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Chronic obstructive pulmonary disease (COPD) is a common respiratory disease with high
morbidity and mortality. The etiology of COPD is complex, and the pathogenesis
mechanisms remain unclear. In this study, we used rat and human COPD gene
expression data from our laboratory and the Gene Expression Omnibus (GEO)
database to identify differentially expressed genes (DEGs) between individuals with
COPD and healthy individuals. Then, protein–protein interaction (PPI) networks were
constructed, and hub genes were identified. Cytoscape was used to construct the co-
expressed network and competitive endogenous RNA (ceRNA) networks. A total of 198
DEGs were identified, and a PPI network with 144 nodes and 355 edges was constructed.
Twelve hub genes were identified by the cytoHubba plugin in Cytoscape. Of these genes,
CCR3, CCL2, COL4A2, VWF, IL1RN, IL2RA, and CCL13 were related to inflammation or
immunity, or tissue-specific expression in lung tissue, and their messenger RNA (mRNA)
levels were validated by qRT-PCR. COL4A2, VWF, and IL1RN were further verified by the
GEO dataset GSE76925, and the ceRNA network was constructed with Cytoscape.
These three genes were consistent with COPD rat model data compared with control data,
and their dysregulation direction was reversed when the COPD rat model was treated with
effective-component compatibility of Bufei Yishen formula III. This bioinformatics analysis
strategy may be useful for elucidating novel mechanisms underlying COPD. We pinpointed
three key genes that may play a role in COPD pathogenesis and therapy, which deserved
to be further studied.
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INTRODUCTION

Chronic obstructive pulmonary disease (COPD) is a common chronic respiratory disease,
characterized by airflow limitation that is not completely reversible. COPD patients experience
declines in lung function resulting in great economic and social burdens worldwide (Vestbo et al.,
2013; Ma et al., 2019; Mao et al., 2019; Sun et al., 2019; Chen et al., 2020). Studies reveal that COPD
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will become the third leading cause of death worldwide by 2030,
and it is estimated that over 5.4 million people will die from
COPD annually from 2060 (Singh et al., 2019; Belchamber and
Donnelly, 2020; Chen et al., 2020).

Before 2011, COPD was primarily evaluated based on forced
expiratory volume during the first second (FEV1). Patients were
divided according to the Global Initiative for Chronic Obstructive
Pulmonary Disease (GOLD) stages (GOLD 1, mild; GOLD 2,
moderate; GOLD 3, severe; and GOLD 4, very severe). However,
FEV1 is only a partial descriptor of this multisystemic disease and
cannot reflect its complexity and effects beyond pulmonary
function, including reductions in health status and physical
performance (Bernabeu-Mora et al., 2020). In 2011, GOLD
provided a multidimensional evaluation method that
combined the FEV1 value with an individual’s previous
exacerbations and symptoms history, including dyspnea based
on the modified Medical Research Council (mMRC) scale and
health status according to the Chronic obstructive pulmonary
disease Assessment Test (CAT) (Bernabeu-Mora et al., 2020).
The GOLD 2011 assessment classified COPD patients into four
groups (A–D): Group A, patients with low risk and few
symptoms; Group B, patients with low risk and many
symptoms; Group C, patients with high risk and few
symptoms; and Group D, patients with high risk and many
symptoms. The detailed classification criteria are shown in
Vestbo et al. (2013).

