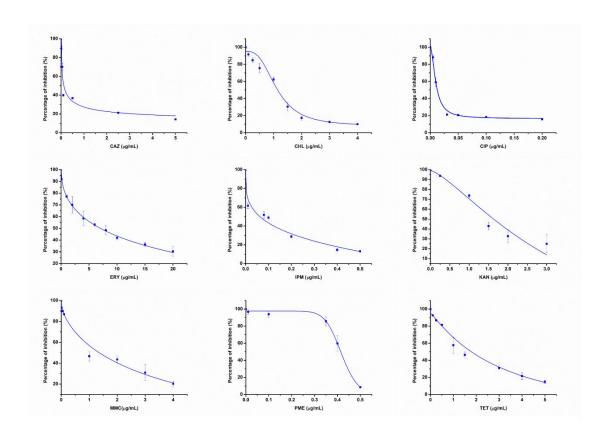
| Superpathway of purine                     |                       |                                         |                       |
|--------------------------------------------|-----------------------|-----------------------------------------|-----------------------|
| nucleotides <i>de novo</i> biosynthesis II | 3.54×10 <sup>-3</sup> | Glycerol degradation                    | 5.10×10 <sup>-4</sup> |
| tRNA-uridine 2-thiolation and              |                       | Glycerol and                            |                       |
| selenation (bacteria)                      | 5.21×10 <sup>-3</sup> | glycerophosphodiester degradation       | 0.016                 |
| Inosine-5'-phosphate                       | 5.68×10 <sup>-3</sup> | Glycolysis I (from glucose              | 0.024                 |
| biosynthesis                               | 3.06^10               | 6-phosphate)                            | 0.024                 |
| Inosine-5'-phosphate biosynthesis I        | 5.68×10 <sup>-3</sup> | L-lysine degradation                    | 0.024                 |
| Macromolecule modification                 | 0.039                 | L-lysine degradation I                  | 0.024                 |
|                                            |                       | Superpathway of glycolysis              |                       |
|                                            |                       | and the Entner-Doudoroff                | 0.027                 |
|                                            |                       | pathway                                 |                       |
|                                            |                       | Glycolysis                              | 0.031                 |
|                                            |                       | Assimilatory sulfate reduction          | 0.031                 |
|                                            | ,                     | Assimilatory sulfate reduction I        | 0.031                 |
|                                            |                       | Superpathway of sulfate                 |                       |
|                                            |                       | assimilation and cysteine               | 0.037                 |
|                                            |                       | biosynthesis                            |                       |
|                                            |                       | Superoxide radicals                     | 0.037                 |
|                                            |                       | degradation                             | 0.037                 |
|                                            |                       | Reactive oxygen species                 | 0.037                 |
|                                            |                       | degradation                             |                       |
|                                            |                       | Glycerophosphodiester                   | 0.037                 |
|                                            |                       | degradation                             |                       |
|                                            |                       | Proteinogenic amino acid                | 0.037                 |
|                                            | C 64                  | Degradation                             |                       |
| Haranalatad Farana add                     |                       | zidime                                  | 41                    |
| Upregulated Ecocyc path                    | <i>p</i> -value       | Downregulated Ecocyc pa                 |                       |
| Ecocyc pathway  Nucleoside and nucleotide  | <i>p</i> -value       | Ecocyc pathway Proteinogenic amino acid | <i>p</i> -value       |
| biosynthesis                               | 8.74×10 <sup>-6</sup> | biosynthesis                            | 6.08×10 <sup>-7</sup> |
| Superpathway of histidine,                 |                       | biosynthesis                            |                       |
| purine, and pyrimidine                     | 3.28×10 <sup>-4</sup> | Amino acid biosynthesis                 | 8.74×10 <sup>-7</sup> |
| biosynthesis                               | J.20. 10              | 1 mino dela olosynthesis                | 0.77.10               |
| Purine nucleotide biosynthesis             | 3.28×10 <sup>-4</sup> | L-histidine biosynthesis                | 3.21×10 <sup>-4</sup> |
|                                            |                       | Superpathway of                         |                       |
|                                            |                       | N-acetylglucosamine,                    |                       |
| Nucleic acid processing                    | 3.75×10 <sup>-4</sup> | <i>N</i> -acetylmannosamine and         | 0.048                 |
|                                            |                       | <i>N</i> -acetylneuraminate             |                       |
|                                            |                       | degradation                             |                       |
| Purine nucleotide de novo                  | 1.35×10 <sup>-3</sup> |                                         |                       |

| biosynthesis                        |                       |                                        |                       |
|-------------------------------------|-----------------------|----------------------------------------|-----------------------|
| Superpathway of purine              |                       |                                        |                       |
| nucleotides de novo                 | 1.35×10 <sup>-3</sup> |                                        |                       |
| biosynthesis II                     |                       |                                        |                       |
| Purine riboucleotide <i>de novo</i> |                       |                                        |                       |
| biosynthesis                        | 0.015                 |                                        |                       |
| Superpathway of pyrimidine          |                       |                                        |                       |
| deoxyribonucleotides <i>de novo</i> | 0.023                 |                                        |                       |
| biosynthesis                        | 0.023                 |                                        |                       |
| Superpathway of pyrimidine          |                       |                                        |                       |
| ribonucleotides <i>de novo</i>      | 0.023                 |                                        |                       |
| biosynthesis                        | 0.023                 |                                        |                       |
| Pyrimidine ribonucleotide <i>de</i> |                       |                                        |                       |
| novo biosynthesis                   | 0.023                 |                                        |                       |
| Pyrimidine nucleotide               |                       |                                        |                       |
| biosynthesis                        | 0.039                 |                                        |                       |
|                                     | Kana                  | mycin                                  |                       |
| Upregulated Ecocyc patl             | ıways                 | Downregulated Ecocyc pa                | thways                |
| Ecocyc pathway                      | <i>p</i> -value       | Ecocyc pathway                         | <i>p</i> -value       |
| Colanic acid (Escherichia coli      | 0.010                 | Nitrate reduction VIII                 | 2.85×10 <sup>-4</sup> |
| K12) biosynthesis                   | 0.010                 | (dissimilatory)                        | 2.85×10               |
|                                     |                       | NADH to cytochrome bo                  | 6.68×10 <sup>-4</sup> |
|                                     |                       | oxidase electron transfer I            | 0.08^10               |
|                                     |                       | NADH to fumarate electron              | 6.68×10 <sup>-4</sup> |
|                                     |                       | transfer                               | 0.08^10               |
|                                     |                       | NADH to dimethyl sulfoxide             | 1.15×10 <sup>-3</sup> |
|                                     |                       | electron transfer                      | 1.13^10               |
|                                     |                       | Superpathway of glycolysis,            |                       |
| /                                   |                       | pyruvate dehydrogenase, TCA,           | 0.013                 |
|                                     |                       | and glyoxylate bypass                  |                       |
|                                     |                       | Aerobic respiration                    | 0.031                 |
|                                     |                       | NADH to hydrogen peroxide              | 0.048                 |
|                                     |                       | electron transfer                      | 0.048                 |
|                                     |                       | NADH to cytochrome bd                  | 0.049                 |
|                                     |                       | oxidase electron transfer I            | 0.048                 |
|                                     |                       | Lipid A-core biosynthesis ( <i>E</i> . | 0.049                 |
|                                     |                       | coli K-12)                             | 0.048                 |
|                                     |                       | Lipid A-core biosynthesis              | 0.048                 |
|                                     |                       | Nitrogen compound                      | 0.049                 |
|                                     |                       | metabolism                             | 0.048                 |
|                                     | Ciprof                | loxacin                                |                       |
| Upregulated Ecocyc path             | ıways                 | Downregulated Ecocyc pa                | thways                |
| E                                   |                       | Essayes mothers                        | 1 <b>1</b>            |

