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ABSTRACT

High-throughput chromosome conformation capture
(3C) technologies, such as Hi-C, have made it pos-
sible to survey 3D genome structure. However, ob-
taining 3D profiles at kilobase resolution at low cost
remains a major challenge. Therefore, we herein
present an algorithm for precise identification of
chromatin interaction sites at kilobase resolution
from MNase-seq data, termed chromatin interaction
site detector (CISD), and a CISD-based chromatin
loop predictor (CISD loop) that predicts chromatin–
chromatin interactions (CCIs) from low-resolution Hi-
C data. We show that the predictions of CISD and
CISD loop overlap closely with chromatin interac-
tion analysis by paired-end tag sequencing (ChIA-
PET) anchors and loops, respectively. The validity
of CISD/CISD loop was further supported by a 3C
assay at about 5 kb resolution. Finally, we demon-
strate that only modest amounts of MNase-seq and
Hi-C data are sufficient to achieve ultrahigh resolu-
tion CCI maps. Our results suggest that CCIs may re-
sult in characteristic nucleosomes arrangement pat-
terns flanking the interaction sites, and our algo-
rithms may facilitate precise and systematic inves-
tigations of CCIs on a larger scale than hitherto have
been possible.

INTRODUCTION

The 3D genome architecture underlies many cellular pro-
cesses in the nucleus (1–3). Proximity ligation-based chro-
mosome conformation capture (3C) and its variations (4–
6) constitute a major engine driving the exploration of the
3D genome architecture (7,8). Using one genome-wide ver-

sion of the 3C technology, Hi-C, it has been possible to ex-
plore the global 3D architecture of the human (9,10), mouse
(11,12), fly (13) and yeast genomes (14). Mediator-specific
3D chromatin interaction maps have also been produced
by the ChIA-PET method in mammals for such proteins as
CTCF (15,16), Pol II (16,17), cohesin (18) and histone mod-
ifications (19). With these mappings, genomes were found
to be physically separated into two compartments (A and
B), one active and the other inactive (9). Higher resolution
mapping could reveal finer structures. For example, with
increased Hi-C resolution, the so-called ‘topologically as-
sociated domains’ (TADs) (11,13,20,21) and sub-TAD (22)
structures in mammals have been identified, along with de-
tailed chromatin fiber looping structures (16,23). However,
because most cis-regulatory sequences are in the size range
of hundreds of base-pairs and may be closely clustered (24),
precise definition of individual enhancer-promoter interac-
tions on a genome-wide scale remains beyond the capacity
of current Hi-C methodology.

At least four major obstacles hamper the construction
of high-resolution chromatin interaction maps by current
Hi-C technology. First, it remains prohibitively expensive
to substantially increase Hi-C resolution solely by deep se-
quencing (7). The number of reads needed to increase res-
olution will necessarily grow exponentially, and this num-
ber is already running into the billions at a resolution of 1
kb (23). Second, a theoretical limit is defined by the natu-
ral density of restriction enzyme sites in the genomes (25).
Third, the efficiency of experimental steps in the 3C proto-
col varies from site to site along the genome, making it dif-
ficult to find optimal conditions and controls for genome-
wide assays (26), and this also require further work on the
normalization of the data (27–29). Fourth, the ligation step
in 3C is always subject to the problem of crosslinking. A
recently detailed fluorescence in situ hybridization (FISH)
and 3C analysis at the murine HoxD locus showed that the
two technologies do not produce concordant results, imply-
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ing that a high density of 3C signal does not always reflect
spatial proximity (30).

Attempts have been made to improve the resolu-
tion of chromatin–chromatin interaction (CCI) maps
(15,16,23,26,31–35). Capture-based methods (15,16,26,31–
33), or alternative DNA cutters (34,35), have been described
in the literature. For example, Duan et al. replaced re-
striction enzymes with DNase I (34), and obtained better
genome coverage and resolution than normal Hi-C. How-
ever, as a result of inherent limitations of the current 3C-
based protocols, it remains challenging to substantially in-
crease comprehensive mapping resolution to a level beyond
1–2 kb within reasonable cost constraints (23,26).

Chromatin 3D architecture is associated with various epi-
genetic features. For example, by comparing the ChIA-PET
map with DNase-seq, ChIP-seq and RNA-seq datasets,
Snyder et al. showed that there is a strong association be-
tween CCIs and chromatin accessibility (19). Computa-
tional models have also been developed to investigate as-
sociations between histone marks and A/B compartments
(36), CCI hubs and TADs (37). More recently, methods
that integrate high-dimensional multi-omics data in multi-
ple cell types to predict CCIs have also been reported (38–
41). However, the massive cross-cell types and multi-omics
data required by these methods have made it difficult to de-
tect cell-type specific interactions, or to elucidate the under-
lying mechanisms linking CCIs to chromatin dynamics.

As nucleosomes are the basal structural units of chro-
matin, the arrangement of nucleosomes could carry fun-
damental information about the chromatin dynamics. Al-
though nucleosomes have been shown to have strong DNA
sequence preference (42), their arrangement is highly dy-
namic, i.e. subject to either active remodeling by adenosine
triphosphate-dependent remodeling enzymes (43), or pas-
sive remodeling by stochastically aligning to bound tran-
scription factors (TFs) (44). Genomic events or features,
e.g., stably bound TFs, the end of a heterochromatin do-
main, or simply a nucleosome-free DNA region (NFR), are
sufficient to cause statistical phasing of a considerable por-
tion of the nucleosomes (44,45). Moreover, the phasing pat-
terns of the nucleosomes vary considerably among bound
TFs (46,47). For example, Sun and colleagues found that
the nucleosome profiles of TF binding sites could be clas-
sified into tens of clusters (47). These differences may re-
flect the local chromatin context among the TFs. Based on
these facts we propose a hypothesis that physical CCIs could
significantly alter the local chromatin context, resulting in
characteristic nucleosomes arrangement patterns flanking
the CCI sites. To test the hypothesis, we examined nucle-
osome arrangements flanking CCI sites. Distinct arrange-
ments of nucleosomes flanking the binding sites of CCI-
associated factors, e.g., CTCF, have been well documented
(48). Moreover, we found distinct differences in the nucleo-
somes arrangement patterns between the interacting allele
compared to the non-interacting allele at allele-specific CCI
sites.