COPD is a multifactorial disease with complex interaction
between genes and the environment. Cigarette smoking is a major
risk factor for disease development (Zhang and Xu, 2020). When
exposed to cigarette smoke, lung macrophages, accounting for
approximately 80%–90% of the immune cell population, play a
vital role in processing and clearing particles from the lungs
(Yamasaki and Eeden, 2018; Eapen et al., 2019). Continuous
exposure to cigarette smoke markedly depletes intracellular
antioxidants, such as glutathione, causing excessive oxidative
stress that suppresses the lung macrophages’ bacterial
phagocytic and efferocytic functions (Donnelly and Barnes,
2012). Moreover, lung macrophages in COPD generate a pro-
inflammatory scenario that may cause tissue damage, and
defective immune surveillance and protective (phagocytic)
functions that collectively contribute to the progression of
COPD (Yamasaki and Eeden, 2018; Eapen et al., 2019). Other
risk factors, such as age, sex, and socioeconomic status, are also
involved in COPD development (Gershon et al., 2011; Landis
et al., 2014; Beran et al., 2015; Mercado et al., 2015). Fewer than
50% of heavy smokers develop COPD (Rennard and Vestbo,
2006; Wang et al., 2020), indicating that genetics may play a key
role in COPD pathogenesis (Rennard and Vestbo, 2006). For
example, alpha-1 antitrypsin deficiency (AATD), a major
circulating inhibitor of serine proteases, is a well-documented
genetic risk factor that predisposes an individual to COPD
(Stoller and Aboussouan, 2005). Moreover, the gene encoding
matrix metalloproteinase 12 (MMP-12) and glutathione
S-transferase are reportedly linked to a decline in lung
function or risk of COPD (Hunninghake et al., 2009; Ding
et al., 2019). Researchers have reported some genetic loci
associated with COPD (FEV1 or FEV1/FVC as the phenotype)

including markers near the alpha-nicotinic acetylcholine
receptor, HHIP, GPR126, ADAM19, AGER-PPT2, FAM13A,
PTCH1, PID1, and HTR4 (Pillai et al., 2009; Cho et al., 2010;
Hancock et al., 2010; Repapi et al., 2010; Soler Artigas et al., 2011;
Cho et al., 2014). The 15q24/25 locus in nAChR is correlated with
the occurrence and progression of emphysema, suggesting that it
is causally involved in alveolar destruction, a pathogenic
mechanism potentially shared with COPD (Lambrechts et al.,
2010). In addition, the precise pathogenesis mechanisms of
COPD remain unclear (Chen et al., 2020; Wang et al., 2020).
Thus, it is critical to elucidate the molecular mechanisms
underlying COPD for its treatment.

Transcriptomic and high-throughput microarray/RNA-seq
analyses have been widely applied to many diseases, including
COPD, to explore the mechanisms and advance diagnosis/
treatment (Kaczkowski et al., 2016; Macias-Segura et al., 2018;
Demircioglu et al., 2019; Li et al., 2019; Morrow et al., 2019; Carr
et al., 2020; Cheng et al., 2021). In addition, the competitive
endogenous RNA (ceRNA) networks can also provide new
insights into the mechanisms of disease development in a
transcriptional regulatory network (Salmena et al., 2011). By
combining high-throughput microarray/RNA-seq data and
bioinformatics analysis algorithms, we can potentially identify
key genes closely related to the occurrence of diseases and provide
guidance for treatment.

In this study, we applied human COPD gene expression data
from the Gene Expression Omnibus (GEO) database and rat data
from our laboratory. First, we identified consistent differentially
expressed genes (DEGs) among human and rat data. The
protein–protein interaction (PPI) network was constructed
using the STRING database (https://www.string-db.org/), and
Cytoscape software was applied to identify cluster modules
related to COPD. Five algorithms (Degree, MCC, MNC,
DMNC, and Clustering Coefficient) were used to identify hub
genes in the cytoHubba plugin within Cytoscape. Based on the
online databases BioGPS and GeneCards, those genes were
further optimized. Then, target microRNAs (miRNAs) of the
identified genes were predicted by four online miRNA databases,
and the gene–miRNA target network was constructed with
Cytoscape. Subsequently, we further validated/optimized the
identified genes using a GEO dataset and COPD rat data, and
ceRNA networks were constructed based on the prediction results
of long noncoding RNAs (lncRNAs) using starBase database. We
also found the genes that were reversed when the COPD rats were
treated with effective-component compatibility of Bufei Yishen
formula III (ECC-BYF III). This work provides insight into the
mechanisms of disease development in COPD at the
transcriptome level, contributing potential guidance for COPD
treatment.