*p*-value

Ecocyc pathway

Ecocyc pathway


*p*-value

|                               | I                     | T                                 | 1                     |
|-------------------------------|-----------------------|-----------------------------------|-----------------------|
| Superpathway of               |                       | NADH to fumarate electron         |                       |
| enterobacterial common        | 2.45×10 <sup>-3</sup> | transfer                          | 9.62×10 <sup>-7</sup> |
| antigen biosynthesis          |                       | transfer                          |                       |
| Superpathway of D-glucarate   | 0.020                 | NADH to dimethyl sulfoxide        | 1.6-106               |
| and D-galactarate degradation | 0.020                 | electron transfer                 | 1.67×10 <sup>-6</sup> |
| gazareanare arginantiem       |                       | NADH to cytochrome <i>bd</i>      |                       |
| Glycolate degradation         | 0.020                 | oxidase electron transfer I       | 1.38×10 <sup>-5</sup> |
|                               |                       |                                   |                       |
| Polysaccharide biosynthesis   | 0.026                 | NADH to hydrogen peroxide         | 3.55×10 <sup>-4</sup> |
|                               |                       | electron transfer                 |                       |
| O-glucarate degradation I     | 0.031                 | NADH to trimethylamine            | 1.53×10 <sup>-3</sup> |
| D gluculate degladation i     | 0.031                 | <i>N</i> -oxide electron transfer | 1.55*10               |
| D-glucarate degradation       | 0.031                 | Amino acid Biosynthesis           | 1.53×10 <sup>-3</sup> |
|                               | 0.024                 | Proteinogenic amino acid          | <b>7</b> 64 40 2      |
| D-galactarate degradation     | 0.031                 | biosynthesis                      | 5.64×10 <sup>-3</sup> |
|                               |                       | S-adenosyl-L-methionine           |                       |
| D-galactarate degradation I   | 0.031                 | _                                 | 5.70×10 <sup>-3</sup> |
|                               |                       | biosynthesis                      |                       |
| Glycolate and glyoxylate      | 0.031                 | L-histidine biosynthesis          | 6.60×10 <sup>-3</sup> |
| degradation I                 |                       | 3                                 |                       |
| Superpathway of pyrimidine    |                       | NADH to cytochrome bo             |                       |
| ribonucleotides de novo       | 0.036                 | oxidase electron transfer I       | 8.60×10 <sup>-3</sup> |
| biosynthesis                  |                       | oxidase electron transfer i       |                       |
| Pyrimidine ribonucleotide de  | 0.026                 | Generation of precursor           | 0.011                 |
| novo Biosynthesis             | 0.036                 | metabolites and energy            | 0.011                 |
| weve Bresymmeons              | /                     | Cardiolipin biosynthesis          | 0.016                 |
|                               |                       | Superpathway of sulfate           | 0.010                 |
|                               |                       |                                   | 0.016                 |
|                               |                       | assimilation and cysteine         | 0.016                 |
|                               |                       | biosynthesis                      |                       |
|                               |                       | Superpathway of glycolysis,       |                       |
|                               |                       | pyruvate dehydrogenase, TCA,      | 0.016                 |
| /                             |                       | and glyoxylate bypass             |                       |
|                               |                       | Superpathway of glycolysis        |                       |
|                               |                       | and the Entner-Doudoroff          | 0.018                 |
|                               |                       | pathway                           |                       |
|                               |                       | Detoxification                    | 0.018                 |
|                               |                       | Glycolysis I (from glucose        | 3.010                 |
|                               |                       | 6-phosphate)                      | 0.022                 |
|                               |                       | 1 1 /                             |                       |
|                               |                       | Superpathway of                   | 0.022                 |
|                               |                       | S-adenosyl-L-methionine           | 0.023                 |
|                               |                       | biosynthesis                      |                       |
|                               |                       | Aerobic respiration               | 0.027                 |
|                               |                       | Nitrate reduction VIII            | 0.028                 |
|                               |                       | (dissimilatory)                   | 0.028                 |
|                               |                       | Methylglyoxal detoxification      | 0.028                 |
|                               |                       | Superpathway of                   | 0.028                 |
| V                             |                       | P P                               | 1 3.020               |

|                         |                       | methylglyoxal degradation                                  |                       |
|-------------------------|-----------------------|------------------------------------------------------------|-----------------------|
|                         |                       | Glycolysis                                                 | 0.028                 |
|                         |                       | Cardiolipin biosynthesis I                                 | 0.028                 |
|                         |                       | Methylglyoxal degradation III                              | 0.028                 |
|                         |                       | L-methionine biosynthesis I                                | 0.028                 |
|                         |                       | Proteinogenic amino acid degradation                       | 0.041                 |
|                         |                       | L-methionine <i>de novo</i> biosynthesis                   | 0.041                 |
|                         |                       | Assimilatory sulfate reduction                             | 0.041                 |
|                         |                       | L-methionine biosynthesis                                  | 0.041                 |
|                         |                       | Assimilatory sulfate reduction I                           | 0.041                 |
|                         |                       | Superpathway of L-homoserine and L-methionine biosynthesis | 0.041                 |
|                         |                       | Aspartate superpathway                                     | 0.047                 |
|                         |                       | Aldehyde degradation                                       | 0.047                 |
|                         |                       | Amino acid degradation                                     | 0.047                 |
|                         | Polym                 | yxin E                                                     |                       |
| Upregulated Ecocyc path | ıways                 | Downregulated Ecocyc pat                                   | thways                |
| Ecocyc pathway          | <i>p</i> -value       | Ecocyc pathway                                             | <i>p</i> -value       |
|                         |                       | Superpathway of sulfate                                    |                       |
| Antibiotic Resistance   | 7.69×10 <sup>-3</sup> | assimilation and cysteine                                  | $1.78 \times 10^{-5}$ |
|                         |                       | biosynthesis                                               |                       |
| Polymyxin resistance    | 7.69×10 <sup>-3</sup> | Assimilatory sulfate reduction                             | 3.39×10 <sup>-5</sup> |
|                         |                       | Assimilatory sulfate reduction I                           | 3.39×10 <sup>-5</sup> |
|                         |                       | Inorganic nutrient metabolism                              | 3.39×10 <sup>-5</sup> |
|                         |                       | Sulfur compound metabolism                                 | 2.91×10 <sup>-4</sup> |
|                         |                       | Metabolite Activation/<br>Inactivation/Interconversion     | 9.34×10 <sup>-3</sup> |
|                         |                       | Sulfate activation for sulfonation                         | 9.34×10 <sup>-3</sup> |
|                         |                       | Metabolite activation                                      | 9.34×10 <sup>-3</sup> |
|                         |                       | Superpathway of thiamine diphosphate biosynthesis I        | 9.34×10 <sup>-3</sup> |
|                         |                       | Thiamine biosynthesis                                      | 0.015                 |
|                         |                       | Siderophore and metallophore biosynthesis                  | 0.015                 |
|                         |                       | UMP Biosynthesis                                           | 0.015                 |
|                         |                       | Enterobactin biosynthesis                                  | 0.015                 |
|                         |                       | UMP biosynthesis I                                         | 0.015                 |
|                         |                       | Molybdenum cofactor                                        | 0.039                 |

