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Rapid Stencil Mask Fabrication 
Enabled One-Step Polymer-Free 
Graphene Patterning and Direct 
Transfer for Flexible Graphene 
Devices
Keong Yong1,*, Ali Ashraf1,*, Pilgyu Kang1 & SungWoo Nam1,2

We report a one-step polymer-free approach to patterning graphene using a stencil mask and oxygen 
plasma reactive-ion etching, with a subsequent polymer-free direct transfer for flexible graphene 
devices. Our stencil mask is fabricated via a subtractive, laser cutting manufacturing technique, 
followed by lamination of stencil mask onto graphene grown on Cu foil for patterning. Subsequently, 
micro-sized graphene features of various shapes are patterned via reactive-ion etching. The integrity 
of our graphene after patterning is confirmed by Raman spectroscopy. We further demonstrate the 
rapid prototyping capability of a stretchable, crumpled graphene strain sensor and patterned graphene 
condensation channels for potential applications in sensing and heat transfer, respectively. We further 
demonstrate that the polymer-free approach for both patterning and transfer to flexible substrates 
allows the realization of cleaner graphene features as confirmed by water contact angle measurements. 
We believe that our new method promotes rapid, facile fabrication of cleaner graphene devices, and can 
be extended to other two dimensional materials in the future.

Graphene, a two-dimensional carbon allotrope, has received immense scientific and technological interest since 
its discovery1. Graphene’s combination of exceptional mechanical properties2, superior carrier mobility3, high 
thermal conductivity4, hydrophobicity5 and potentially low manufacturing cost6 has signified itself as a supe-
rior base material for next generation bioelectrical, electromechanical, optoelectronic, and thermal management 
applications7–10.

Significant progress has been made in the direct synthesis of large-area, uniform, high quality graphene films 
using chemical vapor deposition (CVD) with various precursors and catalyst substrates11–13. However, to date, 
the infrastructure requirements on post-synthesis processing (e.g., patterning and transfer) for creating inter-
connects, transistor channels, or device terminals have slowed the implementation of graphene in a wider range 
of applications14,15. Existing methods to pattern graphene can be categorized into conventional photolithogra-
phy16, soft lithography or transfer printing17,18, direct patterning using ion beam19, laser scribing20, ablation21, or 
hydrogen desorption22 after transfer to an appropriate substrate, and direct growth of patterned graphene14,23–27. 
However, despite the plethora of these aforementioned methods, they have limitations that have prevented 
low-cost, manufacturing of flexible graphene devices.

Conventional microfabrication-based photolithography requires extensive process steps, and yet suffers from 
polymeric residue28 introduced during graphene patterning. Furthermore, while graphene has the potential for 
novel applications such as flexible circuits and wearable electronics, the intended plastic substrates are not likely 
to be compatible with the organic solvents used in photolithography. In addition, the cost and lead-time associ-
ated with the fabrication of photolithography masks could be prohibitive in an iterative design process. On the 
other hand, transfer printing (or soft lithography) is constrained by the graphene source (e.g., graphene oxide), 
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transfer layer, and target substrate17,18. Intricate photolithography-based stamp fabrication for the transfer layer 
and non-uniformity of transferred graphene layers are limitations of this technique. Direct patterning based on 
optical drive enabled laser scribing shows promise in commercial applications20, but the process is only compati-
ble with direct laser reduction of graphene oxide films, and is constrained to serial processing with limited scala-
bility. While nanometer-scale patterning of single layer graphene through laser ablation has been reported21, the 
process requires an expensive femtosecond laser. Finally, direct growth of patterned graphene requires the catalyst 
to be patterned before the growth step by the same extensive processing infrastructure as mask photolithogra-
phy and/or is limited to high temperature resistance surfaces14,23–27. Furthermore, attempts to achieve one-step 
catalyst-free direct growth of patterned graphene on a target substrate reportedly yield subpar quality graphene23.

