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Introduction

Foodborne pathogens from animal sources account 
for most of the foodborne illnesses each year. Poor 
hygienic practices are a major contributing factor in 
most developing countries of Africa, with contaminated 
raw meat as a leading source of foodborne illness. Raw 
meats are available in the open air, retail shops, and 
abattoirs. Microbial contamination of food can there-
fore transpire at numerous phases across the food 
chain, which includes production, slaughtering, distri-
bution, and retail marketing (Elhadi 2014). Foodborne 
diseases are burdensome and represent a significant 
world health problem. Globally, the microbiological 
safety of food is a growing public health challenge. By 
estimate, every year, 600 million, or nearly 1 in 10 peo-
ple globally, become ill through the consumption of 

contaminated food. A total of 420,000 individuals out 
of this figure die, including 12,000 children who fall 
under 5 as reported by the World Health Organization’s 
estimates on the global burden of foodborne diseases 
(WHO 2015). Escherichia coli, a member of intestinal 
micro biota, is potentially pathogenic organism for 
humans and animals (Bumunang et al. 2019). The pres-
ence of E. coli in meat indicates poor hygienic practices 
in abattoirs or retail outlets. Contaminated, uncooked 
or undercooked red meats are particularly important 
in transmitting these foodborne pathogens (Wang et al. 
2012). Foods of animal origin have been implicated 
as a leading vehicle involved in foodborne diseases 
(Baek et al. 2009). Pork is a highly consumed red meat 
in the world (Joy et al. 2014; Grobbelaar et al. 2021), 
and Statista GmbH has projected that the global con-
sumption will amount to around 127.2  million metric 
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A b s t r a c t
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tons by 2029 (Grobbelaar et al. 2021). The pork con-
sumption in South Africa was reported to increase from 
3.5 kg (2000) to over 4.2 kg (Streicher 2012).

In South Africa, pork is partly responsible for 
around 16.3% of the gross value of agricultural pro- 
duction (Mohlatlole et al. 2013). To meet production 
goals, antimicrobial agents are vital for the prophylaxis 
and treatment of many diseases in pork production 
(Ström et al. 2018). The most frequently administered 
antimicrobial agents in pork production include colis-
tin, third and fourth-generation cephalosporins, and 
carbapenems. Colistin, a member of the antimicro-
bial agents, referred to as polymyxins, is a mixture of 
polymyxin E1 and E2 that are pentacationic lipopep-
tides and are bactericidal in action. Colistin is active 
against a  wide range of Gram-negative bacteria and 
has no activity against Gram-positive bacteria due to 
the absence of an outer membrane. It is used in both 
human and veterinary medicine. However, it is only 
an empiric drug in treating infections with multidrug-
resistant, extensively drug-resistant, and pan drug-
resistant bacteria in humans (Magiorakos et al. 2012). 
In veterinary medicine, it is commonly used to treat 
food-producing animals from chicken to pigs, claves, 
cattle, cows, meat, and milk-producing sheep, goats, 
and rabbits. It is also used in aquaculture for the pre-
vention and treatment of infections attributed to mem-
bers of Enterobacteriaceae and other Gram-negative 
bacteria and used for growth promotion.

Imipenem is a beta-lactam antibiotic of the carba-
penems class with a broad spectrum of activity. The 
mechanism of action involves the inactivation of 
the penicillin-binding proteins (PBP), thereby resulting 
in cell wall lysis or inhibition of its formation. They bind 
to a specific PBP (PBP-1) that results in more rapid 
lysis compared to other beta-lactams, thus resulting in 
higher bactericidal activity and a more prolonged post-
antibiotic effect. Carbapenems have a broad spectrum 
of activity and are among the most active of all anti-
biotics. Their spectrum includes Gram-negative bacilli, 
including Enterobacteriaceae and Pseudomonas aerugi-
nosa. Antibiotic resistance is one of the biggest threats 
to global health, food security, and development today 
(WHO 2020). Antibiotic resistance may develop natu-
rally, but antibiotic misuse by humans and animal hus-
bandry is accelerating the process. Currently, a grow-
ing number of infections are becoming harder to treat 
as the antibiotics used to treat them have become less 
effective. The consequences of antibiotic resistance lead 
to more extended hospital stays, higher medical costs, 
and increased mortality. There are four fundamental 
mechanisms of antimicrobial resistance: (i) enzymatic 
degradation of antibacterial drugs, (ii)  alteration in 
the bacterial proteins that are antimicrobial targets, 
(iii) changes in membrane permeability to antibiotics, 

and (iv)  intrinsic resistance caused by an absence of 
drug’s target in the organism. Antibiotic resistance can 
be either plasmid-mediated or maintained on the bacte-
rial chromosome.