|                                                             |                        | biosynthesis                                                   |                       |
|-------------------------------------------------------------|------------------------|----------------------------------------------------------------|-----------------------|
|                                                             | Chloram                | phenicol                                                       | •                     |
| Upregulated Ecocyc patl                                     | nways                  | Downregulated Ecocyc pa                                        | thways                |
| Ecocyc pathway                                              | <i>p</i> -value        | Ecocyc pathway                                                 | <i>p</i> -value       |
| Electron transfer chains                                    | 2.15×10 <sup>-10</sup> | Aminoacyl-tRNA charging                                        | 3.49×10 <sup>-6</sup> |
| Respiration                                                 | 1.16×10 <sup>-9</sup>  | tRNA charging                                                  | 3.49×10 <sup>-6</sup> |
| Nitrate reduction                                           | 2.01×10 <sup>-7</sup>  | Metabolic clusters                                             | 2.53×10 <sup>-4</sup> |
| Generation of precursor metabolites and energy              | 1.13×10 <sup>-6</sup>  | Lipid A-core biosynthesis ( <i>E. coli</i> K-12)               | 2.44×10 <sup>-3</sup> |
| Anaerobic respiration                                       | 5.97×10 <sup>-6</sup>  | Lipid A-core biosynthesis                                      | 2.44×10 <sup>-3</sup> |
| Nitrogen compound metabolism                                | 9.50×10 <sup>-6</sup>  | Assimilatory sulfate reduction                                 | 2.44×10 <sup>-3</sup> |
| Aerobic respiration                                         | 2.07×10 <sup>-5</sup>  | Assimilatory sulfate reduction I                               | 2.44×10 <sup>-3</sup> |
| Succinate to cytochrome <i>bo</i> oxidase electron transfer | 1.04×10 <sup>-4</sup>  | Superpathway of sulfate assimilation and cysteine biosynthesis | 6.86×10 <sup>-3</sup> |
| Nitrate reduction VIII (dissimilatory)                      | 1.11×10 <sup>-4</sup>  | Glycerol and glycerophosphodiester degradation                 | 0.010                 |
| Nitrate reduction III (dissimilatory)                       | 1.11×10 <sup>-4</sup>  | Glycerol degradation I                                         | 0.010                 |
| NADH to cytochrome <i>bo</i> oxidase electron transfer I    | 1.59×10 <sup>-4</sup>  | Cell structure biosynthesis                                    | 0.020                 |
| Adenosine nucleotide degradation                            | 2.58×10 <sup>-3</sup>  | Glycerol degradation                                           | 0.038                 |
| Formate to nitrite electron transfer                        | 9.97×10 <sup>-3</sup>  | Glycerophosphodiester degradation                              | 0.042                 |
| D-lactate to cytochrome <i>bo</i> oxidase electron transfer | 0.011                  |                                                                |                       |
| Proline to cytochrome <i>bo</i> oxidase electron transfer   | 0.011                  |                                                                |                       |
| Molybdopterin biosynthesis                                  | 0.011                  |                                                                | •                     |
| Inorganic nutrient metabolism                               | 0.018                  |                                                                |                       |
| Adenosine nucleotides degradation II                        | 0.027                  |                                                                |                       |
| NADH to dimethyl sulfoxide electron transfer                | 0.027                  |                                                                |                       |
| ATP biosynthesis                                            | 0.030                  |                                                                |                       |
| Purine nucleotide Degradation                               | 0.040                  |                                                                |                       |
| NADH to hydrogen peroxide electron transfer                 | 0.043                  |                                                                |                       |
|                                                             | Erythr                 | omycin                                                         |                       |

| Upregulated Ecocyc pathways                                 |                       | Downregulated Ecocyc pathways                                  |                 |
|-------------------------------------------------------------|-----------------------|----------------------------------------------------------------|-----------------|
| Ecocyc pathway                                              | <i>p</i> -value       | Ecocyc pathway                                                 | <i>p</i> -value |
| Nitrate reduction                                           | 2.61×10 <sup>-7</sup> | Glycerol-3-phosphate to fumarate electron transfer             | 0.023           |
| Respiration                                                 | 2.61×10 <sup>-7</sup> | Superpathway of sulfate assimilation and cysteine biosynthesis | 0.023           |
| Nitrate reduction VIII (dissimilatory)                      | 3.91×10 <sup>-7</sup> | L-arginine biosynthesis I (via L-ornithine)                    | 0.023           |
| Electron transfer chains                                    | 6.17×10 <sup>-7</sup> | L-arginine biosynthesis                                        | 0.023           |
| Nitrogen compound metabolism                                | 7.80×10 <sup>-7</sup> | Detoxification                                                 | 0.023           |
| NADH to cytochrome <i>bo</i> oxidase electron transfer I    | 2.43×10 <sup>-6</sup> | Assimilatory sulfate reduction                                 | 0.023           |
| Anaerobic respiration                                       | 1.17×10 <sup>-5</sup> | Assimilatory sulfate reduction I                               | 0.023           |
| Nitrate reduction III (dissimilatory)                       | 2.48×10 <sup>-5</sup> |                                                                |                 |
| Nucleic acid processing                                     | 2.48×10 <sup>-5</sup> |                                                                |                 |
| Aerobic respiration                                         | 1.62×10 <sup>-4</sup> |                                                                |                 |
| Macromolecule modification                                  | 8.84×10 <sup>-4</sup> |                                                                |                 |
| NADH to hydrogen peroxide electron transfer                 | 9.19×10 <sup>-4</sup> |                                                                |                 |
| Succinate to cytochrome <i>bo</i> oxidase electron transfer | 2.43×10 <sup>-3</sup> |                                                                | ,               |
| L-histidine biosynthesis                                    | 2.43×10 <sup>-3</sup> | ]                                                              |                 |
| ATP biosynthesis                                            | 2.43×10 <sup>-3</sup> |                                                                |                 |
| L-histidine biosynthesis                                    | 2.43×10 <sup>-3</sup> |                                                                |                 |
| NADH to trimethylamine  N-oxide electron transfer           | 2.43×10 <sup>-3</sup> |                                                                |                 |
| Inorganic nutrient metabolism                               | 6.16×10 <sup>-3</sup> |                                                                |                 |
| NADH to dimethyl sulfoxide electron transfer                | 6.54×10 <sup>-3</sup> |                                                                |                 |
| Generation of precursor metabolites and energy              | 0.011                 |                                                                |                 |
| Formate to nitrite electron transfer                        | 0.013                 |                                                                |                 |
| NADH to cytochrome <i>bd</i> oxidase electron transfer I    | 0.014                 |                                                                |                 |
| NADH to fumarate electron transfer                          | 0.014                 |                                                                |                 |



**Figure S1. Response of** *E. coli* **growth to antibiotics.** TET, Tetracycline; Mitomycin C, MMC; Imipenem, IPM; Ceftazidime, CAZ; Kanamycin, KAN; Ciprofloxacin, CIP; Polymyxin E, PME; Chloramphenicol, CHL; Erythromycin, ERY. Error bar indicates standard deviation of three replicates.

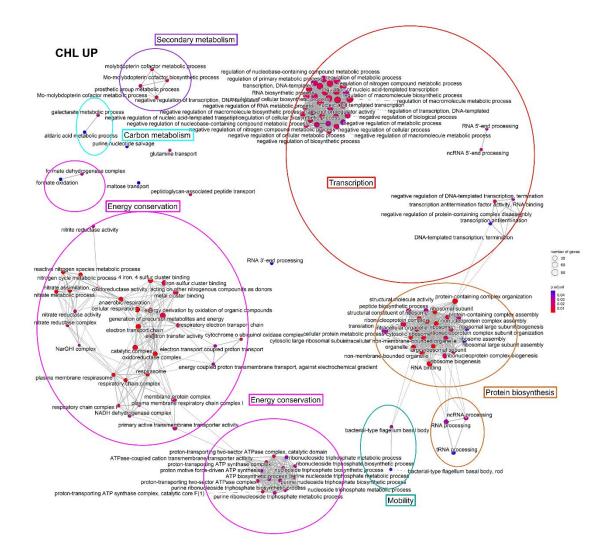



Figure S2. Upregulated gene ontology terms upon treatment with chloramphenicol determined with enrichment analysis.

