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Summary 483 Norwegian breast cancer patients were screened for six different ataxia telangiectasia mutated (ATM) mutations previously
found to account for 83% of the disease alleles in Norwegian ataxia telangiectasia (AT) patients. Only one carrier was found. These results
provide no evidence in favour of an excess risk of breast cancer associated with heterozygosity for classical AT mutations, but remain
consistent with a maximum 2.4-fold increased risk. © 2000 Cancer Research Campaign http://www.bjcancer.com
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Ataxia telangiectasia (AT) is an autosomal recessive disorder
caused by mutations in the ATM gene (Savitsky et al, 1995). It is
characterized by ataxia, telangiectasias, immunodeficiency, chro-
mosomal instability, radiation sensitivity, and an increased inci-
dence of malignancies, primarily of lymphoid origin (for review
see Boder, 1985; Regueiro et al, 2000). AT is diagnosed in approxi-
mately 1:40 000–300 000 live births in various ethnic groups,
whereas about 0.35–1% of the general population is heterozygous
(Sedgwick and Boder, 1991; Swift et al, 1991; Taylor et al, 1994). 

Heterozygotes are clinically asymptomatic, but a number of
epidemiological studies in AT families have noted a significant
increase in cancer incidence, in breast cancer particularly (Easton,
1994; Athma et al, 1996; Inskip et al, 1999; Janin et al, 1999;
Olsen et al, 2000). The relative risk was in the range 1.5–9,
depending on population, age and family relation. Interestingly,
cancer deaths do not appear to be significantly increased. Few of
these studies have analysed carrier status and the number of
observed breast cancer cases is relatively low, resulting in low
statistical power. 

A broad spectrum of breast cancer patients have been screened
for mutations in the ATM gene: unselected series, patients with
early-onset and late-onset disease, patients in cancer families,
patients showing adverse reactions to radiation therapy, a cohort
with frequent occurrence of bilateral disease, and Hodgkin’s
patients who developed breast cancer after radiation treatment.
Only two of these studies found proportions of truncating muta-
tions above the population estimate. Vorechovsky et al (1996a)
screened 88 breast cancer patients in cancer families. Three index
cases carried truncating mutations, but the mutations did not
consistently segregate with the disease in the families. Broeks et al
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(2000) found seven truncating mutations in 82 breast cancer
patients characterized by frequent bilateral occurrence, early age-
of-onset, and long-term survival. Three of these patients carried
the same intronic alteration, IVS10-6 G/T, the function of which is
uncertain. Several studies did not find an excess of classical ATM
mutations in breast cancer patients (Vorechovsky et al, 1996b;
Appleby et al, 1997; Fitzgerald et al, 1997; Chen et al, 1998;
Shayeghi et al, 1998; Bebb et al, 1999; Izatt et al, 1999; Nichols 
et al, 1999; Oppitz et al, 1999). The statistical power is generally
low in these studies due to small numbers of ATM mutation car-
riers (Bishop and Hopper, 1997) and most studies have screened
for classical truncating mutations only. There is a possibility that
the mutation spectrum in breast cancer patients is different from
the spectrum in AT patients. Gatti et al (1999) hypothesize that
missense mutations result in breast cancer in heterozygotes, but
not in classical AT in homozyogtes. 

The aim of the present study was to screen a large number of
Norwegian breast cancer patients for six unique ATM mutations
found in Norwegian AT patients. The six mutations constituted
83% of the disease alleles in the Norwegian AT patients (Laake 
et al, 1998, 2000). One single mutation constitutes 57% of the
disease alleles. Three others were recurrent in the Nordic countries
(Table 1). The ascertainment of the AT patients was population-
based in the years 1975–1994 (Olsen et al, 2000), and we assume
that the majority of the ATM disease-causing alleles in our popula-
tion are represented by these six mutations. A simple multiplex
PCR analysis was developed to screen for these mutations with a
high throughput. 