METHODS

Data Acquisition and Identification of
Differentially Expressed Genes
Multiple gene expression profiles of human COPD and normal
lung tissue samples were downloaded from the GEO database, as
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shown in Table 1. For the data detected by the Affymetrix
platform, the raw messenger RNA (mRNA) expression data
(.CEL files) were downloaded, and the Robust Multi-array
Average (RMA) algorithm was applied for background
adjustment. Processed data detected by the Illumina or Agilent
platform were directly downloaded. The probe ID was mapped to
Entrez Gene ID with the corresponding platform file for the
array-based data, while for the seq-based data, gene symbols were
mapped to the Entrez Gene ID with the bioDBnet database. The
scarcity of subtype information for the COPD data meant we
directly analyzed the COPD samples in contrast with control
samples, regardless of the COPD subtype. Thus, the potential
genes identified in this study are general. As COPD data
accumulate and more clinical information is gathered, subtype
information should be considered for further study.

We also obtained six replicates of control rat data and six
replicates of COPD rat data treated with and six replicates of
COPD rat data without treated with ECC-BYF III from one of our
studies. Briefly, for each group, six Sprague–Dawley rats were
included (three males and three females). All the rats weighed
200 ± 20 g, were aged 3 months, and were purchased from Jinan
Pengyue Experimental Animal Breeding Co., Ltd. (animal permit
number: 1107261911000081; production license no. SCXK[Lu]—
20140007). Before the formal experiment, 7 days was needed for
the rats to adapt to the environment. This study was approved by
the Experimental Animal Care and Ethics Committee of the First
Affiliated Hospital, Henan University of Chinese Medicine. The
COPD rat model was established by cigarette smoke exposure
and bacterial infection (Li et al., 2012). At weeks 1–8, 0.1 ml of
Klebsiella pneumoniae solution was dripped into the nasal cavity
of rats, with the concentration of 6 × 108 CFU/ml, once every
5 days, combined with cigarette smoke exposure 40 min twice
daily; the interval was at least 3 h, and the smoke concentration
was higher than 3,000 ppm. In weeks 9–12, cigarette smoke
exposure was used alone. The control rats were exposed to
fresh air and received 0.1 ml of saline solution every 5 days
meanwhile. The total modeling time was 12 weeks. Then, the
control and model group rats were both given 0.5% CMC Na
(0.5 ml/100 g). The ECC-BYF III group rats were given the ECC-
BYF III (5.5 mg/kg/day, 0.5 ml/100 g). Finally, for the six replicate
samples of each group, the read counts within each gene were
calculated.

For the COPD rat data compared with normal controls,
edgeR was applied to identify DEGs. For array- and seq-
based data from public databases, significance analysis of
microarray (SAM) and Wilcoxon rank-sum tests were used
to identify DEGs, respectively. Then, Kyoto Encyclopedia of

Genes and Genomes (KEGG) pathway enrichment was
performed with the DAVID database (Huang da et al.,
2009).

Quantitative Real-Time Polymerase Chain
Reaction Assay
The primers were designed and synthesized by GENEWIZ
Biotech Co. Ltd. (Suzhou, China) and are shown in Table 2.
The total RNA was extracted using a QIAzol® Lysis Reagent
(QIAGEN, USA) according to the manufacturer’s
instructions. Reverse transcription (RT) was performed
using a HiScript® Ⅱ Q RT SuperMix for qPCR (Vazyme,
Nanjing, China). The reactions were performed using an
QuantStudio 6 real-time fluorescence quantitative PCR
System (Life Technologies, Singapore), and the reaction
conditions were as follows: 95°C for 30 s as an pre-
denaturation step; followed by 40 cycles, each consisting of
95°C for 10 s and 60°C for 30 s; and 95°C for 15 s, 60°C for
1 min, 95°C for 15 s. The values of the target genes were
normalized using the value of the housekeeping gene GAPDH
through 2−ΔΔCT method. Each group has five samples, and the
average values were calculated. Notably, all the mRNA levels
are presented as means ± SD. One-way ANOVA test using
SPSS 22.0 (IBM Corporation, Armonk, NY, USA) was
performed for the statistical analysis.