Here we report a one-step facile method to pattern graphene by using stencil mask and oxygen plasma 
reactive-ion etching (RIE), and subsequent polymer-free direct transfer to flexible substrates. In conjunction 
with the recent evolution of additive and subtractive manufacturing techniques such as three-dimensional (3D) 
printing and computer numerical control (CNC) milling, we developed a simple and scalable graphene patterning 
technique using a stencil mask fabricated via a laser cutter. Our approach to patterning graphene using a stencil 
mask is based upon the shadow mask technique that has been employed for contact metal deposition29,30. Not 
only are these stencil masks easily and rapidly manufacturable (for iterative rapid prototyping), but they are also 
reusable, enabling cost-effective pattern replication. Furthermore, since our approach involves neither a poly-
meric transfer layer nor chemicals (organic solvents), we are able to obtain contamination-free graphene patterns 
directly on various flexible substrates.

Results and Discussion
In Fig. 1, we illustrate our one-step and polymer-free technique to pattern CVD grown graphene and transfer 
the patterned graphene onto a flexible substrate. We used a commercially available laser cutter (40 μ m spot size) 
to fabricate stencil masks. Desired micropatterns are designed by a computer-aided design (CAD) software, and 
the laser cutter interfaced to the computer fabricated a stencil mask accordingly. The rapid production of stencil 
mask is facilitated by the quick turnover of the laser cutter to pattern low cost polymer and metal sheets (See 
Supplementary Methods). As examples, brass and Kapton stencil masks with various features are shown in Fig. 1b 
and Fig. S1. The fabricated mask is first aligned on the as-grown CVD graphene on a copper foil and then pat-
terned by O2 plasma etching. While oxygen gas is commonly used for plasma etching of graphene31–34, there have 
been several studies on other promising gases, such as argon31 and hydrogen35 for plasma etching of graphene. 
Subsequently, the patterned graphene is transferred onto a flexible substrate through a lamination process to 
ensure conformal contact, followed by removal of Cu foil by etching process (See also Methods). Due to this 
facile approach, our method reduces the total fabrication steps and time by eliminating the need for an intricate 
microfabrication process (and the need for a polymeric scaffold). More importantly, our polymer-free approach 
promotes cleaner graphene.

We demonstrate the potential of our method for effective pattern replication and parallel processing in device 
fabrication. To show such potential, we produced micron-sized features with a variety of repeated shapes etched 
on the graphene sheet grown on copper, and then successfully transferred the patterned graphene onto rigid 
and flexible substrates in a conformal fashion. Optical microscope images (Figs 2a,b,d, and S2) demonstrate 
various graphene array patterns with different sizes, including lines, letters, and circles of ~50 μ m in size. The 
graphene array patterns were transferred on a SiO2/Si substrate with 300 nm thermal oxide for better visual con-
trast. Figure 2c shows our capability to transfer patterned graphene onto flexible polyethylene terephthalate (PET) 
substrate. Additional photographs of flexible substrates such as Kapton film and polydimethylsiloxane (PDMS) 
with patterned graphene are provided in Fig. S3. A multitude of such patterns demonstrates the versatility of our 
patterning method by stencil masks and compatibility with various substrate choices.

To characterize the pattern replication capability and resolution of our stencil-based patterning, we determine 
the ratio of feature size of patterned graphene to that of stencil mask for various design feature sizes (Fig. S4). 
Unity (represented by dotted line) in the figure indicates that there is a perfect size match between the hollow 
feature of the mask and that of the patterned graphene. The mismatch in size between patterned graphene to 
mask was between 2 to 12% (conformity ratio of 1.02 to 1.12) for feature sizes in the range of 50–300 μ m (Fig. S4). 
This mismatch is attributed to a small inherent gap between the flexible mask and graphene, leading to plasma 
leakage during the etching process. We note that the mechanical flexibility of our metal thin film or Kapton mask 
is a strength for pattern replication as the flexible mask can potentially conform better to graphene on flexible 
copper foil.

To substantiate the quality and integrity of our patterned graphene, we carried out Raman analysis at differ-
ent distances from the etched feature edge. Figure 2d,e show the optical microscope image of a patterned array 
with delineated region where graphene quality was assessed. Figure 2f illustrates the respective Raman spectrum 
at different locations in Fig. 2e (denoted by distance d from the feature edge). First, we observed that graphene 
successfully etched in the center zone (d =  − 23 μ m) shows no apparent peaks distinctive to graphene within 
the specified wavenumber range (1200–3000 cm−1)36 . Second, since there is an inherent gap between graphene 
and stencil mask, patterned graphene close to the edge exhibited defects caused by the leakage of O2 plasma (for 
d =  1 to 9 μ m)32,37,38. We used the Raman D-to-G peak intensity ratio to systematically characterize the integrity 
of graphene (Fig. 2g)36; low ratio (<~0.3) indicates an intact graphene38, while higher ratio indicates a damaged 
graphene. Based on the investigation, we conclude that the quality of patterned graphene remains intact exclud-
ing the region within d =  ~10 μ m from the etched feature edge (Fig. 2f,g). We note that optimization of oxygen 
plasma conditions can be tailored to further reduce the defective zone38.