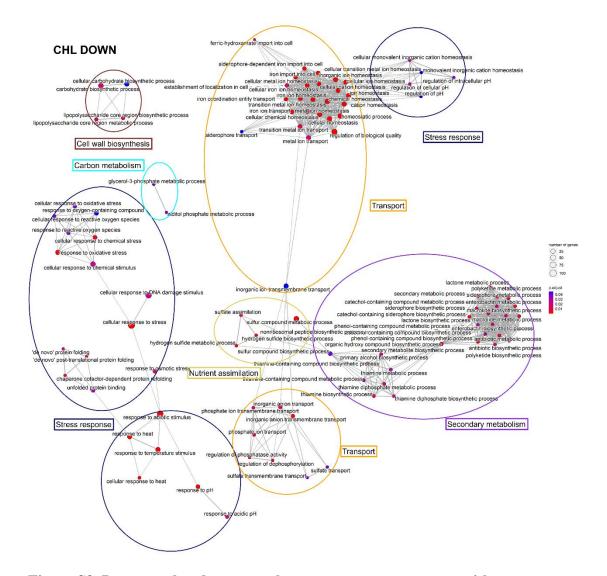



Figure S3. Downregulated gene ontology terms upon treatment with chloramphenical determined with enrichment analysis.

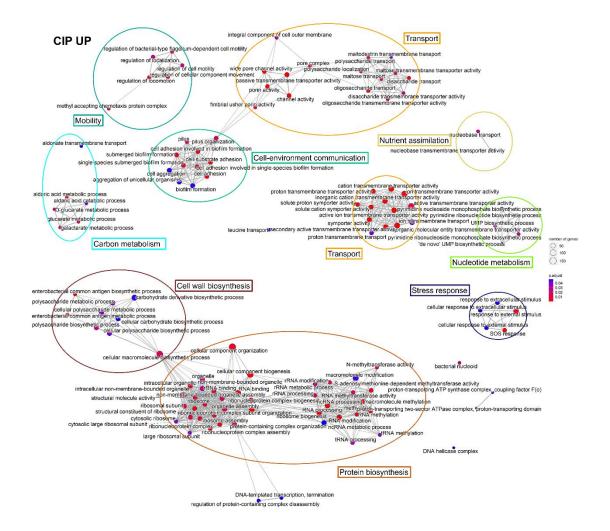



Figure S4. Upregulated gene ontology terms upon treatment with ciprofloxacin determined with enrichment analysis.

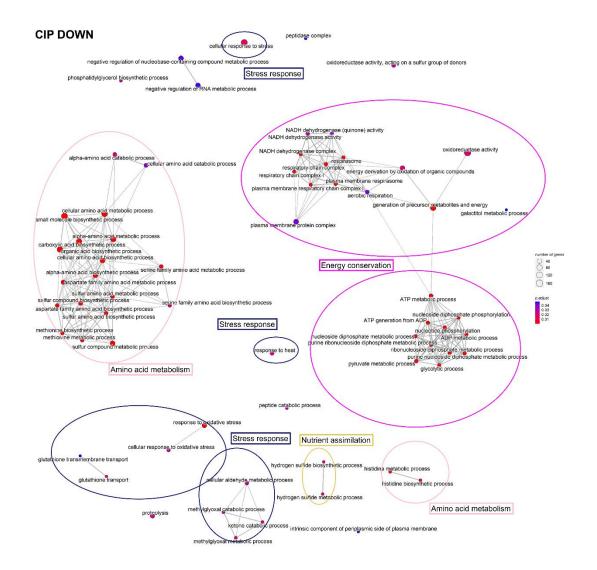



Figure S5. Downregulated gene ontology terms upon treatment with ciprofloxacin determined with enrichment analysis.

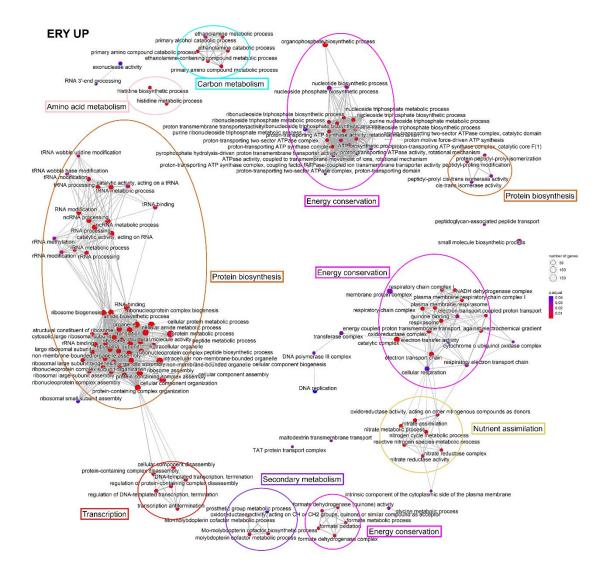



Figure S6. Upregulated gene ontology terms upon treatment with erythromycin determined with enrichment analysis.

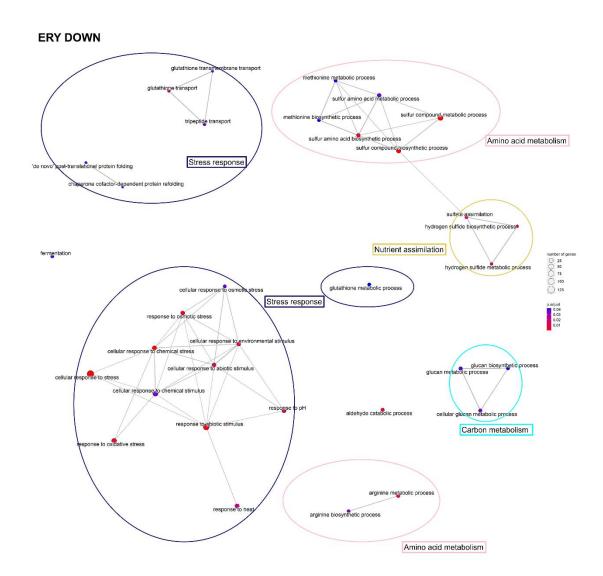



Figure S7. Downregulated gene ontology terms upon treatment with erythromycin determined with enrichment analysis.

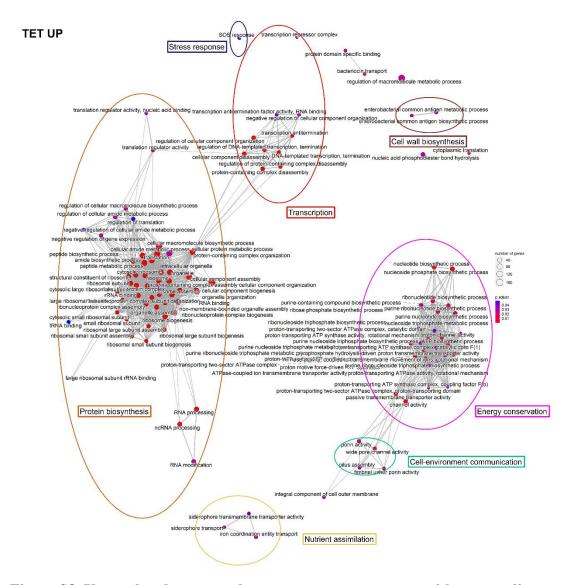



Figure S8. Upregulated gene ontology terms upon treatment with tetracycline determined with enrichment analysis.