Based on this hypothesis, we developed two computa-
tional algorithms, named CISD (chromatin interaction site
detector) and CISD loop (CISD-based chromatin loop pre-
dictor) that respectively predict CCI sites and CCIs at kilo-
base resolution. CISD and CISD loop only require low-

resolution MNase-seq data and low-resolution Hi-C input,
respectively. We show that the predictions of CISD and
CISD loop are enriched for ChIA-PET anchors and loops,
respectively. We performed 3C experiments at 5kb resolu-
tion and validated CISD loop predictions that have not
been reported in the ChIA-PET data. Because the algo-
rithms trained in one cell type can be applied to other cell
types with high accuracy, the association between the char-
acteristic nucleosomes arrangement pattern and the CCI
sites may be universal in human cells. The power of charac-
teristic nucleosome arrangement patterns to predict CCIs
further supports our initial hypothesis. Finally, by satu-
ration analysis, we show that only moderate amounts of
MNase-seq and Hi-C data are sufficient to achieve ultra-
high resolution CCI maps.

MATERIALS AND METHODS

Data

Data that were downloaded from public domain are listed
in the Supplementary Text.

Chromatin interaction site detector (CISD)

Basically, CISD determines whether the nucleosomes ar-
rangement pattern in a given genome locus is a pattern that
is characteristic of chromatin interactions. The algorithm
can be largely separated into a data preparation section and
two model training sections (Figure 2A).

Data preparation. Here, we convert MNase-seq data into
the frequency spectrum by fast Fourier transform (FFT).
CISD first smooths the input MNase-seq reads. For any
given genomic region (1 kb-long in this study), the mapped
reads are binned into 10 bp-long bins, resulting in an n-
dimensional vector V. V is then fed into the iNPS for de-
noising and smoothing (49). The iNPS is an improved ver-
sion of NPS (50); both iNPS and NPS denoise and smooth
the wave-form signal by Laplacian of Gaussian convolution
(LoG) (49,50). After the LoG, the frequency feature of the
original data is preserved, while its direct current compo-
nent is substantially reduced. The denoised and smoothed
V (denoted as V′) is further normalized by dividing the stan-
dard deviation of V’ over the whole genome, and it was
denoted as Ṽ = {ṽ j }, j = 0, 2, ..., n − 1. After data denois-
ing, smoothing and normalization, CISD converts the lin-
ear data into frequency space. To do this, for any given Ṽ,
FFT is applied to retrieve the frequency information. In
general, FFT is a fast computational method for Discrete
Fourier Transformation (DFT). The DFT converts an n-
dimensional vector Ṽ of complex numbers into a complex
number vector C = {c j }, j = 0, 2, 3, ..., n − 1,

c j =
n∑

t=1

ṽte−i tω j ,

where i is the basic unit of the imaginary number, and ω j =
2π j/n. Since (i) C is conjugate symmetric and (ii) we are
only interested in the modulus of C, we discarded that half
of the elements in C where the real parts are negative. We
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thus arrive at the definition of the FFT profile (denoted as
F) of the nucleosomes arrangement in a genome segment
such that

F = {Fj = ∥∥c j
∥∥}, j = 0, 2, 3, ..., �n/2� ,

where ‖c j‖denotes the modulus of c j .

Model training one: periodic region detection. We define a
metric for the periodicity of a given genomic region by a
logistic regression model (LRM). To train the LRM, we
constructed a positive and a negative dataset containing
randomly selected 10 000 CTCF/cohesin co-binding of the
ChIA-PET anchors and the randomly selected 10 000 con-
trol genomic regions, respectively, in the GM12878 and
K562 cell types. In the positive dataset, the co-binding of
CTCF and RAD21 is inferred by the ChIA-PET anchors.
CTCF and cohesin are considered to be co-binding if the
two ChIA-PET anchors overlap by more than one base
pair. The negative set is composed of genomic segments
that are located at least 5kb away from the CTCF, cohesin
and ZNF143 binding sites and are also not in promoter re-
gions, i.e. at least 5 kb away from UCSC annotated tran-
scription start sites. We chose F0, F5 and F6 in the FFT pro-
files (Fj ) as the features with which to train the LRM. The
LRM was trained by R. An artificial threshold of LRM
score (periodic score) was then chosen to determine if the
input genomic segment is carrying a periodic nucleosome
pattern. The LRM was assessed by receiver operating char-
acteristic (ROC) curve and the area under the ROC curve
(AUC), which are both drawn and calculated by the R pack-
age ‘pROC’. In this paper, we took 0.5 as the threshold and
applied the LRM to the whole genome, denoting the de-
termined periodic nucleosomal regions as high score peaks
(HSPeaks) to be used as input for the next step.

Model training two: interaction site detection. As we have
shown above, not all periodic nucleosomal regions are asso-
ciated with chromatin interactions. Accordingly, we trained
a support vector machine (SVM) to further distinguish in-
teractive loci from the remaining periodic nucleosomal re-
gions. We took the full frequency spectrum (F) as the fea-
ture. To train the SVM, we constructed a positive and a
negative dataset from the HSPeaks. The positive sets con-
sisted of overlapping CTCF and cohesin ChIA-PET an-
chors, while the negative set was randomly sampled from
a subset of HSPeaks that did not overlap any ChIA-PET
anchors. The SVM model was implemented by R-package
‘e1071’ with default parameter settings.