Generally, resistance to colistin could be due to 
acquired resistance in which a once naturally suscepti-
ble organism modifies its cell surface, such as altering its 
lipopolysaccharide structure. Other known resistance 
mechanisms include capsular polysaccharide shedding, 
thus resulting in the trapping or binding of polymyxin 
or colistin, as in Klebsiella pneumoniae. In organisms 
such as Acinetobacter baumannii, there are two known 
mechanisms of resistance to colistin, which include 
loss of lipopolysaccharide production and the modi-
fication of the system that allows bacteria to respond 
to environmental conditions, which ultimately results 
in lipid modification and membrane permeability. The 
second most adopted mechanism is transferable colistin 
resistance mediated by a plasmid-coded gene, mcr. Cur-
rently, there are many variants of the gene since the first 
identification of the mcr-1 gene in E. coli isolates from 
food animals and their meat in China between 2011 
and 2014 and in E. coli and K. pneumoniae isolates col-
lected in 2014 from humans in China (Liu et al. 2016; 
Skov and Monnet 2016).

The location of colistin resistance genes on transfer-
able plasmids has resulted in the widespread dissemina-
tion of colistin resistance in various strains recovered 
from different sources (Aminov 2011; Popowska 2012). 
It leads to the development of multiple co-resistance 
or cross-resistance in bacteria (Gwida and El-Gohary 
2015; Hoelzer et al. 2017). It affects both pathogenic 
bacteria and healthy microbiota, with the latter serving 
as a potential reservoir of resistance genes for patho-
gens. Multidrug-resistant pathogens can be transferred 
through the food chain weakening the potency of anti-
microbials administered during infections (Brunelle 
et al. 2013). Thus, the widespread antibiotic resistance 
among foodborne pathogens undermines the successful 
treatment of infectious diseases (Yao et al. 2016) as anti-
biotics are rendered ineffective due to resistance leading 
to frequent treatment failures (Poirel et al. 2016). Most 
colistin-resistant positive isolates carry different resist-
ance genes, including carbapenemase (Yao et al. 2016; 
Poirel et al. 2016) and other resistance genes (Turlej-
Rogacka et al. 2018).

The evolution of carbapenem resistance has become 
rampant in Gram-negative bacteria, especially in 
intensive care units (ICUs), where the selective pres-
sure exerted by antibiotics on bacterial populations is 
strong. This development is mediated by mutations 
or insertion sequences (ISs) that inactivate the gene 
coding for porin OprD, the specific portal of entry for 
carbapenems into these organisms. The reduced outer 
membrane permeability that results from OprD loss 
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usually causes an increase in the MICs of all the car-
bapenem molecules, including imipenem, meropenem, 
and doripenem (Fournier et al. 2013). In addition to 
this very prevalent mechanism, carbapenem-resistant 
bacteria may acquire numerous foreign genes encod-
ing different classes of β-lactamases that are capable of 
hydrolyzing carbapenems to varying degrees. Similarly, 
there is an ever-growing number of bacterial isolates 
producing metallo-β-lactamase (MBL) (class B) that 
have been reported from many countries in recent 
years, indicating that these enzymes could become the 
predominant cause of carbapenem resistance in no dis-
tant future (Fournier et al. 2013).

Although colistin-resistant isolates are emerging and 
have been found in Africa, data on multidrug-resistant 
isolates exhibiting carbapenem and colistin resistance is 
scarce. Additionally, there is a dearth of data as regards 
the prevalence of multiple resistant E. coli contaminat-
ing pork in Eastern Cape, South Africa. Here we pre-
sent data on multidrug-resistant E. coli isolates.