Protein–Protein Interaction Network
Analysis
The PPI network was constructed based on the relevant genes
from the STRING database (Szklarczyk et al., 2019) with a
combined score greater than 0.4, which is the default score
that indicated a medium confidence. Then, the interaction
information was downloaded, and the Cytoscape software
(v3.8.0) (Shannon et al., 2003) was used to visualize the PPI
network. The MCODE plugin (Bader and Hogue, 2003) within
Cytoscape was used to identify significant gene clusters and
obtain cluster scores with the default parameters (degree cutoff
� 2; node score cutoff � 0.2; k-core � 2; max depth � 100).
CytoHubba was used to identify hub genes in this network (Chin
et al., 2014). For each of the five algorithms (Degree, MCC, MNC,
DMNC, and Clustering Coefficient) in the cytoHubba plugin
within Cytoscape, we identified the top 30 genes as the hub genes
(Cheng et al., 2021). When a gene was identified as a hub gene in
at least four algorithms, this gene was considered as the final
hub genes.

Prediction of Target MicroRNAs
Four online miRNA databases (including DIANA-micro T,
miRWalk, miRDB, and TargetScan) were used to predict the
target miRNAs of genes of interest with the default
parameters. In this study, if a gene (such as gene A) could
be targeted by one miRNA in at least three of the four
databases, this miRNA was defined as the target miRNA of
gene A. Then, the co-expressed network of mRNA–miRNA
was constructed by Cytoscape.

TABLE 1 | Human chronic obstructive pulmonary disease (COPD) data used in
this study.

Platform Normal COPD

GSE38974 Agilent GPL4133 9 23
GSE8581 Affymetrix GPL570 19 16
GSE57148a Illumina GPL11154 91 98

aNote. The RNA_seq data.
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Construction of Competitive Endogenous
RNA Networks
starBase (version 3.0) was used to predict lncRNAs that
interacted with the miRNAs of interest (Li et al., 2014).
The screening criteria were as follows: mammalian, human
h19 genome, strict stringency (≥5) of CLIP-Data, and with or
without degradome data, selected according to a previous
ceRNA network study (Cheng et al., 2021). The ceRNA
networks of mRNAs, miRNAs, and lncRNAs were
constructed using Cytoscape.

RESULTS

Differentially Expressed Genes
For the gene expression data from six COPD rats in comparison
with data from six controls, 3,387 DEGs (1,699 up and 1,688
down) were identified with edgeR (false discovery rate (FDR) <
0.05). A total of 69 significantly disturbed pathways were enriched

using the DAVID database with FDR < 0.05, as shown in Figure 1
and Supplementary Table S1. Some of these pathways were
reported to be related to COPD, such as the mTOR signaling
pathway (Houssaini et al., 2018), NF-kappa B signaling pathway
(Wu et al., 2020), PI3K–Akt signaling pathway (Zhang et al.,
2020a), and oxidative phosphorylation (Kim et al., 2015),
demonstrating the reliability of the identified DEGs.

For the 23 human COPD and nine normal lung tissues from
GSE38974, 9,558 DEGs were identified with the SAM algorithm
(FDR < 0.2). Similarly, for human COPD and normal lung tissue
from GSE8581 (16 COPD and 19 normal) and GSE57148 (98
COPD and 91 normal), 4,347 and 10,009 DEGs were identified,
respectively. We evaluated the consistency of the DEGs in each of
the two-dataset combinations from the above three datasets. We
found the consistency of the DEGs from GSE57148 with each of
the other datasets (GSE38974 and GSE8581) was both less than
55%. Thus, the data of GSE57148 were discarded in subsequent
analyses. The DEGs from datasets GSE38974 and GSE8581 were
highly reproducible, and the consistency ratio was 75.64%, far
greater than chance (binomial test, p < 1.00E−16). Thus, the 1,304

TABLE 2 | Primers of reverse transcription PCR analysis for genes.