CISD-based Chromatin loop predictor (CISD loop)

CISD loop is a method for determination of intra-TAD
chromatin loops between CISD sites. In addition to CISD,
TAD annotation and raw Hi-C reads are required for the
operation of CISD loop. The TADs annotated in hESC
were used as the reference for all human cells, as the TAD
structure is believed to be largely consistent among tissue
types (11). CISD loop was trained according to the follow-
ing procedure. First, we constructed a ‘total’ dataset com-
posed of all intra-TAD CISD site pairs. Then, the training
and testing datasets were drawn from the ‘total’ dataset so

that the positive set (5000 data points in this work) was com-
posed of the CISD pairs that overlapped with ChIA-PET
loops, and the negative set was an identical number of ran-
domly sampled CISD pairs from the remaining data. A vot-
ing system with four decision tree based voters, GBDT (51),
random forest (51), ExtraTrees (51) and CART (51) were
composed to form CISD loop. The rationale of our mod-
eling choices is that physically contacting genome loci may
be experiencing similar biology processes, e.g. located in the
same transcription factory, so that their biophysical or bio-
chemical characters may be covariant (38,39), while the de-
cision tree based methods are convenient to capture such
covariant. A CISD site pair is predicted as a CCI loop only
if all four models predict it is positive. This is because we
found that the more votes a prediction get, the more likely
it is to be supported by ChIA-PET data (Supplementary
Figure S1). The models were implemented by the Python-
package ‘sklearn’ (51).

There are three categories of features been used by
CISD loop. The first category is the FFT profiles of the nu-
cleosome pattern. These were selected to capture the char-
acteristic biophysical features that may be covariant be-
tween interacting CISD site pairs. There are 50 FFT profile
components for each CISD site, so in total, there are 100
features in this feature category for a pair of CISD sites.
We compared the correlation between positive and nega-
tive CISD pairs, and indeed, the Pearson’s correlation co-
efficients of the FFT profiles in the positive set are higher
than that in negative set (Supplementary Figure S2). These
data indicate that the covariant of the FFT profiles indeed
carries information about the CCIs.

The second feature category is the Hi-C map. The Hi-
C experiment directly measures the contact frequency be-
tween genome loci. Although, high resolution Hi-C maps
remain prohibitively expensive, low resolution Hi-C is now
becoming more accessible to ordinary laboratories. Thus,
we included Hi-C maps into the feature list of CISD loop.
The two most prominent characters of a chromatin loop in
a Hi-C map are (i) that the absolute contact frequencies be-
tween the looping anchors are high, and (ii), that the relative
contact frequencies between the looping anchors are higher
compared to their flanking regions. Thus, we created a Hi-C
contact index and their differences to model characters (i)
and (ii), respectively. The Hi-C contact index was defined
as the sum of the normalized Hi-C reads counts between a
given pair of genome loci. For any given pair of CISD sites,
various levels of the Hi-C contact index can be defined with
different ranges. For example, as shown in Supplementary
Figure S3, the sum of normalized Hi-C reads counts in the
yellow, green and blue diamond boxes were defined as the
Hi-C contact indices at levels 1, 2 and 3, respectively, for
pairs of loci Bi and Bj. The default Hi-C map used was at
5kb resolution, however, this resolution is not mandatory.
The features used in CISD loop were Hi-C contact indices
at levels 1, 2 and 3, and their differences.

The third category feature is the genomic linear distance
between two given loci. The distance is critical to CCIs.
Both empirical data and theoretical polymer models have
shown that the probability of interaction is a function of
the genomic distance, i.e. the closer the loci the higher the
chance of contact between them. Moreover, the majority of
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CCIs are found to be intra-TAD. These facts motivated us
to include the genomic distance as a feature for CISD loop.
Finally, we only considered the intra-TAD CISD pairs in
CISD loop. In total, there are 106 features that were em-
ployed in CISD loop.

Determination of allele-specific MNase-seq reads

We downloaded the most updated phased SNPs of the
GM12878 cell line in the 1000 Genomes Project (52) from
Gerstein’s lab (53). By overlapping the mapped reads with
phased SNPs, we identified 8 382 815 and 8 456 093
paternal-specific and maternal-specific MNase-seq reads,
respectively.

Determination of allele-specific CCIs

We took the ChIA-PET loop anchors in the GM12878 cell
line as the gold standard CCI sites (54). However, the an-
chor lengths were too short (mean = 424 bp) to identify
a sufficient number of SNPs. Therefore, instead of using
ChIA-PET data, we pooled all Hi-C reads that mapped
within a 5 kb genome region flanking each ChIA-PET loop
anchor (23). We used the ratio of the maternal-specific reads
number to the paternal-specific reads number to index the
allele specificity of the CCIs in each region. CCIs in chro-
mosome X were omitted. As the index has a bell shape dis-
tribution (Supplementary Figure S4), we took the first and
last 10% as maternal- and paternal-specific CCIs anchors,
respectively. We further filtered out CCIs with abnormally
high numbers of reads.

Aggregation analysis on allele-specific MNase-seq data

For each individual interaction loci, there are, on average,
only about 6.5 reads carrying SNPs that can be used to de-
termine their allelic origin. It is nearly impossible to calcu-
late a meaningful periodic score from only 6.5 reads. The
purpose of this analysis is to aggregate information from
sporadic allele-specific MNase-seq reads to reveal possi-
ble general patterns of nucleosome arrangements at allele-
specific CCI sites. The rationale behind this procedure is
that, if the periodic nucleosome arrangement pattern we dis-
covered at CCI sites is indeed universal, we shall expect to
see the pattern also in all allele-specific CCI sites. Thus, if we
pool all MNase-seq reads which carrying an SNP from, for
example, the paternal-specific CCI loci, and align them to-
gether according to the relative distance to the middle point
of each loci, the pooled reads form a single ‘virtual’ locus.
We expect to see the periodic ‘virtual’ nucleosome pattern
in the paternal allele but not in maternal allele. Using the
sequencing depth in Rao et al.’s data, which is about 5500
reads per 10 kb region, we sampled 5500 allele-specific reads
for a ‘virtual’ locus. Because the total number of allele-
specific reads is much larger than 5500, we can repeat this
process to calculate periodic scores for a series of ‘virtual’
loci, in order to draw the plot Figure 1E.