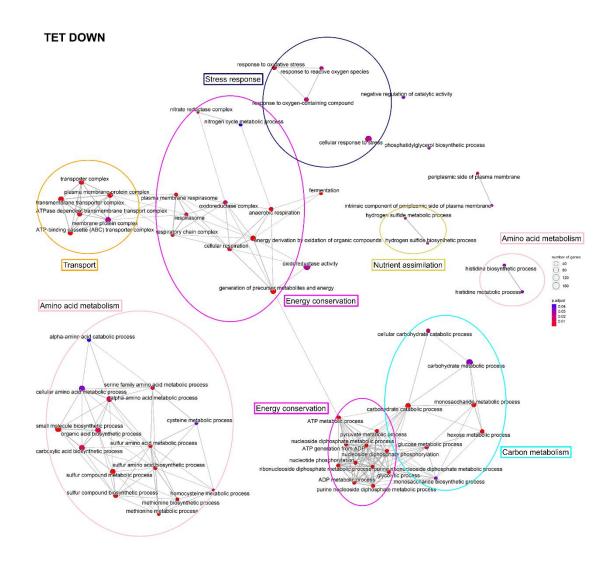



Figure S9. Downregulated gene ontology terms upon treatment with tetracycline determined with enrichment analysis.

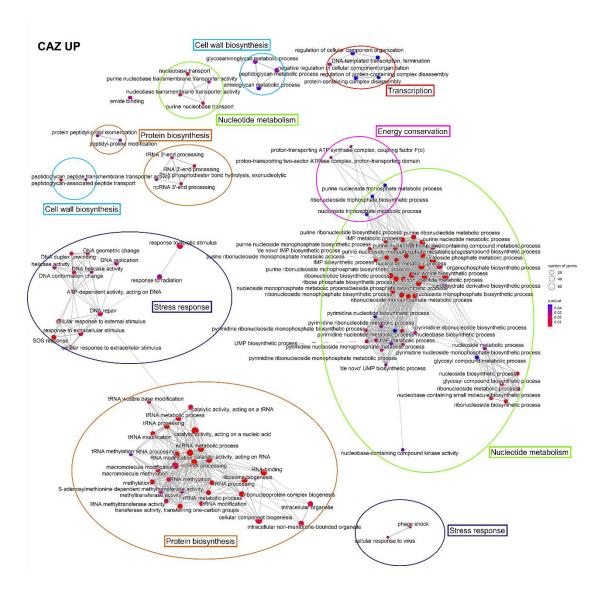



Figure S10. Upregulated gene ontology terms upon treatment with ceftazidime determined with enrichment analysis.

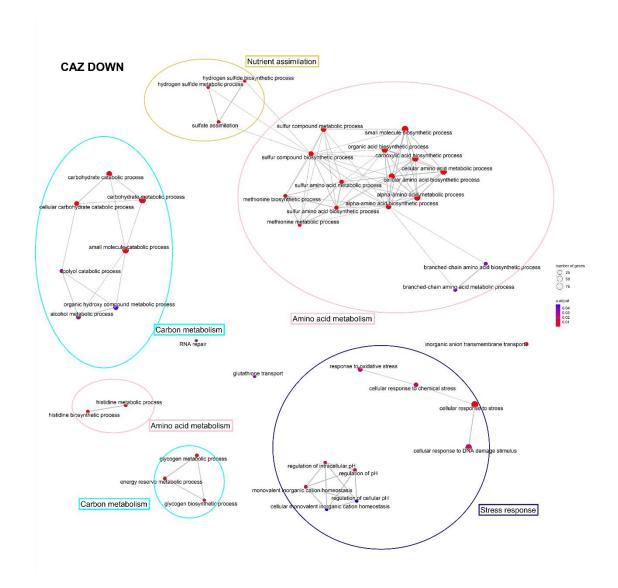



Figure S11. Downregulated gene ontology terms upon treatment with ceftazidime determined with enrichment analysis.

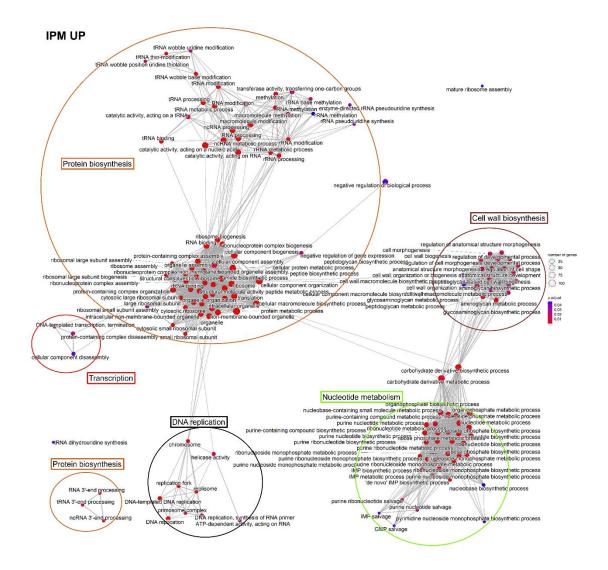



Figure S12. Upregulated gene ontology terms upon treatment with imipenem determined with enrichment analysis.

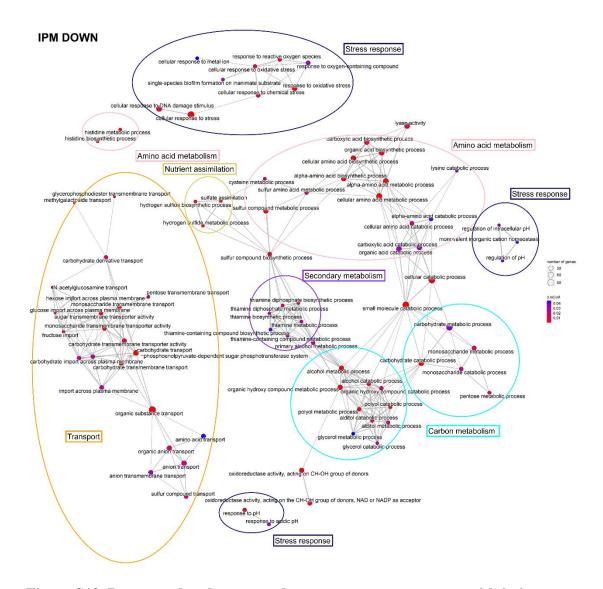



Figure S13. Downregulated gene ontology terms upon treatment with imipenem determined with enrichment analysis.

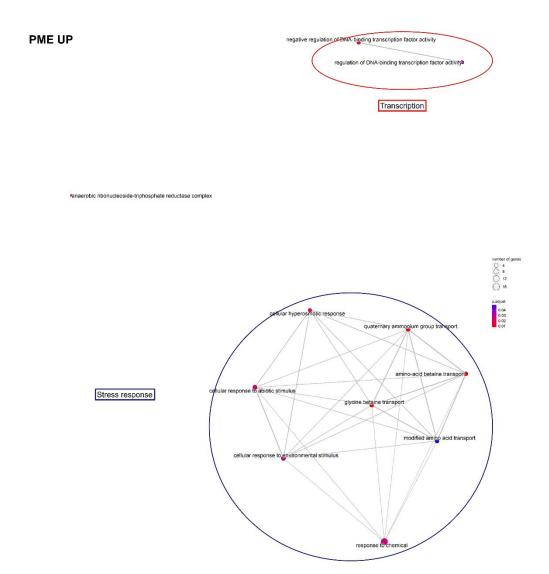



Figure S14. Upregulated gene ontology terms upon treatment with polymyxin E determined with enrichment analysis.