Experimental

Materials and Methods

Sample collection. The study was conducted in 
Alice. Alice is situated in the Eastern Cape, the “live-
stock” province of South Africa, which has about 46% 
goats, 28% sheep, 20% pigs, and 21% cattle (Caine et al. 
2014). Alice was selected based on the meat consump-
tion rate by this area’s inhabitants. One hundred eighty 
raw pork samples were randomly purchased from open-
air markets (Shops A and B) and closed retail stores 
(Shops C and D) located in Alice. The samples were 
individually packed in sterile plastic bags, marked, and 
then transported in cooler boxes with ice parks (4°C) 
to the University of Fort Hare Microbiology Laboratory 
for immediate processing. The study was carried out 
between May 2018 and October 2018.

Isolation of presumptive organisms. The modi-
fied method described by Bersisa et al. (2019) was 
adopted to isolate bacteria. Briefly, the raw meat sam-
ples were swabbed with a sterile cotton swab, and 
each swab sample was used to inoculate chromogenic 
agar plate (Merck, South Africa), and then the plates 
were incubated at 37°C for 48 h. About two to three 
separate distinct colonies were picked and were selec-
tively plated onto chromocult tryptone bile X-glucuro-
nide agar (TBX agar; Merck, South Africa), incubated 
aerobically at 37°C for 24 h. Each deep blue colony 
was selectively picked as presumptive E. coli isolate into 
LB broth and incubated for 24 h at 37°C. These pre-
sumptive isolates were stored at –80°C in 25% glycerol 
until further analyses.

DNA extraction. Genomic DNA of the presump-
tive E. coli isolates was prepared by the method earlier 
reported by Iweriebor et al. (2015). Briefly, the pre-
sumptive isolates in glycerol stock were resuscitated 
overnight in LB broth, from which 2 ml was centrifuged 
at 10,000 rpm. The supernatant was discarded, the pellet 
resuspended in nuclease free water, boiled at 100°C, and 
the resultant supernatant was used as DNA template in 
all the PCR assays.

Molecular identification of presumptive E. coli by 
PCR. Isolates considered as presumptive E. coli were 
confirmed by PCR using the uidA oligonucleotide 
primer (Inqaba Biotech, South Africa) and the details 
of the sequences are as follows: F: 5’-AAAACGGCAA-
GAAAAAGCAG-3’ and R:  5’-ACGGTGGTTAA-
CAGTCTTGCG-3’ (Tsai et al. 1993). Each PCR was 
performed as previously described by Iweriebor et al. 
(2015), followed by gel electrophoresis on 1.5% aga-
rose and documented in a gel documentation system. 
E. coli ATCC® 25922™ reference strain served as a posi-
tive control in this study.

Determination of antimicrobial susceptibility of 
the isolates. Antimicrobial susceptibility patterns of the 
confirmed E. coli isolates were performed on Mueller-
Hinton agar (MHA) plates (Oxoid CM337), as previ-
ously reported by Bauer et al. (1966). About four to five 
E. coli colonies of an 18-hour-old culture were selected 
with a sterile wire loop and after that inoculated into 
0.8% NaCl suspension in a micro-centrifuge tube, gen-
tly vortexed, and adjusted to a turbidity equivalent to 
0.5 McFarland standard (Amri and Juma 2016). One 
hundred microliters of the standardized bacterial cul-
ture was then evenly spread on the entire surface of the 
MHA plates using a sterile cotton swab and allowed to 
dry for 10 min before placing the antibiotic discs. The 
plates were incubated at 37°C for 24 h and after that 
read according to CLSI guidelines (CLSI 2016). The list 
of antibiotics tested includes the following: tetracycline 
(30 µg), ampicillin (10 µg), sulphamethoxazole-trimeth-
oprim (25 µg), erythromycin (15 μg), chloramphenicol 
(10 μg), cefuroxime (30 μg), gentamycin (10 μg), nor-
floxacin (10 μg), ciprofloxacin (5 μg), colistin sulphate 
(10 μg), cefotaxime (30 μg), and imipenem (10 μg). Iso-
lates that were resistant to colistin by the disc diffusion 
method were then tested by the broth dilution method 
as recommended by the CLSI (2016). CLSI guidelines 
(CLSI  2016) recommended clinical resistance break-
point for colistin as greater than or equal to ≥ 2 µg/ml. 
The isolates were then screened for mcr-1, blaTEM, 
and ermB by PCR, as previously described by Liu et al. 
(2016) and Iweriebor et al. (2015) while the other resist-
ance determinants were not profiled.