As an example, we describe how the information of nu-
cleosome arrangements in the maternal allele at paternal-
specific CCI sites is aggregated. We first collected all
maternal-specific reads in the 10 kb flanking regions of all

the paternal-specific CCI sites, denoted as ASR(m, p). By
sampling 5500 reads with replacement from the ASR(m, p),
we could generate a ‘virtual’ allele-specific sequencing
dataset, denoted as VD. We then set the CTCF motifs found
in each CCI site as the ‘virtual’ origin, and map each of the
reads in VD into the ‘virtual’ locus according to the relative
distance from the ‘virtual’ origin. After the mapping, the
periodic score could then be calculated as described below.
We generated 200 virtual datasets for ASR(m, p) and drew
boxplots of the periodic scores as in Figure 1E.

Hi-C data normalization

Our normalization method is composed of the following
two steps. The first step is to make the matrix balanced (23).
In this step, the raw contact matrix was balanced by the KR
normalization algorithm used by Rao et al. (23). The step
corrects possible experimental bias also considered by other
normalization methods, such as HiCNorm (29). The sec-
ond step is to rescale the normalized matrix so that the ma-
trices are comparable between different experiments. This
was achieved by point division of an expectation matrix, i.e.,
each element of the contact matrix is divided by the corre-
sponding element of the expectation matrix. The expecta-
tion matrix was prepared as described by Rao et al. (23).

Code availability. Source code for the CISD and
CISD loop can be found at https://github.com/
huizhangucas/CISD.

Evaluation of the models. In all complete datasets, we had
identical numbers of entries in the positive and negative sets.
The accuracy of a model was defined as (TP + TN)/(TP +
TN + FP + FN), where TF, TN, FF and FN are true pos-
itives, true negatives, false positives and false negatives, re-
spectively. Standard 5-fold cross-validation was performed
according to the following procedure. The original total
data sample was randomly partitioned into five subsets of
equal size. Of the five subsets, a single subset was retained as
the testing data, and the remaining four subsets were used
as training data. We repeated this procedure five times with
each of the five subsets used exactly once as the testing data.
The five results were averaged for the final evaluation.

RESULTS

Distinct nucleosome arrangement patterns at CCI sites

It is herein proposed that physical CCIs may alter the local
chromatin context, which, in turn, causes rearrangement of
the nucleosomes around the interaction sites and a result-
ing distinct pattern of nucleosomes. To test this hypothesis,
we plotted MNase-seq signals flanking the binding sites of
two CCI mediating TFs (Rad21, CTCF) and two randomly
picked TFs (NFYB and KAP1) in K562 cells (Figure 1A).
The nucleosome pattern varies among the TFs, with CTCF
and RAD21 show a strong periodic arrangement. Then we
extended our analysis to all 99 TFs for which ChIP-seq
data are available for K562 cells in the ENCODE project
(55). Principal component analysis (PCA) of MNase-seq
signals flanking the ChIP-seq peaks of the 99 TFs resulted
in isolating five TFs (CTCF, RAD21, SMC3, ZNF143 and

https://github.com/huizhangucas/CISD
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Figure 1. Characteristic nucleosomes arrangement patterns flank the binding sites of major CCI-mediating proteins. (A) Distribution of MNase-seq reads
flanking the ChIP-seq peaks of Rad21, CTCF, NFYB and KAP1 in K562. (B) PCA analysis of MNase-seq signals flanking ChIP-seq peaks of 99 TFs. Five
TFs separated from the remaining TFs are marked in red. (C) ROC curves for CCI predictions using the ChIP-seq signal strength and the periodic score,
represented as dashed and solid lines, respectively. The ChIA-PET loop anchors were taken as the golden standard to assess the two prediction methods.
(D) The FFT profiles of MNase-seq signals flanking the ChIP-seq peaks of the four proteins in (A). (E) Aggregation analysis of allele-specific MNase-seq
data at allele-specific CCI sites. Each boxplot represents the distribution of periodic scores from 200 virtual datasets. ***: rank sum test P-value < 1e-10.

NFE2) from the others (Figure 1B). Notably, CTCF, co-
hesin (RAD21 and SMC3) and ZNF143 are well known
CCI-associated proteins (18,19,56). NFE2 is a chromatin
remodeler and also reported to be engaged in enhancer–
promoter interactions (57). However, the binding strength
of the five TFs alone is not sufficient to predict CCI sites
(Figure 1C). For example, we collected ChIA-PET data of
CTCF, RNAP II, Rad21, H3K4me1/2/3 and H3K27ac in
k562 cells, and found that, for any given TF, there was al-
ways a considerable portion of ChIA-PET anchors that did
not overlap with its ChIP-seq peaks in K562. Overall, 16.3%
(5765 of 35 323) of the ChIA-PET anchors did not over-

lap with any ChIP-seq peaks arising from these five TFs in
K562.

To quantify the differences in the nucleosome arrange-
ment patterns (Figure 1B), we compared the fast FFT fre-
quency spectrum of MNase-seq data flanking the ChIP-seq
peaks of the four TFs (Figure 1D see ‘Materials and Meth-
ods’ section) and found that the amplitude of the fifth and
sixth frequencies was most significantly different between
two CCI-associated TFs (CTCF, Rad21) and the others.
Thus, by the fifth, sixth and direct components of the fre-
quencies (see ‘Materials and Methods’ section), we defined
a score, termed as the periodic score, to index nucleosome



12744 Nucleic Acids Research, 2017, Vol. 45, No. 22

periodicity. Then, we compared the ROC curves of the two
predictive indices, the strength of TF bindings and the pe-
riodic score of the ChIP-seq peaks, for the CCI prediction
(Figure 1C). The ChIA-PET loop anchors were taken as the
golden standards for the prediction assessment. We found
that the periodic score is a better predictor for ChIA-PET
anchors than the binding strength of the TFs (Figure 1C).