Gene Primer Primer Sequence (59–39) Production length (bp)

CCR3 Forward primer CCTGCTGACAATCGACAGGTA 120
Reverse primer GCTGCCAATACTGCAAGACC

CCL2 Forward primer TAGCATCCACGTGCTGTCTC 94
Reverse primer CAGCCGACTCATTGGGATCA

COL4A2 Forward primer CGAGAGGCGTCTCTGGATTC 200
Reverse primer TGCGTAAGGTTCGCCTTTCT

VWF Forward primer CCTTGTGAAGTGGCTCGTCT 88
Reverse primer GCAAGTTGCAGTTGACCAGG

IL1RN Forward primer ATGGAAATCTGCAGGGGACC 78
Reverse primer GCCAGCTGACTCTGAACGAA

IL2RA Forward primer CCATAGTACCCGGCTGTTGG 91
Reverse primer CCGTTCTTGTAGGAGAGGGC

CCL13 Forward primer TCAGTGTTCACCCCAGTCAC 101
Reverse primer GGACACTGGCTGCTTGTGAT

GAPDH Forward primer ACAGCAACAGGGTGGTGGAC 252
Reverse primer TTTGAGGGTGCAGCGAACTT

FIGURE 1 | The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways enriched with dysregulated genes in chronic obstructive pulmonary disease
(COPD) rat data compared with control data.
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consistently detected DEGs from the above two datasets were
considered as the human COPD-related genes for subsequent
analysis.

We then evaluated the consistency of DEGs from human and
rat data. First, for the 3,387 DEGs identified from rat data, the
Ensemble IDs were ortholog converted to human Entrez Gene
IDs using the bioDBnet: dbOrtho database for the consistency
analysis. Finally, 2,787 DEGs (1,262 up and 1,526 down) were
obtained. For the DEGs from human and rat data, 240 genes were
commonly detected, of which 82.5% (198 genes) had an identical
dysregulation direction, which could not occur by chance
(binomial test p � 2.13E−07). Finally, the 198 genes were used
for the subsequent analysis.

Protein–Protein Interaction Network
Analysis, MCODEClusterModules, and Hub
Gene Identification
The interaction network comprising 144 nodes and 355 edges was
constructed by STRING and visualized by Cytoscape
(Figure 2A), based on the 198 DEGs. In this network, we
identified five modules with the MCODE plugin, shown in
Figures 2B–F, according to the filter criteria. Cluster 1 had
the highest cluster score (score: 6.222, 10 nodes and 28 edges),
followed by cluster 2 (score: 4.824, 18 nodes and 41 edges), cluster
3 (score: 3.714, 8 nodes and 13 edges), cluster 4 (score: 3, 3 nodes
and 3 edges), and cluster 5 (score: 3, 3 nodes and 3 edges). Next,
the cytoHubba plugin within Cytoscape was applied to identify

FIGURE 2 | Protein–protein interaction (PPI) network of differentially expressed genes (DEGs) and five cluster modules extracted by MCODE. (A) The interaction
network between proteins coded by DEGs comprised 144 nodes and 355 edges. Red diamonds represent the upregulated genes, and green V represents the
downregulated genes. Five cluster modules extracted byMCODE. Cluster 1 (B) had the highest cluster score (score: 6.222, 10 nodes and 28 edges), followed by cluster
2 (C) (score: 4.824, 18 nodes and 41 edges), cluster 3 (D) (score: 3.714, 8 nodes and 13 edges), cluster 4 (E) (score: 3, 3 nodes and 3 edges), and cluster 5 (F)
(score: 3, 3 nodes and 3 edges).
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hub genes. For each algorithm (Degree, MCC,MNC, DMNC, and
Clustering Coefficient), the top 30 genes were identified, and the
results are shown in Supplementary Tables S2–S6. We found
that 12 genes were reproducible at least four algorithms (as shown
in Table 3).

Identification of Interest Genes and Target
MicroRNA Prediction
Of the 12 hub genes, we found that COL4A2 and VWF were
specifically expressed in lung tissues through the BioGPS
database. CCR3, IL1RN, IL2RA, CCL13, and CCL2 were

reported to be related to immunity or inflammation, according
to the GeneCards database. Moreover, using the rat lung tissues
from our laboratory, the mRNA expression levels of CCR3, CCL2,
COL4A2, VWF, IL1RN, IL2RA, and CCL13 were detected by
quantitative real-time PCR (qRT-PCR). We found that the
mRNA expression levels of CCR3, IL2RA, and CCL13 were
significantly increased in COPD group compared with those in
the control group (p < 0.01). The mRNA expression levels
of CCL2, VWF, and IL1RN were significantly increased or
decreased in the above groups (p < 0.05), as shown in
Figure 3. It is inspiring that the dysregulation direction of
these six genes was consistent with the training data.
Moreover, for gene COL4A2, though there was no significant
difference between the COPD group and the control group
(p � 0.194), its dysregulation direction was also consistent
with the training data. The above results indicated the seven
identified genes were reliable. Thus, CCR3, CCL2, COL4A2,VWF,
IL1RN, IL2RA, and CCL13 were selected for further study.