Multidrug resistance phenotype and multiple 
antibiotic resistance index. The isolate which showed 
resistance to three or more classes of the antibiotics 
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tested was considered to be a multidrug-resistant. The 
MDR patterns of the isolates were recorded according 
to the protocol earlier described by Ateba et al. (2008). 
The Multiple Antibiotic Resistance Index (MARI) 
was calculated using the mathematical expression: 
MARI = x/y, where ‘x’ stands for the total number of 
antibiotics to which resistance was observed in an indi-
vidual isolate and ‘y’ stands for the total number of anti-
biotics against which an individual isolate was tested.

Results

Prevalence of E. coli. From the 180 pork samples 
randomly collected from open-air markets and closed 
retail stores (Shop A to D) located in Alice, South 
Africa, 174 presumptive isolates were obtained through 
preliminary screening with the selective culture medium. 
Among the samples collected, shop A samples had the 
highest number of E. coli isolates, followed by shop B. 
These shops were located in open-air market. The 
per centage prevalence of E. coli isolates from shops C 
and D were lower (Table I).

Molecular identification of presumptive E. coli 
isolates. A total of 68 (39.08%) of the 174 presump-
tive isolates were confirmed as E. coli (Table I). Fig. 1 
below shows the gel image representation of some of 
the confirmed isolates.

Susceptibility patterns of E. coli isolates. E. coli 
isolates from retail pork displayed resistance most fre-

quently to erythromycin (100%; 68/68), cefotaxime 
(95.58% 65/68), ampicillin (88.23%; 60/68), cefuro-
xime (88.23%; 60/68), trimethoprim-sulphamethoxa-
zole (88.23%; 60/68), and tetracycline (60.29%; 41/68). 
Lower resistance was observed against imipenem 
(50.00%; 34/68) and colistin (33.82%; 23/68). Notably, 
the resistance of E. coli isolates to ciprofloxacin (2.94%; 
2/68) and norfloxacin (1.47%; 1/68) was lower than 5%. 
The susceptibility patterns of the isolates obtained in 
this study are shown in Fig. 2. Isolates showing resist-
ance to at least three antibiotics of different classes were 
classified as multidrug-resistant. All isolates showing 
intermediate resistance were regarded as resistant. 
Genetic profiling for the mrc-1, blaTEM, and ermB 
resistance genes showed positive results as some of 
the phenotypic resistant isolates were positive for the 
genes profiled, as shown in Fig. 3–5. The frequencies of 
the profiled resistance genes among the isolates were 
as follow; mrc-1 11/23 (47%), blaTEM 13/34 (38%), and 
ermB 15/68 (22%).

Multiple antibiotic resistance phenotypes and 
index. This study characterized the antimicrobial 
resistance phenotype in E. coli isolates from retail stores 
and open-air markets. It was observed that 39.70% 
(27/68) of the study isolates were MDR, and 92.59% 
(25/27) of E. coli MDR isolates were resistant to 
cefotaxime – a third-generation cephalosporin. E. coli 
MDR isolates resistance to imipenem, a carbapenem 
used in this study and colistin was observed. The 
MDR pattern (Table II) indicated that the majority of 

Fig. 1. Agarose gel electrophoresis for Escherichia coli identification.
Line M – 100 bp ladder, Line 1 – negative control, Line 2 – E. coli ATCC® 25922™ as a positive control,

Lines 3–12 – the 147 bp PCR amplification product for E. coli isolates.

A Open-air market 58 58 28 48.28
B Open-air market 33 31 18 58.06
C Closed store 43 43 8 18.60
D Closed store 42 42 14 33.33
Total  176 174 68 39.08

Table I
Isolation and identification of Escherichia coli.