To further test our hypothesis, we compared the nucle-
osome periodic scores between two alleles at the allele-
specific CCI sites. Because two sister chromosomes occupy
largely mutually exclusive territories in the nucleus (12,58),
if the hypothesis is true, we shall expect that allele-specific
CCI sites will also have allele-specific nucleosomes arrange-
ment patterns. Accordingly, we examined this prediction
in GM12878 cells, which have well-phased, high-density
SNP data (52), and 1707 and 1712 maternal- and paternal-
specific Rad21 ChIA-PET anchors with CTCF motifs were
identified, respectively. However, because of limited SNP
density flanking most of allele-specific CCI sites (±1 kb),
allele origins could only be assigned to an average of 6.5
MNase-seq reads, making it necessary to perform an ag-
gregation analysis (see ‘Materials and Methods’ section).
Indeed, at the maternal-specific CCI sites, we found that
nucleosomes are more periodically arranged in the mater-
nal allele compared to the paternal allele, and vice versa for
paternal-specific CCI sites. No significant difference can be
found in randomly selected CCI sites (Figure 1E). Taken
together, the evidence shown above supports our hypothe-
sis and suggests that nucleosome arrangement patterns are
reflective of the local chromatin environment and might be
utilized for the detection of CCIs.

Detecting chromatin interaction sites at kilobase resolution
with CISD

Based on the predictive potential of nucleosome arrange-
ments in the context of local chromatin environment as
shown above, we developed the CISD to identify CCI sites.
For any given genome locus, CISD takes MNase-seq data
as input and determines whether the nucleosomes display
the assumed arrangement pattern of a CCI site (hereinafter
termed CISD sites when predicted by CISD). First, CISD
is composed of an LRM that determines whether the input
genome locus has a periodic nucleosome arrangement pat-
tern. If so, a second support vector machine (SVM) model
then determines whether the locus has a nucleosome pattern
characteristic of CCIs (Figure 2A). To assess the perfor-
mance of LRM, we plotted the ROC curves and calculated
AUC. To draw the ROC, we took the golden standard of the
positive data consisting of periodical scores calculated from
the overlapping ChIA-PET anchors of CTCF and Rad21,
while the negative dataset consisted of the periodical scores
calculated from randomly selected sites that were located at
least 5 kb away from TSS and ChIP-seq peaks of CTCF,
cohesin and ZNF143.The AUC for the LRM was 0.97 and
0.92 in K562 and GM12878 cells, respectively, and 5-fold
cross-validations of the accuracy of the SVM model were
above 80% in both cell types. We also trained the model in
one cell types and tested in the other cell type, and obtained
similar results (Supplementary Text and Table 1). The reso-
lution of CISD is defined as the length of the genome seg-

ment needed to make a credible prediction. In this work, we
took 1 kb as the default resolution. Using the default thresh-
old for the periodic score (0.5), we applied CISD to K562
and GM12878 cells and predicted 22 112 and 26 801 CISD
sites, respectively. Several canonical CCI sites were success-
fully identified by CISD, such as the human �-globin locus
in K562 (Figure 2D). The genome-wide distributions of the
CISD sites between the two cell types were found to be sim-
ilar (Supplementary Figure S5a).

To evaluate the performance of CISD, we took ChIA-
PET loop anchors as the golden standard as ChIA-PET is
believed to identify CCIs at high resolution and confidence
(54). We found that CISD can accurately predict ChIA-PET
loop anchors, i.e. most of the CISD sites overlapped with
ChIA-PET loop anchors (60.0 and 72.3% for K562 and
GM12878 cells, respectively). Compared to DNase I hyper-
sensitive sites (DHSs), which were reported to be predictive
of chromatin looping anchors (19,41,59), and CTCF ChIP-
seq peaks, CISD sites were 2.4-fold and 1.64-fold more en-
riched for ChIA-PET anchors in K562 cells, respectively
(Figure 2B). Results largely corresponding to these were
also seen in GM12878 cells (Supplementary Figure S5). The
predictions were also well supported by ChIA-PET anchors
when we applied CISD to MNase-seq datasets with differ-
ent degrees of MNase digestion (Supplementary Text and
Table S3). The enrichment of ChIA-PET anchors in CISD
sites is also true when compared with ChIP-seq peaks of
other TFs in both cell types (Supplementary Text and Fig-
ure S5). Because the DHSs and CTCF ChIP-seq peaks are
ubiquitous in the genome, it is not surprising to find that the
total numbers of DHSs and CTCF ChIP-seq peaks overlap-
ping ChIA-PET anchors are larger than that of CISD sites
(Figure 2B and Supplementary Figure S5b). We also com-
pared CISD sites to the Hi-C loops reported by Rao et.al
(23), and similarly, we found that the accuracy of predict-
ing Hi-C loops anchors by CISD is higher than that of using
ChIP-seq peaks of CTCF and DHS (Figure 2B).

To examine the extent to which CISD sites lack sup-
port from ChlA-PET data, termed as nonsupported (ns)
CISD sites, might be involved in CCIs, we compared the
number of Hi-C reads around the nsCISD sites to those
around genomic regions that have a high periodic score, but
were not predicted as CISD sites (as control sites). Indeed,
the nsCISD sites were significantly more enriched for Hi-
C reads than were control sites (Figure 2C, P-value<2.2e-
16, rank sum test). Finally, we chose four nsCISD sites with
sufficient high densities of restriction sites, on which to per-
form 3C experiments. Two of the four CISD sites were ver-
ified at 5kb resolution (Supplementary Table S1). Whether
the other two CISD sites were involved in a CCI are remains
undetermined, as a single 3C experiment only examines one
pair of interaction anchors, while there are much more pos-
sible interaction targets in the genome.