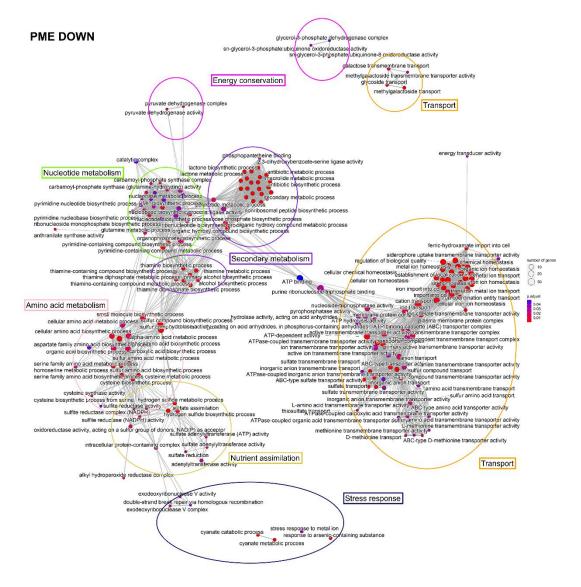



Figure S15. Downregulated gene ontology terms upon treatment with polymyxin E determined with enrichment analysis.

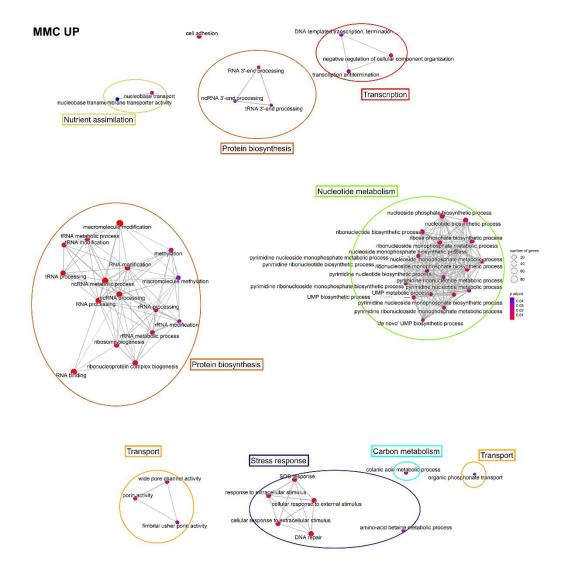



Figure S16. Upregulated gene ontology terms upon treatment with mitomycin C determined with enrichment analysis.

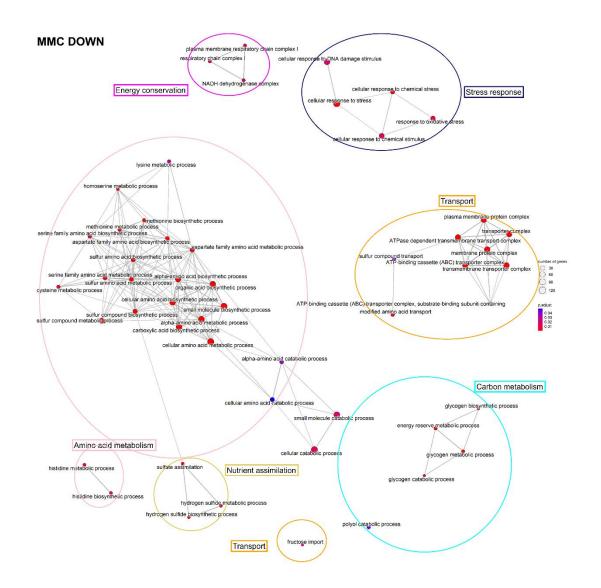



Figure S17. Downregulated gene ontology terms upon treatment with mitomycin C determined with enrichment analysis.

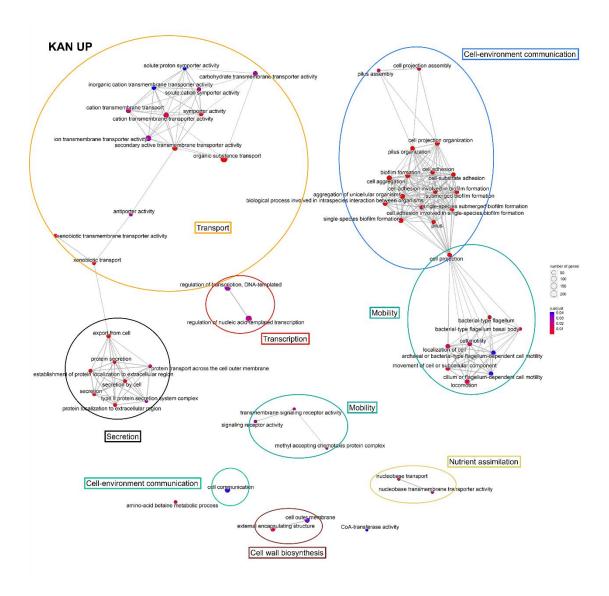



Figure S18. Upregulated gene ontology terms upon treatment with kanamycin determined with enrichment analysis.

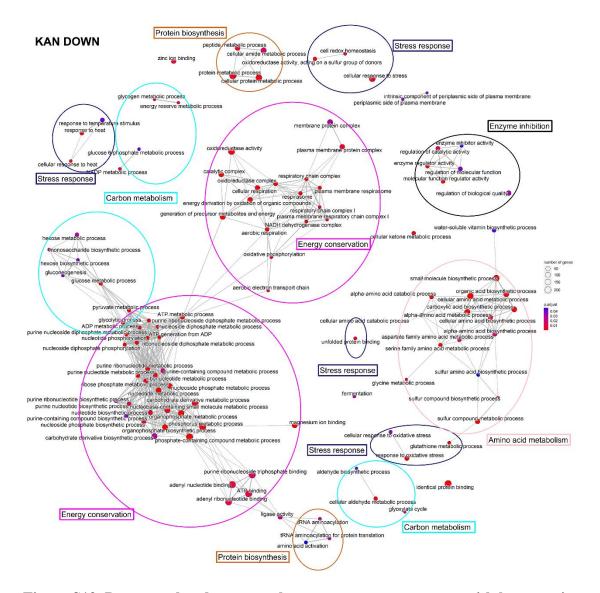



Figure S19. Downregulated gene ontology terms upon treatment with kanamycin determined with enrichment analysis.

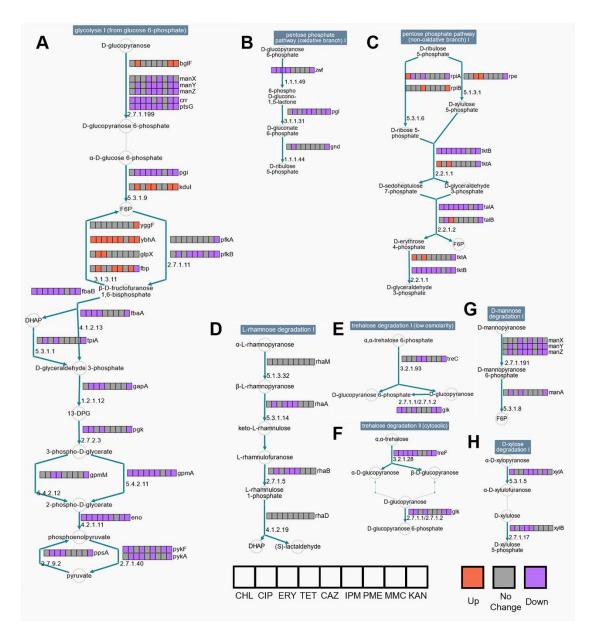



Figure S20. Response of carbohydrate metabolism to antibiotics. Panel A,

glycolysis pathway; Panel B, pentose phosphate pathway (oxidative branch); Panel C, pentose phosphate pathway (non-oxidative branch); Panel D, rhamnose metabolism; Panel E, trehalose metabolism (low osmolarity); Panel F, trehalose metabolism (cytosolic); Panel G, mannose metabolism; Panel H, xylose metabolism. EC numbers are indicated beside genes.