To investigate the capability of rapid prototyping for graphene-based functional devices, we demonstrate a 
stretchable, serpentine-shaped, crumpled graphene strain sensor fabricated by our stencil-based patterning/
lamination approach. We patterned the graphene into a serpentine-shape pattern and subsequently generated 
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out-of-plane crumpled structures by strain-induced buckle-delamination process (Fig. 3a)39,40. More specifically, 
patterned graphene was laminated onto a pre-strained elastomeric substrate followed by a subsequent release of 
the pre-strain to induce crumpling of graphene41. We applied a biaxial pre-strains of εpre,x ~ 250% and εpre,y ~ 150% 
before the patterned graphene transfer (See Methods). Scanning electron microscope (SEM) images (Fig. 3b) 
show the development of graphene crumple patterns under relaxed and stretched state39,40,42. As the graphene 
device is stretched uniaxially, there is an observable de-crumpling in the stretch direction.

To demonstrate the piezoresistive sensing capability of our strain sensor, we performed systematic studies of 
resistance under uniaxial tensile strain. The resistance of serpentine-shaped, crumpled graphene structure was 
measured at varying uniaxial tensile strains from 0% to 100% and the change in resistance compared to that at 
εtensile,x =  0% was plotted over applied strain (Fig. 3c). Increase in normalized resistance was observed with higher 
applied strain. The change in normalized resistance (Δ R/R0) versus increasing tensile strains (εtensile,x) exhibited 
two different regimes43 (Figs 3c and S5): at lower strain, the strain sensitivity (gauge factor) is ~0.46 (εtensile,x =  0 to 
40%), while at higher strain, the strain sensitivity is ~2.52 (εtensile,x =  40 to 100%) (Fig. S5). This compares favora-
bly with the earlier rectangular-shaped, crumpled graphene strain sensor with a gauge factor of ~0.5544.

Figure 1. One-step graphene patterning and polymer-free graphene transfer onto a flexible substrate.  
(a) Detailed schematic illustration of the one-step polymer-free approach to fabricate patterned graphene on a 
flexible substrate. A stencil mask is designed by a CAD software and fabricated by a laser cutter. The fabricated 
mask is aligned on the as-grown CVD graphene on a Cu foil, and the exposed graphene region is removed by 
oxygen plasma. The patterned graphene is laminated onto a flexible substrate, followed by etching of the Cu foil. 
(b) Optical microscope images of various stencil masks with sophisticated micro-scale features. All scale bars: 
300 μ m.
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Furthermore, to demonstrate the robustness of our serpentine-shaped, crumpled graphene strain sensor, we 
characterized our device under cyclic strains. We measured the change in resistance with respect to the resistance 
at 1st cycle (R/Rcycle 1) over one thousand cyclical strains of εtensile,x ~ 50% (Fig. 3d). Two terminal resistance meas-
urements showed no significant increase under cyclic strain, indicating that the graphene integrity was preserved 
owing to its reversible crumpling/de-crumpling process of serpentine-patterned graphene obtained by our pro-
cess (Fig. 3d)41.

Graphene patterning can also have significant impact in areas that require selective hydrophobicity or com-
bined hydrophilic-hydrophobic patterns45. Graphene coated surfaces (e.g., condenser pipes) with hydrophobic 
characteristics can enable dropwise condensation and therefore improve heat transfer characteristics. Recently, 
researchers have shown that hydrophobic and hydrophilic channels have improved condensation heat trans-
fer performance compared to only hydrophobic surfaces based on the size and shape of hydrophilic region46. 
Hydrophilic-hydrophobic patterns are also promising for shaping and positioning of droplets for sequencing and 
sensing, liquid microfluidics, electrowetting display and surface tension driven microfluidics47,48.