MATERIALS AND METHODS 

The breast cancer patients belonged to three different series
collected at different hospitals. The Norwegian Radium Hospital,
Oslo, 295 cases (Andersen et al, 1994); Ullevål University
Hospital, Oslo, 136 cases (Bukholm et al, 1997); and Haukeland
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Table 1 Description of the Norwegian ATM mutations analysed 

Allele frequency among AT families 

Genomic sequence alteration Exon mRNA alteration Norwegian Nordic 

3245–3247 delATC insTGAT 24 Frame shift at codon 1082 16/28 16/82 
4632–4637 delCTTA 33 Nonsense, Y1544X 1/28 3/82 
7875–7876 TG/GC 55 Substitutions, DA2625–2627EP 1/28 1/82 
8264–8268 delATAAG 58 Skipping of exon 58 (39aa) 2/28 2/82 
8432 delA 60 Frameshift at codon 2811 3/28 3/82 
8978–8981 delGAAA insAT 64 Frameshift at codon 2993 1/28 1/82 
Total frequencies 24/28 26/82
Hospital, Bergen, 52 cases (Aas et al, 1996). The median age at
diagnosis was 59 years, range 27–90 years. 

The six mutations screened for are described in Table 1 (Laake 
et al, 1998, 2000). Genotyping was performed in microtitre plates by
a multiplex PCR in a 25 µl reaction volume containing 50–200 ng
leukocyte DNA, 1 × Perkin Elmer buffer I, 4 mM MgCl2, 0.15 mM
of each of the dNTPs, 0.04 U AmpliTaq, 0.2 µM of each primer,
except for the primers ATEX60F and ATEX60R of which 0.6 µM
was used. Primer sequences are shown in Table 2. The PCR
programme was: 94˚C for 2 min; 30 cycles of 30 s at 94˚C, 45 s at
56˚C and 45 s at 72˚C; followed by 2 min at 72˚C, 1 min at 94˚C and
60 min at 65˚C to allow heteroduplex formation. The PCR products
were electrophoresed in a 7.5% polyacrylamide gel (1:37.5 bis
content) at 150 V for 50 min in 1 × TAE buffer. The gel was stained
with ethidium bromide and photographed under UV light. All cases
showing aberrantly migrating bands were sequenced. 

Exact 95% confidence intervals for the mutation frequency were
estimated by StatXact (binomial distribution). Power estimations
were performed by normal approximation to the binomial distribu-
tion (nQuery). 
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Table 2 Primer sequences 

EX23F2 GGC ATC TAA CAA AGG AGA GG 
EX24R2 TGT AAG ACA TTC TAC TGC CAT C 
EX33F CAC AGA AAC TAA AAG CTG GGT A 
EX33R TGC CTG GCC TAC GTA TAT 
EX55F TGT TGG GTA GTT CCT TAT GT 
EX55R CAA GGG CAG TTT TAG TAA C 
EX58F ATG AAA GAA TGG CAG TAG GT 
EX58R CCT CCC AAA GCA TTA TGA 
EX64F CTC AAG GAA ACA TGA AGT GTG 
EX65R GCA GAG ATG TTC CTT AAG ACC 
EX60F TGC CCC TAT ATC TGT CAT AT 
EX60 CTC AAT CTA CTA TAT GTA CAA G 

Table 3 The power to detect a hypothetical relative risk of breast cancer 

Hypothetical relative risk Power (%) in all agesa Power (%) in ages < 55b

2 38 21 
3 74 44 
4 91 62 
4.6 95 70 
5 97 75 
6 99 83 
7 99 89 
8 99 93 
9 99 95 

aNumber investigated is 483; bNumber investigated is 150. 
RESULTS 

A simple multiplex PCR was used to screen 483 breast cancer
patients for presence of six ATM mutations seen in homozygous
AT patients. The migration patterns of the different mutants are
shown in Figure 1. Only one breast cancer patient (ULLB-120) was
found to carry an ATM mutation, the Norwegian founder mutation
(3245–3247 delATC insTGAT). The patient was first diagnosed
with a lobular breast carcinoma (T2, N0, M0) at the age of 44.
Four years later she developed a tubular carcinoma (T1, N0, M0)
in the contralateral breast. The patient was alive and disease-free at
age 52. No family history of breast cancer in first-degree relatives
was recorded at time of diagnosis. Her first carcinoma did not
exhibit LOH at any of seven microsatellite markers within and
surrounding the ATM gene (Laake et al, 1997). 