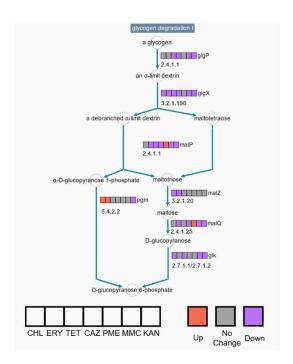



Figure S21. Response of glycogen metabolism to antibiotics.

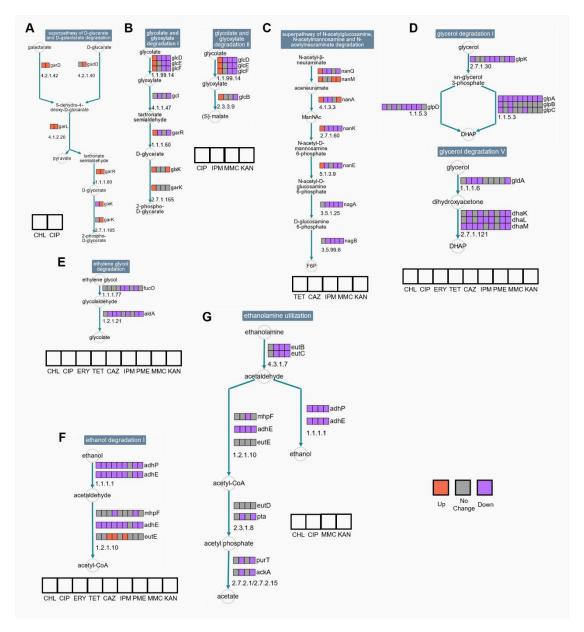



Figure S22. Response of non-carbohydrate carbon metabolism to antibiotics.

Panel A, aldaric acid metabolism; Panel B, glycolate and glyoxylate metabolism; Panel C, amino sugar metabolism; Panel D, glycerol metabolism; Panel E, ethylene glycol metabolism; Panel F, ethanol metabolism; Panel G, ethanolamine metabolism. F6P, β-D-fructofuranose 6-phosphate; DHAP, glycerone phosphate. EC numbers are indicated beside genes.

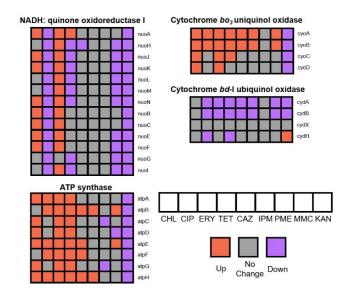
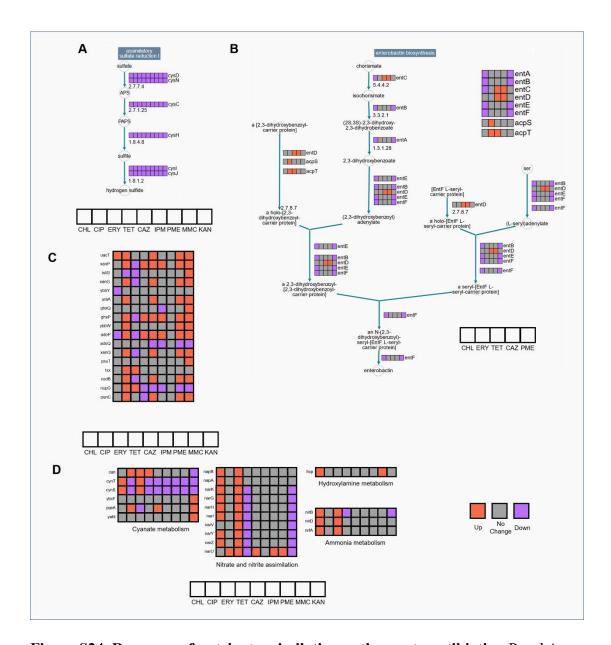




Figure S23. Transcriptomic response of energy conservation.



**Figure S24. Response of nutrient assimilation pathways to antibiotics.** Panel A, sulfate assimilation pathway; Panel B, iron assimilation pathway; Panel C, nucleobase transport pathway; Panel D, nitrogen metabolism pathway. EC numbers are indicated beside genes.

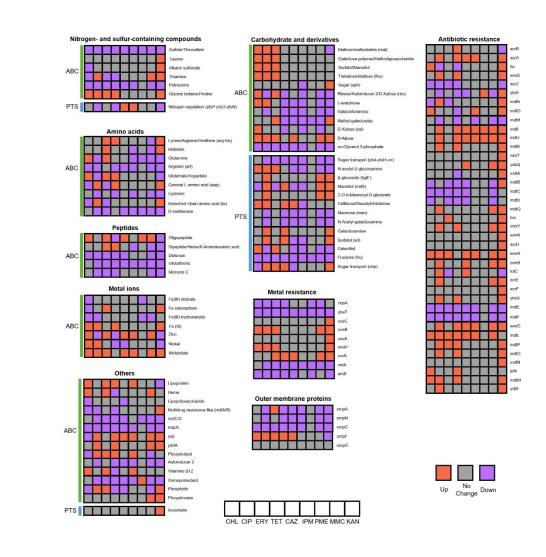



Figure S25. Response of transporter-coding genes to antibiotics.

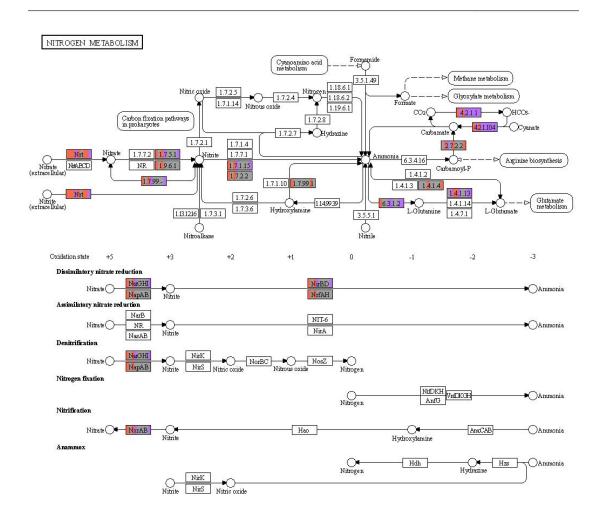



Figure S26. Regulation of nitrogen metabolism pathways. In each

gene-representing square, colors indicate the regulation of the gene's expression.

From left to right in each square the colors represent regulation of chloramphenicol, ciprofloxacin, erythromycin, tetracycline, ceftazidime, imipenem, polymyxin E, mitomycin C, and kanamycin. Red color indicates upregulation. Purple color indicates downregulation.



**Figure S27. Transcriptomic response in stress response pathways.** Panel A, stress response pathways, circles indicate proportions of upregulated, downregulated and unregulated genes; Panel B, polymyxin resistance pathway response to PME. EC numbers are indicated beside genes.

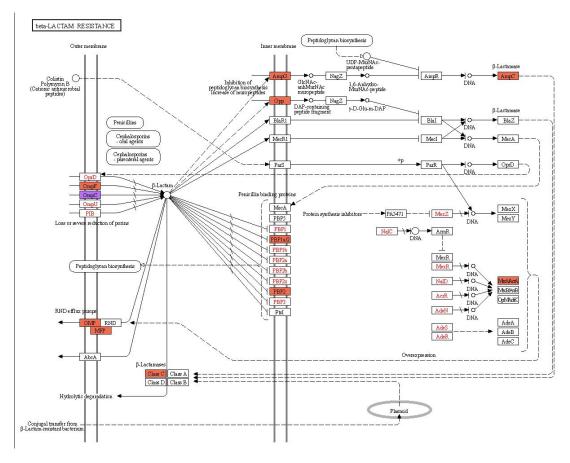



Figure S28. Transcriptomic response of  $\beta$ -lactam resistance pathway to CAZ.