We investigated the condensation performance of one-step patterned graphene features with an environ-
mental SEM (E-SEM). The E-SEM allows real-time image acquisition during water vapor condensation on a 
cooled sample. Our capability to selectively pattern graphene resulted in filmwise condensation on the bare SiO2 
substrate, as clearly shown by water film having the shape of letter “E” and “C” (Fig. 4a–c), in contrast to drop-
wise condensation on graphene surfaces elsewhere (Fig. 4c,d) (See also Supplementary Movie 1). In addition, 
water contact angle (WCA) is 90° at ~10 μ m from the pattern edge. This WCA value matched with the value in 

Figure 2. Characterization of patterned graphene features. (a,b) Optical microscope images demonstrating 
various graphene array patterns of different sizes transferred onto a SiO2 substrate. Insets show stencil masks 
used for graphene patterning. Scale bars: 300 μ m (main) and 600 μ m (inset). (c) Photograph showing that 
patterned graphene is successfully transferred onto a flexible substrate, PET. (d) Optical microscope image of a 
line pattern array showing the region where graphene quality is assessed. Scale bar: 300 μ m (main) and 600 μ m 
(inset). (e) Optical microscope image (rotated by 90°) of the line pattern delineated by the dotted region in 
(d). Scale bar: 10 μ m. (f) Respective Raman spectrum from plasma etched region by varying distance, d. (g) 
Characterization of the intact and damaged graphene regions of patterned graphene prepared by our approach. 
Graphene in the region with a distance of ~10 μ m from the patterned edge exhibits good quality.
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the literature for single layer graphene5, demonstrating graphene was not damaged by the patterning process (at 
~10 μ m distance from the edge of the patterned feature). We note that the results herein are consistent with our 
findings from Raman spectroscopy (Fig. 2g).

To establish that our polymer-free process yields graphene devices with cleaner surface characteristics, mac-
roscopic WCA measurements were carried out using a goniometer (Fig. 4e). The graphene surface that has more 
polymeric contaminants28 tends to show more hydrophobic behavior or higher WCA49. Graphene transferred 
by our polymer-free approach was compared with a graphene sample that was transferred by poly-methyl meth-
acrylate (PMMA)-assisted conventional transfer approach (PMMA layer was removed by acetone before meas-
urement; See Supplementary Methods). There was a 10° increase in WCA for the graphene sample on PDMS that 
was exposed to PMMA. These results show that our polymer-free approach produces cleaner graphene surfaces 
and promotes higher quality graphene.

Our approach demonstrates a new possibility to overcome limitations imposed by existing post-synthesis 
processes to achieve graphene micro-patterning. Our method to pattern graphene with a stencil mask followed 
by direct lamination transfer has several key advantages over existing techniques. First, the simple patterning 
process circumvents the costly lithographic patterning and post processing steps required in traditional pattern-
ing techniques. Furthermore, our method allows rapid design iterations and pattern replications. Second, our 
proposed polymer-free patterning technique promotes graphene of cleaner quality than fabrication techniques 
that necessitate graphene exposure to resist or PMMA. Third, the ubiquity, scalability, and low cost of stencil mask 
fabrication by additive and subtractive manufacturing techniques such as laser cutter and 3D printing offers a 
pathway that is conducive to discovering potential applications. Lastly, our patterning technique provides a simple 
and robust platform that can be applicable to patterning of a wide range of other novel two-dimensional materials 
of recent interest (e.g., hBN, MoS2 and other transition metal dichalcogenides)50,51. Nevertheless, our method 

Figure 3. Rapid prototyping of stretchable graphene strain sensor. (a) Photograph of a crumpled graphene 
strain sensor device on a VHB film. Scale bar: 100 μ m. Inset at the top shows the mechanism of sensing strains 
in x-direction. (b) SEM images of crumpled graphene structures (i) under relaxed and (ii) stretched state in 
x-direction. The VHB pre-stretched strains in x- and y- directions are ~300% and ~150%, respectively before 
being relaxed. The re-stretched strain is ~150% in x-direction. Scale bar: 5 μ m. (c) Normalized change in 
resistance with varying strain from 0% to 100% over three cycles. (d) Change in resistance normalized with the 
resistance after 1st cycle over one thousand cycles of stretching strains.



www.nature.com/scientificreports/

6Scientific RepoRts | 6:24890 | DOI: 10.1038/srep24890

has some present limitations that requires further refinement. Currently, our patterning technique is limited to 
micron-sized graphene patterns with a micrometer scale defect zone. However, this resolution is limited by sten-
cil mask fabrication tools (e.g., laser cutter and 3D printer) rather than the process itself. Furthermore, previous 
studies have shown enhanced oxidation of graphene by O2 plasma in a slightly reducing environment of ammonia 
and argon (or hydrogen) for controlled etch rate predominantly at the graphene nanoribbon edges52.