The frequency of classical ATM mutations in the patients
analysed was 1/483, i.e. 0.2%; 95% CI = 0.01–1.2. According to the
upper limit of this estimate of 1.2%, and the 0.5% estimated popula-
tion frequency for ATM heterozygosity in the Nordic population
(Olsen et al, 2000), the present data are consistent with a maximum
of 2.4-fold increased lifetime risk of breast cancer. The present study
had 95% power to detect a 4.6-fold elevated lifetime risk according
to the number of cases analysed, estimated by one sample two-sided
chi-square test at a 5% significance level (Table 3). 
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Figure 1 A single multiplex PCR can detect any of the six Norwegian ATM
mutations in one reaction. The mutant alleles are detected as a distinct
heteroduplex pattern when the PCR product is electrophoresed in a 7.5%
acrylamide gel. The heteroduplexes are marked with dots, and the mutant
sequences are written to the left. Each of the samples loaded was carrying
one of these six mutations. 
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DISCUSSION 

In the epidemiological study of cancer risk in Nordic AT relatives,
the highest standard incidence ratio (SIR) of breast cancer, 8.5
(95% CI = 2.7–20), was found among mothers of AT children,
aged below 55. The present study had more than 95% power to
detect the point estimate of 8.5, but only 38% power to detect the
lower 95% confidence limit of 2.7 (Table 3). Concerning lifetime
risk of breast cancer, mothers again showed the highest SIR, 7.1
(95% CI = 2.3–17). The present study had more than 95% power
to detect a 7.1-fold increased lifetime risk of breast cancer, but
only 51% power to detect the lower 95% confidence limit (2.3) of
the estimated SIR. 

There is a possibility that ATM mutations are carried by a
subgroup of breast cancer patients with distinct characteristics.
Most of the epidemiological studies of AT relatives report an
increased risk of breast cancer at younger ages, below 45–55 years
(Inskip et al, 1999; Janin et al, 1999; Olsen et al, 2000), contrary
from Athma et al (1996). In the present study, only 150 of the
patients analysed were below the age of 55 at time of diagnosis,
which may explain the low frequency of mutations seen. Among
the patients analysed in the present study, about 25% of the cases
were diagnosed with advanced breast cancer (stages III and IV).
However, there is no evidence that breast cancer patients carrying
ATM mutations are diagnosed with advanced cancer. A subgroup
of patients found to carry ATM mutations is those with radiation-
induced bilateral breast cancer at young age with good prognosis
(Broeks et al, 2000). However, no excess of truncating ATM muta-
tions were found in three small cohorts of breast cancer patients
showing tissue radiation side-effects (Appleby et al, 1997;
Shayeghi et al, 1998; Oppitz et al, 1999). 

The studied mutations have been associated with breast cancer
in AT relatives. Eight cases were identified among the Norwegian
relatives (Olsen et al, 2000). One of them had the Norwegian
founder mutation and the other the deletion in exon 33 (unpub-
lished results). Carrier status of the other cases are still unknown.
Vorechovsky et al (1996a) also found one woman with breast
cancer carrying the Norwegian founder mutation. No missense
mutations were screened for in the present study. There are,
however, several reports on germline amino acid substitutions in
breast cancer patients with frequencies ranging from 7–41%
(Vorechovsky et al, 1996a, 1996b; Appleby et al, 1997; Larson 
et al, 1998; Shayeghi et al, 1998; Izatt et al, 1999). Gatti et al (1999)
hypothesize that both heterozygotes and homozygotes for the two
types of ATM mutations, the truncating (ATMtrunc), resulting in no
protein or truncated protein, and the missense (ATMmis) resulting
in reduced amounts of defective protein, may give different 
phenotypes. The phenotype of ATMtrunc/trunc mutations is the AT
syndrome, while the phenotype of ATMtrunc/mis is more unclear but
with elevated cancer risk. Carriers of ATMtrunc/wt and ATMmis/wt

mutations may both be at risk for breast cancer, but the frequency
of the ATMmis/wt will be much higher in the population than the
ATMtrunc/wt carrier. 

It is not evident whether ATM acts as a tumour suppressor gene
or not. None of the tumours showing LOH in the ATM region in a
previous study (Laake et al, 1997) carried any of the six analysed
mutations. This is in agreement with Vorechovsky et al (1996b).
Recently, Izatt et al (1999) reported loss of the wild type allele in
five breast cancer patients carrying different missense substitu-
tions in the ATM protein, suggesting that LOH coincides with
ATM missense mutations in breast cancer development. 
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The effect of the different missense substitutions on the function
of the ATM protein is unknown. Some of these substitutions most
likely induce minimal changes (polymorphisms), whereas others
abrogate protein function. Functional studies, extended knowledge
of the ATM protein structure and function, in addition to case
control studies, will elucidate whether carriers of these variants are
at risk of developing breast cancer. 
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