Shop Location of shop Samples
collected

Presumptive
isolates

Positive
isolates %
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Fig. 3. Electrophoresis of mrc-1 gene amplification among Esche richia coli isolates.
Line 1 – 100 bp ladder, Line 2 – negative control, Line 3–13 – positive isolates

the tested E. coli isolates demonstrated multiple anti- 
biotic resistance against three to nine antibiotics. The 
lowest MDR rate was exhibited by 14.81% (4/27) of 

the isolates against three antibiotics, while 7.41% 
(2/27) exhibited the highest MDR rates against nine 
antibiotics. About 33.33% (9/27) of MDR E. coli 

Fig. 4. Electrophoresis of the ermB gene amplification product (350 bp) in Escherichia coli isolates.
Line 1 – 100 bp DNA ladder, Line 2 – negative control, Lines 3–12 – the ermB-resistant E. coli isolates

Fig. 2. The sensitivity pattern of Escherichia coli isolates against antibiotics.
AMP – ampicillin, CO10 – colistin sulphate, TS – trimethoprim-sulphamethoxazole, CXM – cefuroxime, E – erythromycin,

C30 – chloramphenicol, IMI – imipenem, GM – gentamycin, T – tetracycline, NOR – norfloxacin, CTX – cefotaxime,
CIP – ciprofloxacin, S – susceptible, R – resistant, I – intermediate
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isolates were resistant to imipenem, while 29.62% (8/27) 
were resistant to colistin. Both imipenem resistant 
MDR and non-imipenem resistant MDR E. coli iso - 

lates were colistin-resistant (Table  II and III). The 
MARI ranged between 0.25 and 0.75, with the aver- 
age being 0.48.

CTX-T-E 3 0.25
CTX-E-C30 3 0.25
CTX-AMP-E 3 0.25
CTX-CXM-E 3 0.25
TS-GM-E-CO10 4 0.33
CTX-CXM-AMP-E 4 0.33
AMP-T-TS-C30-E 5 0.42
CTX-CXM-T-TS-E 5 0.42
CTX-CXM-AMP-TS-E 5 0.42
CTX-CXM-AMP-T-E 5 0.42
CTX-CXM-TS-CO10-E 5 0.42
CTX-TS-E-IMI-CIP 5 0.42
CTX-CXM-AMP-T-E-C30 6 0.50
CTX-CXM-AMP-TS-CO10-E 6 0.50
CTX-CXM-AMP-T-TS-E 6 0.50
CTX-CXM-AMP-TS-IMI-E 6 0.50
CTX-CXM-AMP-IMI-CO10-E 6 0.50
CTX-CXM-AMP-TS-IMI-E 6 0.50
CTX-CXM-AMP-TS-C30-GM 6 0.50
CTX-CXM-AMP-T-TS-C30-E 7 0.58
CTX-CXM-AMP-TS-IMI-E 6 0.50
CTX-CXM-AMP-T-TS-C30-IMI-E 8 0.66
CTX-CXM-AMP-T-TS-C30-CO10-E 8 0.66
CTX-CXM-AMP-T-TS-C30-GM-CO10 8 0.66
CTX-AMP-T-TS-E-C30-IMI-NOR 8 0.66
CTX-CXM-AMP-T-TS-C30-IMI-CO10-E 9 0.75
CTX-CXM-AMP-TS-C30-IMI-GM-CO10-E 9 0.75

Table II
Antibiotic resistance patterns and the Multiple Antibiotic Resistance Index (MARI)

of the confirmed E. coli isolates.

MDR – indicates resistance to three or more classes of antibiotics, AMP – ampicillin, 
C30 – chloramphenicol, CIP – ciprofloxacin, CO10 – colistin sulphate, CTX – cefotaxime, 
CXM – cefuroxime, E – erythromycin, GM – gentamycin, IMI – imipenem, NOR – nor-
floxacin, T – tetracycline, TS – trimethoprim-sulphamethoxazole

MDR phenotype Number
of antimicrobials MARI

Fig. 5. Gel electrophoresis of the PCR product (690 bp) amplified with blaTEM primers
for the detection of β-lactam-resistant Esche richia coli isolates.