CISD can detect canonical chromatin interaction sites

The human �-globin locus consists of a locus control region
(LCR) comprising five �-globin-like genes (HBE; HBG1
and HBG2; HBD; and HBB) and one pseudogene (HBpsi).
Five DNase I hypersensitive sites (HS1-5) have been re-
ported in the LCR and are believed to be required for tissue-



Nucleic Acids Research, 2017, Vol. 45, No. 22 12745

A B CMNase-seq
Reads

Data clearning

Clean Data

FFT

FFT Profiles

LRM

High Periodic 

SVM

clea

FFT

LRM

P

SVM

CISD Sites

Score Peaks

0
25
50
75

100

Accuracy to
ChIA-PET

Accuracy to
Hi-C

Sensitivity to
ChIA-PET

Sensitivity to
Hi-C

DHS CTCF CISD
nsCISD loops Control pairs

Le
ve

l 2
 H

i-C
 c

on
ta

ct
 in

de
x

nsCISD sites Control sites

0
20

,0
00

60
,0

00
10

0,
00

0
14

0,
00

0
To

ta
l n

um
be

r o
f n

or
m

al
iz

ed
 H

i-C
 re

ad
s

***

0
10

20
30

40
50 ***

D
chr11:

CTCF
RAD21
SMC3

ZNF143

5,230,000 5,250,000 5,270,000 5,290,000 5,310,000

HBB HBD HBBP1 HBG1 HBE1

DNase-seq

MNase-seq

Locus 3’HS HS1 HS5HS4HS3HS2
Locus Control Region(LCR)

CISD site

Figure 2. CISD workflow and performance. (A) The flow chart of CISD. Ovals represent datasets that were used or generated, and square boxes represent
data processing steps. (B) Radar chart for the performance of by DHS, CTCF and CISD as predictors of CCIs in K562 cells. Sensitivity and accuracy
were calculated using Hi-C loop anchors and ChIA-PET loop anchors. Sensitivity was defined as the percentage of predicted ChIA-PET anchors or HI-
C anchors, while the accuracy was defined as the percentage of correct predictions, including true positives and true negatives, over all predictions. (C)
Distribution of Hi-C reads counts (23) around nsCISD and control sites (right) and the distribution of the level 2 Hi-C contact index (see ‘Materials and
Methods’ section) between nsCISD loops and between randoml loops from control sites (left) in K562 cells. For each site, the reads count is calculated
from the normalized Hi-C contact matrix. The 5 kb resolution matrix was used in this figure. (***: rank sum test P-vale < 2.2e-16). (D). CISD predictions
in the LCR and �-globin locus. DNase-seq and ChIP-seq peaks are also shown.

Table 1. Intra and inter cell-type performance of CISD and CISD loop

Training set Testing set # of CISD sites % of ChIA-PET anchors # of CISD loops % of ChIA-PET loops

K562 K562 22 112 62.30% 16 726 30.75%
K562 GM12878 20 881 78.9% 11 240 52.9%
GM12878 GM12878 26 801 72.30% 25 098 44.78%
GM12878 K562 31 633 48.6% 17 374 24.6%

specific and developmental expression of the downstream
�-globin genes (60). In K562 cells, previous analyses have
revealed looping interactions between the LCR and the
globin gene region, roughly spanning from HBD to HBG
(61,62), as well as interactions between the LCR and HS el-
ements located downstream of the region (3′-HS) (63). In
the �-globin locus, CISD detected four positive sites with
about 1 kb resolution, and all of them located in the previ-
ously known interaction regions (Figure 2D). Two of the
four CISD sites, i.e. those at the HS5 and 3′HS, overlap
with ChIA-PET loop anchors and with CTCF, cohesin and
ZNF143 ChIP-seq peaks. The CISD site at the HBD pro-
moter region is supported by 3C data (64) and has CTCF
and ZNF143 ChIP-seq peaks. The CISD site located up-

stream of HBB overlapped with 5C-detected loops (62,64)
and also has ZNF143 binding. Thus, CISD precisely de-
tected the current LCR–�-globin interaction network.

Prediction of CCIs between CISD sites with CISD loop

To predict chromatin loops between CISD sites, we devel-
oped CISD loop which takes CISD sites and low-resolution
Hi-C data as input. CISD loop is a method for deter-
mination of intra-TAD chromatin loops between CISD
sites. A voting system with four decision tree-based vot-
ers, GBDT (51), random forest (51), ExtraTrees (51) and
CART (51) were composed to form CISD loop (see ‘Ma-
terials and Methods’ section and Figure 3A). The 5-fold
cross-validation of the accuracy of CISD loop was 80.1 and
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Figure 3. CISD loop workflow and performance. (A) Flowchart of CISD loop. For explanation, see Figure 2A. (B) 3C experiment at loci between
chr5:42,000,785-42,006,207 (anchor, nsCISD site) and chr5:41,856,243-41,857,738 (target), and (C) 3C experiment at loci between Chr11:111,153,407-
111,155,719 (anchor) and Chr11:111,297,381-111,301,207 (target, nsCISD site). Each data point represents mean ± SD of three technical replicates and
three normalized biological replicates. The CCIs predicted by CISD loop are marked as arches. The third CISD site was marked in gray, indicating that
it could not be validated in this experiment because a restriction site appears in the site. (D) MNase-seq reads, ChIP-seq peaks, DNase-seq reads and
CISD loop predictions within a sub-TAD region on chr3:15,460,000-156,200,00. A putative chromatin interaction predicted by CISD loop is marked as
an arch.
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78.5% in K562 and GM12878 cells, respectively. We applied
CISD loop on Hi-C data from K562 and GM12878 cells
and predicted 16 726 and 25 098 interactions, respectively.
The CISD loop has successfully predicted 51.2 and 41.5%
of the intra-TAD ChIA-PET loops connecting CISD sites
in K562 and GM12878, respectively. Compared to random
intra-TAD CISD site pairs, CISD loop predictions have
6.4- and 4.9-fold higher enrichment for ChIA-PET loops in
K562 and GM12878 cells, respectively. To examine the ex-
tent to which CISD loops lacking support from ChlA-PET
data, termed as non-supported (ns) CISD loops, might be
involved in CCIs, we compared the Hi-C contact index be-
tween the nsCISD loops to those of randomly connected
CISD sites. Indeed, the nsCISD loops were significantly
more enriched for paired Hi-C reads than were controls
(Figure 2C, P-value < 2.2e-16, rank sum test).