We used four online miRNA databases to predict the
target miRNAs of genes of interest. For each gene, the
targeted miRNA of the four miRNA databases was
obtained, as shown in Supplementary Tables S7–S13.
When one particular miRNA could target a gene of
interest in at least three databases, the miRNA was defined
as the target of this gene. Finally, 173 target miRNAs of
seven genes and 178 mRNA–miRNA pairs were obtained, as
shown in Supplementary Table S14. The interaction
network of mRNAs and miRNAs, comprising 180 nodes
and 178 edges, was constructed by Cytoscape, as shown in
Figure 4.

TABLE 3 | Frequency of genes that were reproducible among five algorithms.

Gene symbol Freq

CCR3 5
COL4A2 5
COL4A3 5
COL4A5 5
IL1RN 5
IL2RA 5
LAMA5 5
OSM 5
CCL13 4
CCL2 4
LAMB1 4
VWF 4

Note. Freq denotes the number of genes that were reproducible among the top 30 genes
identified by the five algorithms.

FIGURE 3 | (A–G)Messenger RNA (mRNA) expression levels of CCR3, CCL2, COL4A2, VWF, IL1RN, IL2RA, and CCL13 in the lung tissue (n � 5 for each group)
vs. control. Data are expressed as mean with SD. *p < 0.05 and **p < 0.01 vs. the control group.
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Optimization Verification of the Seven
Genes by One Gene Expression Omnibus
Dataset and Rat Data
For the 111 COPD and 40 normal lung tissues from GSE76925,
the Wilcoxon rank-sum test was applied to evaluate the
consistency of the genes of interest. Of the seven genes, the
dysregulation direction of COL4A2, VWF, and IL1RN was
consistent with the training data (Wilcoxon rank-sum test, p <
0.05). For the data from the six COPD rat models and six control
rats, those three genes had identical dysregulation directions.

Moreover, for the rat COPD model data after ECC-BYF III
treatment, the dysregulation direction of the genes was
reversed (as shown in Table 4), indicating they might play a
key role in traditional Chinese medicine treatments.

Construction of Competitive Endogenous
RNA Networks
It is well known that miRNAs can bind mRNAs and induce gene
silencing, which further contributes to the decline in the
expression level of the gene. In contrast, lncRNAs could

FIGURE 4 | The co-expressed network of messenger RNAs (mRNAs) and target microRNAs (miRNAs). The mRNA-miRNA co-expressed network was
constructed by Cytoscape, including 180 nodes and 178 edges. Red diamonds represent the hub genes, and green circles represent miRNAs.

TABLE 4 | The dysregulation direction of COL4A2, VWF, and IL1RN in rat COPD data after ECC-BYF III treatment.

Human_gene Rat_Ensemble D (M_vs_C) D (BYFⅢ_vs_M) P (BYFⅢ_vs_M)

COL4A2 ENSRNOG00000023972 DOWN UP 4.81E-05
VWF ENSRNOG00000019689 DOWN UP 0.022122494
IL1RN ENSRNOG00000005871 UP DOWN 0.00109342

Note. D (M_vs_C) denotes the dysregulation direction of genes in rat COPD model compared with rat control data; D (BYFⅢ_vs_M) denotes the dysregulation direction of genes in rat
COPDmodel after ECC-BYFⅢ treatment comparedwith COPDmodel data without treatment;P (BYFⅢ_vs_M) denotes the p-value between rat COPDmodel data with andwithout ECC-
BYF Ⅲ treatment by edgeR method.
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combine miRNA response elements and increase the expression
level of the corresponding gene. This interaction between RNAs is
called a ceRNA network (Salmena et al., 2011). We used the
starBase 3.0 database to predict the lncRNAs that interact with
the selected miRNAs, and the results are shown in Figure 5. No
lncRNA could be predicted for the selected miRNA of VWF gene.