Line 1 – DNA ladder, Line 2 – negative control, Lines 3–9 – β-lactam-resistant E. coli isolates
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Discussion

The overall aim of the study was to determine MDR 
in E. coli isolated from pork sold in some retail outlets 
in Alice, South Africa, and depict the association of 
colistin and imipenem in the MDR profile. Further-
more, we determined the antimicrobial susceptibil-
ity of the isolates to other antimicrobial agents. The 
39.1% prevalence of E. coli reported in this study is 
lower than in some previous studies in South Africa 
(Tanih et al. 2015; Jaja et al. 2020) and other countries 
(Xia 2010; Reddy 2017). However, a similar prevalence 
figure as obtained in this study was observed by Pires 
et al. (2020). The variation in the prevalence of E. coli 
is partly related to the method of isolation and identi-
fication. Whereas some studies identified E. coli with 
conventional bacteriological and biochemical tests, 
others included PCR-based molecular confirmatory 
tests. The presence of this bacteria in pork indicates 
a possible breakdown of hygiene at the different stages 
of the food processing and distribution chain or a lack 
of proper storage of the meat, as microbial contami-
nation of food has been reported at numerous stages 
along the food chain distribution (Elhadi 2014). E. coli 
is a member of the microbiota of the gastrointestinal 
tract and can cross-contaminate meat when the con-
tent of the gastrointestinal tract bursts during slaughter. 
Various poor handling and unhygienic practices were 
observed, especially amongst retailers in the open-air 
market, accounting for a higher prevalence of E. coli. 
Knives for cutting meat were not washed intermit-
tently; meats were displayed on the improperly cleaned 
table and were exposed to houseflies. Adzitey (2016) 
observed similar unhygienic practices in handling meat 
in Ghana and Fukuda et al. (2019) observed a relatively 
high proportion of flies harboring antibiotic-resistant 
E. coli and transferring resistance genes in Thailand. All 
these are potential sources of cross-contamination and 
routes of spread of infections with food-borne patho-
gens to humans; it also raises food safety concerns for 
humans, who are the ultimate consumers. Increased 

emergence of E. coli isolates with varying MDR pheno-
types is a growing problem in South Africa and other 
developing countries. About 39% of E. coli isolates in 
this study were MDR. The MDR E. coli isolates show-
ing resistance to imipenem and colistin were 33% and 
29%, respectively. This implies a movement toward 
a pan drug resistance because colistin is the last resort 
antibiotic for treating infections caused by carbapenem-
resistant Enterobacteriaceae (Liu et al. 2016). Some 
reports have shown colistin and carbapenem resist-
ance genes to be located on transferable plasmids and 
transferred via conjugation (Fukuda et al. 2019). The 
emergence of resistance to antimicrobial agents such 
as colistin is a troubling development and public health 
threat, primarily as colistin is known to have a wide 
range of activities against the majority of the Enterobac-
teriaceae family (Liu et al. 2016; Dandachi et al. 2018). 
More so, besides colistin, there are few or no alternative 
antimicrobial agents for treating bacterial infections. 
Therefore, there is a need to monitor the use of colistin 
in the human health sector and animal husbandry (Hao 
et al. 2014). Currently, colistin has displaced amino- 
 glycosides (WHO 2012; Bialvaei and Samadi Kafil 
2015), and it is now considered a critically important 
antibiotic for human medicine despite its known high 
toxicity (Huang et al. 2010). 