To further assess the reliability of the nsCISD loops, we
performed 3C experiments to validate at ultra-high reso-
lution. However, the resolution of 3C experiments cannot
exceed the length of the restriction fragments, and most of
the CISD sites are located in restriction fragments longer
than 10 kb (for commonly used HindIII, EcoRI, BglII, PstI
and BamHI enzymes). We only found four CISD loops
of which both anchors are in restriction fragments <7 kb
(group I, Supplementary Table S1). Thus, we extended our
search to include predictions with less rigid parameter set-
tings in CISD loop, and found three more examples (group
II, Supplementary Table S1). Three out of four (75%) pre-
dictions in group I were validated (Figure 3B and C; Sup-
plementary Table S1), i.e. the highest crosslinking frequen-
cies were detected between restriction fragments with the
predicted CISD sites, and all quantitative polymerase reac-
tion (qPCR) products were confirmed by Sanger sequenc-
ing to be the expected ligation products. In comparison to
the more than 10 kb length of the Hi-C segments in which
the selected CISD sites were locPCRated, the 3C experi-
ments confirmed that our predictions are at a much higher
resolution (Figure 3B and C). One out of three (33.3%)
predictions in group II was validated (Supplementary Ta-
ble S1). The substantially lower validation rate compared
to group I indicates that the rigid parameter settings used
in current CISD loop has increased its specificity with the
cost of its sensitivity as predictor for CCIs. In other words,
given that the predictions we tested by the 3C assays were
for the loops without ChIA-PET data support, an empiri-
cal validation rate of 75% suggests that the majority of the
CISD loop predictions may be true.

Evidence for the reliability of CISD loop predictions also
comes from transcriptome data. For example, in a sub-
TAD on chromosome 3 (chr3: 15 460 000-15 620 000; Fig-
ure 3D) (23) a strong enhancer and three genes (METTL6,
EAF1 and COLQ) are annotated in the UCSC genome
browser. However, RNA-seq data show that only METTL6
and EAF1 are actively transcribed in K562 cells. The pro-
moter of the transcriptionally silent gene COLQ is much
closer to the enhancer than the common bidirectional pro-
moter of METTL6 and EAF1. Our CISD loop prediction
showed direct contact between the strong enhancer and
bidirectional promoter of METTL6 and EAF1, while by-
passing COLQ (Figure 3D). Thus, our prediction provides
a plausible explanation for this apparent anomaly.

Modest amounts of data are sufficient for CISD/CISD loop
to achieve ultrahigh resolution predictions

To examine how many MNase-seq reads are necessary to
obtain highly accurate CISD site predictions, we composed
testing datasets by randomly sampling descending num-
bers of mapped MNase-seq reads, e.g. one half, one quar-
ter and one eighth, from the original 1.4 billion mapped
reads in K562 cells (46). The original sequencing depth was
about 16-fold, and the testing datasets simulated sequenc-
ing depths of about 8-, 4- and 2-fold, with read density
equivalent to about 472, 236, 118 and 59 thousand reads
per million base-pair region (RPM), respectively. Even with
the lowest number of reads, CISD could successfully iden-
tify periodic nucleosome regions (Figure 4A), and over a
third of the predictions overlapped with currently available
ChIA-PET loop anchors (Figure 4B). However, because
the proportion predictions overlapping ChIA-PET loop an-
chors dropped substantially when read density was less than
118 thousand RPM, we recommend a density of 118 thou-
sand RPM or higher for CISD site prediction.

We next investigated how many MNase-seq and Hi-C
reads would be needed to obtain high accuracy of CISD
loops. We composed sets of testing data containing all, 10
and 1% of the current Hi-C reads in K562 cells (23), cor-
responding to read densities equivalent to about 331, 33
and 3 thousand RPM, respectively, and examined the per-
formance of CISD loop for all combinations of the three
Hi-C and the four MNase-seq testing datasets (Figure 4C).
Exponential reduction of Hi-C reads number did not sub-
stantially affect the validation rate. With only 10% of Hi-C
reads, nearly half of the ChIA-PET loops between the CISD
sites could still be predicted, similar to the performance
achieved with the full data, and the number only dropped to
about 40% when the Hi-C data were reduced to 1%. Thus,
we may set the sequencing depth according to the desired
prediction rate. Finally, we also trained CISD/CISD loop
in one cell type, either K562 or GM12878, and tested it
in the other cell type and obtained similar results (Sup-
plementary Figure S6a and b; Table 1), suggesting that
CISD/CISD loop can be widely applied in human cell lines
with modest amounts of input data.

The characteristic nucleosome pattern flanking CCI sites
may be concordant in different cell types

To test whether the characteristic nucleosome patterns iden-
tifying CCIs is concordant across cell types, we trained
CISD and CISD loop with data from one cell type and
tested them on data from another cell type (Table 1). The
training ChIA-PET data size in the two cell types are not
equivalent, i.e. the ChIA-PET data in the K562 cells are
more concentrated for Rad21 while in the GM12878 cells
are more concatenated for Pol II. Therefore, to make a
fair comparison, we retrained the CISD/CISD loop using
ChIA-PET data for Rad21, which have similar amounts of
data in both cells types and were also generated from the
same laboratory (46). After retraining CISD/CISD loop,
this resulted in 11 240 and 17 374 predicted loops in
GM12878 and K562 cells, respectively, of which 52.9 and
24.6% were validated by ChIA-PET loops. The apparent
difference in validation rates can be explained by the total
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Figure 4. MNase-seq and Hi-C data requirements for high-resolution prediction by CISD and CISD loop. (A) ROC curves for LRM predictions with dif-
ferent portions of MNase-seq data. (B) Percentages of CISD sites in K562 supported by ChIA-PET loop anchors under different periodic score thresholds
and different portions of MNase-seq data. (C) Percentages of CISD loops in K562 supported by ChIA-PET loop under different densities of MNase-seq
and Hi-C reads. The threshold of the periodic score in the LRM step was set at 0.5. Each data point represents mean ± SD of 10 technical replicates.

number of ChIA-PET loops available for validation (226
450 and 29 070 in GM12878 and K562 cells, respectively)
differing substantially between the two cell types. On aver-
age, the validation rates of 52.9% (compared to 25.0%) and
24.6% (compared to 1.4%) were still nearly 2- and 17-fold
higher than random assignments for CISD and CISD loop,
respectively. These results suggested that the characteristic
nucleosome patterns flanking CCI sites may be concordant
in cell types.