DISCUSSION

In this study, we obtained the DEGs in COPD compared with
normal lung tissues using the multiple gene expression data from
human and rat tissues. Then, based on PPI networks and the five
cytoHubba algorithms, 12 hub genes were identified. From these,
we further selected the genes (CCR3, CCL2, COL4A2, VWF,
IL1RN, IL2RA, and CCL13) related to immunity/inflammation
or specifically expressed in lung tissues through the BioGPS and
GeneCards databases, and they were validated by qRT-PCR.
Then, we predicted the targeted miRNA of those genes. The
genes were further verified and optimized using a GEO dataset
and COPD rat data. We found that COL4A2, VWF, and IL1RN
were consistent with all the training data, GEO verification data,
and rat data; and the dysregulation direction of the three genes
was reversed when treated with ECC-BYF III, providing direction
for COPD treatment. Of the genes, VWF and IL1RN were
reported to be related to COPD. Studies show that VWF is a
signature of inflammation in COPD, and its levels might reflect
the persistence of chronic inflammation in COPD (Langholm
et al., 2020). The polymorphisms of IL1RN are implicated in the

pathogenesis of COPD and constitute a risk factor for COPD
occurrence in East Asians (Xie et al., 2014). In addition, we
constructed the ceRNA networks, providing a novel approach to
explore the pathogenesis of COPD at the transcriptome level.

COPD is a common respiratory disease that severely
compromises patients’ quality of life and imposes heavy
economic burdens on patients, families, and society (Ma et al.,
2019; Mao et al., 2019). Although several medicines, including
inhaled corticosteroids, bronchodilators, and long-acting β2-
agonists, have already been shown to have some clinical
efficacy, they also have many adverse effects and are time- or
dose-dependent (Cazzola et al., 2019). For example, patients
treated with β2 receptor agonists may suffer from rapid
heartbeat, muscle tremors, and metabolic disorders (Billington
et al., 2017), while those taking anticholinergic drugs may suffer
from dry mouth, blurred vision, and cardiac rhythm disturbances
(Tune, 2001). Traditional Chinese medicine has some advantages
in the treatment of COPD. Significant clinical efficacy and few
side effects were reported for ECC-BYF III treatment of COPD
(CN. 201811115372.3). Thus, further exploration of traditional
Chinese medicine as a treatment approach for COPD is
warranted.

In this study, we applied a discovery-driven analysis to identify
DEGs and found three genes of interest (COL4A2, VWF, and
IL1RN) by constructing a PPI network and were verified in one
GEO dataset of human and rat data from our laboratory. The
genes were reversed when the COPD rat model was treated with
ECC-BYF III. The mechanism of these genes in COPD deserved
to be explored in the further study.