Reports have documented the occasional human 
use of colistin in China due to its efficacy in treating 
carbapenemase-producing Enterobacteriaceae infec-
tions (Hu et al. 2012; Zhang et al. 2015). However, 
in this study, the mcr-1 resistance gene was detected in 
some but not all isolates with phenotypic resistance 
to colistin. The most probable reason for this could be 
that other variants of the mcr gene were responsible 
for the observed resistance or that other acquired 
resistance mechanisms other than the transferable 
mcr are attributable. In addition to the MDR pheno-
types exhibiting co-resistance to a  carbapenem and 
colistin, multiple resistances to other antibiotics classes 
were observed. Two other resistance determinants 
were present in the isolates phenotypically resistant to 

CTX-CXM-AMP-TS-C30-IMI-GM-CO10-E CTX-CXM-AMP-T-TS-C30-GM-CO10 CTX-AMP-T-TS-E-C30-IMI-NOR
CTX-CXM-AMP-T-TS-C30-IMI-CO10-E CTX-CXM-AMP-T-TS-C30-CO10-E CTX-CXM-AMP-T-TS-E-C30-IMI-E
CTX-CXM-AMP-IMI-CO10-E TS-GM-E-CO10 CTX-CXM-AMP-TS-IMI-E
 CTX-CXM-TS-CO10-E CTX-CXM-AMP-TS-E
 CTX-CXM-AMP-TS-CO10-E CTX-TS-E-IMI-CIP

Table III
Colistin and imipenem resistance patterns among the isolates.

AMP – ampicillin, C30 – chloramphenicol, CIP – ciprofloxacin, CO10 – colistin sulphate, CTX – cefotaxime, CXM – cefuroxime, E – erythromycin, 
GM – gentamycin, IMI – imipenem, NOR – norfloxacin, T – tetracycline, TS – trimethoprim-sulphamethoxazole

Colistin- and imipenem-resistant isolates
(CO10+/IMP+)

Colistin-resistant and imipenem-sensitive
isolates (CO10+/IMP–)

Colistin-sensitive and imipenem-resistant
isolates (CO10–/IMP+)
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ampicillin and erythromycin. High resistance rates 
among the isolates were observed against ampicil-
lin, erythromycin, tetracycline, and trimethoprim- 
sulphamethoxazole. It may have resulted from their 
frequent use in animal husbandry, especially on the 
farms where the animals were raised. Sobhy et al. 
(2020) and Henton et al. (2011) have reported that 
farmers commonly use tetracycline and ampicillin as 
growth promoters or to prevent animal diseases. Iwu 
et al. (2016), in a study, carried out within the same 
locality where the pork was sold also reported a high 
level of resistance to tetracycline by E. coli isolated from 
swine. Their result was linked with farmers’ reliance 
on tetracycline due to its availability, cost-effectiveness, 
and broad-spectrum activity. The habitual use of tri-
methoprim-sulphamethoxazole for treating infections 
such as respiratory infections in farm animals has 
been reported (Reuben and Owuna 2013) and could 
be linked to high resistance. 

E. coli isolates exhibited the MARI of 0.25–0.75 
in this study. It is also comparable with the MARI of 
0.2–0.7 reported by Iwu et al. (2016) and 0.2–0.75 repor-
ted by Matyar (2012). Studies carried out by Adzitey 
et al. (2020) revealed a lower MARI of 0.13–0.1 in E. coli. 
The MARI observed in this study suggests the broad 
use of antibiotics in the swine herds from which the 
pork was derived, thus indicating that pork could 
serve as a high-risk source of multidrug-resistant 
organisms to humans in the study area. The occurrence 
of this MDR phenotype in E. coli is of pressing con-
temporary concern (Harris et al. 2015), and therefore, 
stresses the importance of reducing the prevalence of 
E. coli and associated resistant genes in animal hus-
bandry through stringent regulation of antimicrobial 
usage in veterinary medicine.

Conclusions

In summary, the prevalence of E. coli isolates from 
retailed pork indicates fecal contamination at slaughter 
and processing. It calls for better hygiene practices at 
all stages of pork processing and highlights the impor-
tance of consumer awareness of safe pork handling and 
cooking. Furthermore, the association of imipenem and 
colistin resistance in the MDR profile is disturbing. 
Therefore, all unauthorized use of antibiotics, especially 
last resort antibiotics, should be discouraged where 
MDR has evolved. Therefore, the public should be edu-
cated on the perils of indiscriminate use of antimicro-
bial drugs. All unauthorized use of antibiotics should 
be discouraged. In contrast, prudent usage of antibiotics 
approved for veterinary use should be adopted to stem 
the rising trend of drug resistance among pathogenic 
bacteria of animal origin.
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