DISCUSSION

In this paper, we developed the CISD/CISD loop algo-
rithms for genome-wide identification of potential CCI
sites and loops at kilobase resolution. This ultrahigh res-
olution can be achieved because the number of nucleo-
somes with distinct arrangement pattern flanking barriers
is not large (65), and current MNase-seq data are suffi-
cient to detect such patterns. In addition to ultrahigh reso-
lution, CISD/CISD loop also make 3D genome profile ex-
ploration more economical than ultra-deep sequencing, as
only MNase-seq and low-resolution Hi-C data are used.

As a complement to current methods, e.g. EpiTensor (39)
and TargetFinder (40), which detect consistent CCIs across
cell types, CISD/CISD loop can predict CCIs in a cell type-
specific manner, essentially because CISD/CISD loop do
not rely on data from other cell types. Cell type-specific
CCI prediction is an important advance, given the highly
dynamic nature of chromatin interactions and the preva-
lence of cell-type specificity in promoter–enhancer interac-
tions (3,43,44).

Epigenetic features of the genome have been used for
computational modeling TF bindings (66,67) and chro-
matin architecture (19,36,37,39,40). The success of such
models suggests the presence of profound links between
CCI sites, TF binding and the dynamics of the chromatin
(40). However, data integration-based methods can only
provide limited insights toward the elucidation of such links.
The predictive power of CISD/CISD loop suggests that
CCIs may serve as special barriers that alter the local chro-
matin context and may be associated with rearrangements
of the nucleosomes. This, in fact, may be a potential mech-

anism linking CCI sites and the dynamic behavior of nucle-
osomes.

The presence of phased nucleosomes flanking CTCF
binding sites has been well documented (48), and many
other phased nucleosome arrays have been seen in mam-
malian genomes (45). Recently, DNase I hypersensitive sites
(DHSs) have also been suggested to predict chromatin inter-
actions (19,41). The binding of CTCF alone was not suffi-
cient to predict chromatin interactions because (i) not all
CTCF binding sites have high periodic scores or overlap
with ChIA-PET anchors (Supplementary Figure S7a), and
(ii) only 55.38% of the CTCF ChIA-PET anchors are found
in other ChIA-PET data. Compared to the predictive power
of DHSs, CISD sites are more enriched for ChIA-PET loop
anchors, as shown in the main text (Figure 2B); thus, it is
less likely that the predictive power of CISD simply relies
on the presence of open chromatin. Finally, periodic nucle-
osome arrangements alone are not predictive of ChIA-PET
loop anchors. For example, in lymphoblastoid cells, a 76 kb-
long region is reported to have a very well-phased nucleo-
some array caused by the DNA sequence (45). Therefore,
we examined the ChIA-PET data on this region from K562
cells. Indeed, the nucleosomes are regularly arranged, as in-
dicated by MNase-seq data; however, only one ChIA-PET
loop anchor was found in the region, which is also one of
the two CISD-predicted sites in the same region (Supple-
mentary Figure S7b). Thus, neither the binding of TFs nor
simple arrays of well-phased nucleosomes is sufficient to in-
dicate stable chromatin contacts.

One may ask what characteristics of nucleosome pattern
make CISD predictive? Two prominent characteristics of
the CISD sites immediately presented themselves by plot the
distribution of MNase-seq data flanking the CISD sites.

First, in the CISD sites, there is a large gap situated
at the middle of the phased nucleosome array. To show
this pattern, we compared the length distribution of the
longest intervals in the nucleosome arrays in the CISD sites,
ChIA-PET anchors, TSSs and the 76 kb phased nucleo-
some region (Supplementary Figure S8). Both CISD sites
and ChIA-PET anchors peaked at about 300 bp, while the
76 kb region showed an additional peak at about 220 bp,
and the average length of the NFR was even shorter. Sec-
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ond, the distribution of nucleosome arrays is symmetric at
the CISD sites (Supplementary Figure S9). It is well known
that the phased nucleosomes flanking the NFR at TSS is
asymmetric (45), while at CISD sites, the nucleosomes are
symmetric.

One may ask if the two characteristics we have outlined
above are sufficient to distinguish the CISD sites from rest
of the phasing regions. Our answer is that it is not, be-
cause only a small number of such sites overlap with the
ChIA-PET anchors. To show this, we binned the genomic
loci according to their symmetry level of the nucleosome
arrangement, i.e. the Pearson’s correlation coefficient be-
tween the forward and reversed MNase-seq signals in the
loci. Indeed, with increasing symmetry, the validation rate
(as supported by the ChIA-PET data) also increases (Sup-
plementary Figure S10); however, the total number of sites
declined substantially, suggesting that additional informa-
tion in the FFT profile is critical for the identification of
CISD sites. Taken together, while we believe that an ex-
tended gap flanked by symmetric arrangements is the most
prominent feature of the CISD sites, the predictive power of
CISD stems is dependent on more than this single feature.

The biochemical mechanisms underlying chromatin in-
teractions are not well understood, and are likely to depend
on complex process with many factors involved at multiple
levels. Thus, any algorithm relying on a single datum is likely
to yield an incomplete result, and indeed, the sensitivity of
CISD is limited (Figure 2B). Therefore, it is possible that
further improvement may be achieved by marrying data in-
tegration and hypothesis-driven modeling. Furthermore, as
suggested by Whalen et al. (40), the information relevant
to looping interactions is not just limited to the interacting
loci (40). Thus, taking data from outside the interacting loci
into account also merits further investigation.

The substantial attention in recent literature directed to-
ward 3D genome studies reflects the importance of such
knowledge. CISD and CISD loop provide an approach that
facilitates the expansion of the field of 3D genome research
by allowing the exploration of more cell types, tissues and
species.
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