FIGURE 5 | The competitive endogenous RNA (ceRNA) networks of COL4A2 (A) and IL1RN (B). Red diamonds represent the hub genes, blue circles represent
microRNAs (miRNAs), and green V represents long noncoding RNA (lncRNA).
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This study also has some limitations. For the DEG analysis of
the COPD data from public database, a relatively lenient
threshold value (FDR < 0.2) was used because no DEG could
be identified in GSE8581 with the stricter threshold (FDR < 0.05
or even FDR < 0.1). Fortunately, in the DEGs from the two
datasets (GSE38974 and GSE8581) with FDR < 0.2, we found that
1,724 genes were common, and 75.6% of genes (1,304) have the
identical dysregulation direction, which would not occur by
chance (binomial test, p < 1.00E−16). These results
demonstrate that the DEGs identified under the threshold of
0.2, were reliable, and the cutoff used was logical. In the future,
with the accumulation of COPD data from public databases,
more COPD tissue samples, or an improved algorithm should be
considered. In addition, our study focused only on lung tissue.
Thus, we also searched alveolar macrophages and peripheral
blood mononuclear cell (PBMC) data for similar analyses. For
the 22 human COPD and 66 normal alveolar macrophages from
GSE38974, 9,268 DEGs were identified with the SAM algorithm
(FDR < 0.2). Similarly, for human COPD and normal alveolar
macrophages from GSE13896 (12 COPD and 58 normal), 7,332
DEGs were identified. From the two lists of DEGs identified,
6,284 genes were commonly identified, and 99.98% (6283 genes)
have an identical dysregulation pattern, unlikely by chance
(binomial test, p < 1.00E−16), proving the robustness of the
identified DEGs. Therefore, the 6,283 consistently detected DEGs
from the above two datasets were considered the human COPD
alveolar macrophage-related genes for subsequent analysis. As for
the 1,304 human COPD-related genes identified from lung tissue,
we first evaluated the consistency of the DEGs from lung tissues
and alveolar macrophages. Of the 1,304 and 6,283 DEGs
identified, 348 genes were commonly identified, and 56.32%
(196 genes) had the same dysregulation pattern, with weak
statistical significance. These results indicate a large
heterogeneity between lung tissues and alveolar macrophages.
Considering the small number of genes of interest, KEGG
pathway enrichment analysis was performed with a relatively
lenient threshold (p < 0.1, default parameter in the DAVID
database). For the 196 DEGs consistently identified in the two
types of tissue, 11 pathways were enriched, as shown in
Supplementary Table S15, indicating that these pathways
might participate in COPD pathogenesis in both alveolar
macrophages and lung tissue. Some of the pathways, such as
extracellular matrix (ECM)–receptor interaction (Zhang et al.,
2020b), Epstein–Barr virus infection (McManus et al., 2008),
and PI3K–Akt signaling pathway (Zhang et al., 2020a), were
reported to be linked to COPD. As for the 152 genes commonly
identified but with a reversed dysregulation pattern, four
pathways were enriched, as shown in Supplementary Table
S16, indicating that these pathways might also participate in
COPD pathogenesis but with different patterns in alveolar
macrophages and lung tissue. Some of these pathways such
as the Jak-STAT signaling pathway (Zhao et al., 2020) and
cytokine–cytokine receptor interaction (Zhao et al., 2018) were
reported to be related to COPD. As for the PBMC sample of
COPD individuals, only one dataset GSE42057, including 94
COPD and 42 control samples, could be found. Only 167 DEGs
could be identified (SAM, FDR < 0.2), possibly due to the

complex signals of blood itself or the sample quality. To
compromise, we also evaluated the consistency of the DEGs
from lung tissues and PBMC for the 1,304 and 167 DEGs
identified from them. A total of 19 genes were commonly
identified, and 94.74% (18 genes) had identical dysregulation,
unattributable to chance (binomial test, p � 3.81E−05). These
results indicate that there are common features between lung
tissues and PBMC. As COPD alveolar macrophage and PBMC
data accumulate, the commonality and specificity of COPD
pathogenesis in alveolar macrophages, PBMC, and lung tissue
should be further investigated.

Moreover, in this study, the cutoff of 0.4, which did not
discriminate the interaction of experimentally validated or
predicted data, was used to construct the network. The
obtained network might not have high confidence. Thus,
we also constructed the PPI network using the cutoff of
0.4 and interaction sources from experimentally validated
data. Based on the 198 DEGs identified in this study, the
interaction network comprising only 35 nodes and 23 edges
was obtained, as shown in Supplementary Figure S1. Though
the interaction between proteins has high confidence, they
lose much interaction information, which prevents us from
performing the subsequent network analysis, including the
hub gene identification with cytoHubba. Fortunately, the
result of the network analysis in this study was further
optimized and well validated in BioGPS, GeneCards
databases, independent data from public databases, and
qRT-PCR data from our laboratory. The above multistep
verification could circumvent the issues of not high
confidence for interaction networks, and the final obtained
key genes were reliable. Additionally, 0.4 is a commonly used
cutoff in PPI network analysis (Li et al., 2021; Yan et al., 2021;
Zhang et al., 2021). In summary, the cutoff of 0.4, even
without discriminating the interaction of experimentally
validated or predicted data, is a relatively reasonable
selection in this study.
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