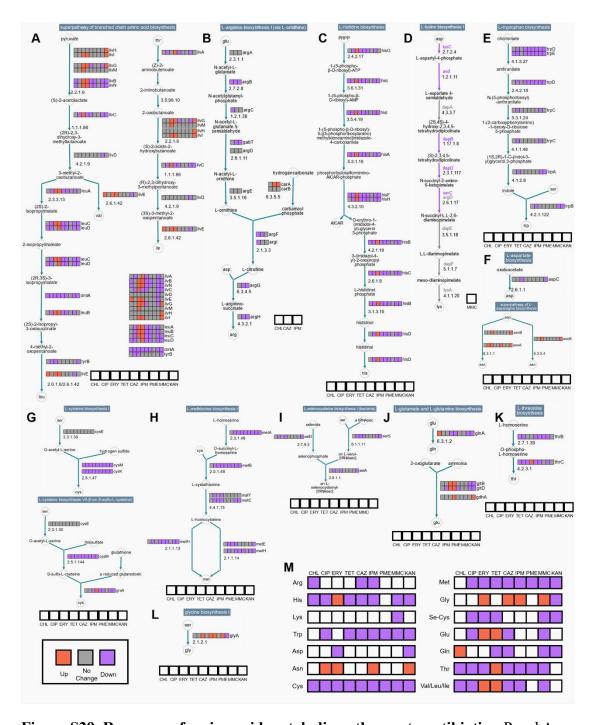



Figure S29. Response of amino acid metabolic pathways to antibiotics. Panel A, metabolism of valine, leucine, and isoleucine; Panel B, arginine metabolism pathway; panel C, histidine metabolism pathway; Panel D, lysine metabolism pathway; Panel E, tryptophan metabolism pathway; Panel F, asparagine and aspartic acid metabolism pathway; Panel G, cystine metabolism pathway; Panel H, methionine metabolism Panel I, selenocysteine metabolism pathway; Panel J, glutamine and glutamic acid

metabolite pathway; Panel K, threonine metabolism pathway; Panel L, glycine metabolism pathway; Panel M, summary of regulation of amino acid metabolism pathways. EC numbers are indicated beside genes.

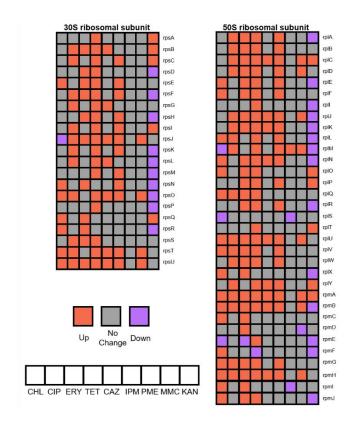



Figure S30. Transcriptomic response of protein biosynthesis.

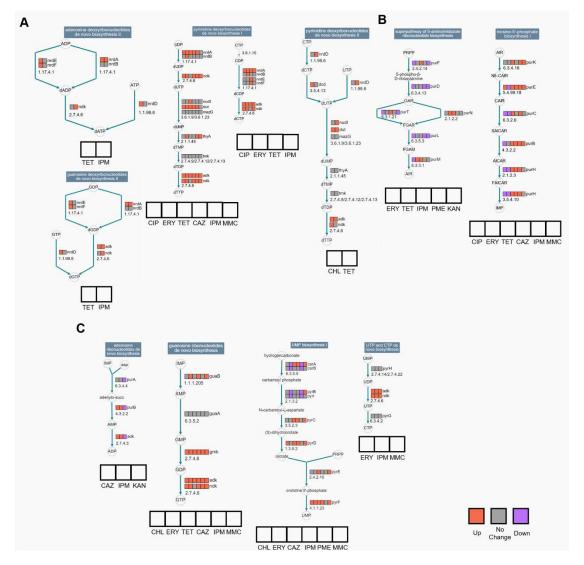



Figure S31. Transcriptomic response of nucleotide biosynthesis pathways. Panel

A, dNTP biosynthesis pathways; Panel B, nucleotide precursor biosynthesis pathways; Panel C, NTP biosynthesis pathways. EC numbers are indicated beside genes.

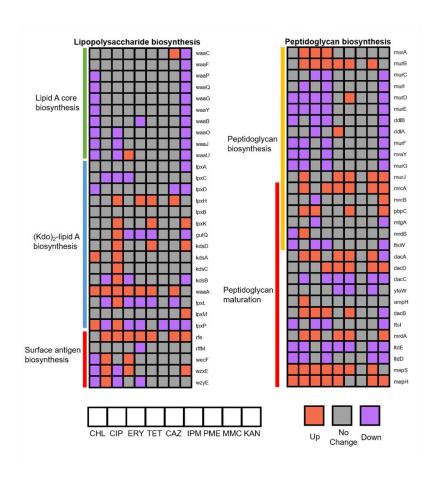



Figure S32. Transcriptomic response of cell wall biosynthesis.

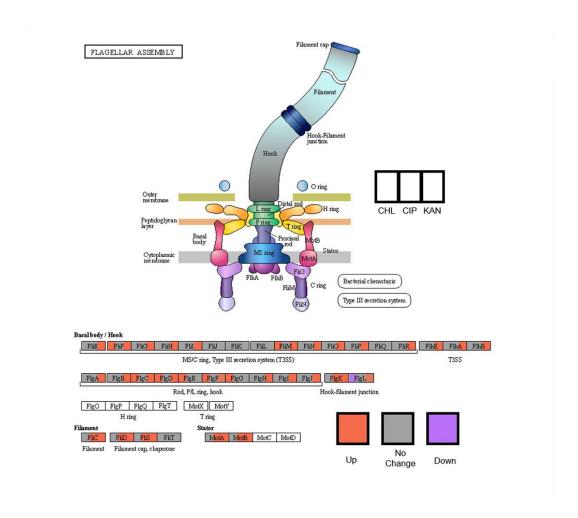
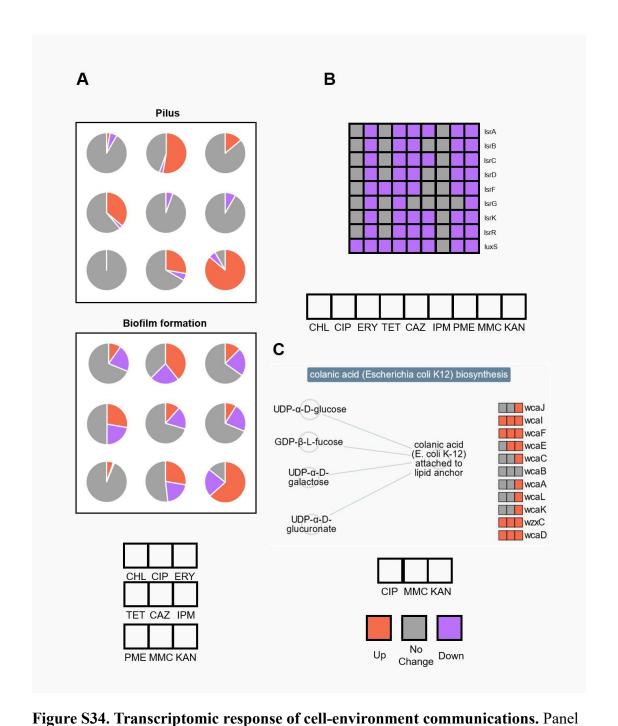




Figure S33. Transcriptomic response of flagella assembly.



A, pilus and biofilm formation; Panel B, quorum sensing; Panel C, colonic acid

biosynthesis.