Conclusions
In conclusion, we have demonstrated a one-step, facile and scalable patterning of graphene using a stencil mask. 
We have shown that graphene can be patterned into varying geometrical shapes and sizes. Furthermore, we 
have explored various substrates for the direct transfer of the patterned graphene. Our approach produces 
cleaner graphene compared to fabrication techniques that utilize resist and polymeric scaffold for the transfer 
onto desired substrates. Finally, we have demonstrated the rapid prototyping capability of our technique to fab-
ricate a stretchable, crumpled graphene strain sensor and condensation channels for potential heat management 
applications.

Methods
Sample Preparation. Graphene was grown on a copper foil by low-pressure CVD using a mixture of meth-
ane (CH4), hydrogen (H2), and argon (Ar). Subsequent graphene patterning on as grown CVD-grown graphene 
was achieved after by aligning stencil mask first, then by oxygen plasma reactive-ion etching. The stencil masks 
shown in Fig. 1 were fabricated by a laser cutter (Potamac, MD). The transfer of patterned graphene onto a pol-
ymer substrate was attained by a commercial laminator (300-SCL DSB, China) to ensure conformity at room 
temperature. The transfer was then followed by the etching of Cu foil by sodium persulfate solution. The detailed 
procedures and conditions during sample preparation, e.g. stencil mask fabrication, graphene synthesis, and sam-
ple preparation for water contact angle measurements, are provided in Supplementary Information.

Characterization. Optical microscope images were captured in a reflective bright-field mode (Axio Imager 
M2m, Carl Zeiss, Germany). E-SEM images (at 4 °C sample temperature, and 100% relative humidity) were 
obtained using FEI quanta 450 SEM (FEI, OR) by increasing water vapor pressure to or above saturation pressure 
during E-SEM imaging. Raman spectra were obtained with the laser excitation wavelength of 633 nm, 1800 l/mm  
grating, 10 seconds of accumulation (Renishaw Raman/PL Micro-spectroscopy, Gloucestershire, UK). Water con-
tact angles were measured by a goniometer KSV CAM200 (KSV Instruments Ltd., Helsinki, Finland).

Fabrication/Characterization of Patterned, Crumpled Graphene Strain Sensor. A VHB tape (3M, 
MN), a highly stretchable acrylic film, was biaxially pre-strained by εpre,x ~ 250% and εpre,y ~ 150%. Patterned, 
serpentine-shaped graphene on a Cu foil was then transferred onto a pre-strained VHB film. The Cu foil was then 
chemically etched with sodium persulfate solution. Thin gold film (40 nm) was deposited by thermal evaporator 
(Nano 36, Kurt J. Lesker, PA) to create contact pads. The device was biaxially re-stretched during the thermal dep-
osition to create corrugated gold contact electrodes serving the device stretchability. The crumpling of graphene 
serpentine structures was accomplished by subsequent releasing of the elastomeric substrate.

Two terminal resistance measurements were performed with a probe station (PM8, SUSS Micro Tec, 
Germany) and a sourcemeter (2614B, Keithley Instruments, OH). The serpentine-shape crumpled graphene 
strain sensor device was uniaxially stretched along the direction with higher pre-strain (x-direction as illustrated 
in Fig. 3a). We monitored the conductance of the device at varying tensile strains.

Figure 4. Rapid prototyping of patterned graphene condensation channels. (a–c) Time sequential 
E-SEM images of filmwise condensation on a bare SiO2 substrate in the form of letters “E” and “C”. Droplet 
condensation is observed at graphene region outside of the letter “E” and “C”. Scale bar: 50 μ m. (d) E-SEM 
image of dropwise condensation on graphene portion of the sample shown in (c). Scale bar: 50 μ m. (e) Water 
contact angle measurements to investigate the graphene surface cleanness: left (PDMS control), middle 
(graphene by our polymer-free transfer approach), right (graphene exposed to PMMA). Inset shows side view 
photographs of a water droplet on respective substrates.
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