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Abstract

In the United States, policy initiatives aimed at increasing sources of renewable energy are advancing bioenergy production,
especially in the Midwest region, where agricultural landscapes dominate. While policy directives are focused on renewable
fuel production, biodiversity and ecosystem services will be impacted by the land-use changes required to meet production
targets. Using data from field observations, we developed empirical models for predicting abundance, diversity, and
community composition of flower-visiting bees based on land cover. We used these models to explore how bees might
respond under two contrasting bioenergy scenarios: annual bioenergy crop production and perennial grassland bioenergy
production. In the two scenarios, 600,000 ha of marginal annual crop land or marginal grassland were converted to
perennial grassland or annual row crop bioenergy production, respectively. Model projections indicate that expansion of
annual bioenergy crop production at this scale will reduce bee abundance by 0 to 71%, and bee diversity by 0 to 28%,
depending on location. In contrast, converting annual crops on marginal soil to perennial grasslands could increase bee
abundance from 0 to 600% and increase bee diversity between 0 and 53%. Our analysis of bee community composition
suggested a similar pattern, with bee communities becoming less diverse under annual bioenergy crop production,
whereas bee composition transitioned towards a more diverse community dominated by wild bees under perennial
bioenergy crop production. Models, like those employed here, suggest that bioenergy policies have important
consequences for pollinator conservation.
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Introduction

Demand for sustainable sources of energy has spurred

increasing interest in bioenergy crops as a fuel source. In the

United States, government mandates to increase biofuel produc-

tion to 36 billion gallons per year by 2022 are advancing research

into the production and sustainability of both first- and second-

generation biofuels [1,2]. First-generation biofuels are produced

from annual row crops such as corn, soybean, and canola, while

second-generation cellulosic biofuels can be produced from corn

stover, switchgrass, or mixed grasslands, a combination of warm-

season grasses and forbs [3]. These contrasting options for biofuel

cropping systems have the potential to dramatically alter the types

and perenniality of vegetative cover in agricultural landscapes,

significantly affecting wildlife [4]. Because policies that promote

biofuel production have the potential to cause large scale changes

in land use [5,6], identifying how bioenergy crops affect

biodiversity will be critical to developing sustainable biofuel

policies appropriate for regional implementation across the United

States.

A growing body of research suggests that bioenergy crops

differentially support biodiversity. For example, bird abundance

and richness was consistently higher in perennial grassland biofuel

plantings compared to annual biofuel plantings, with expanded

grasslands predicted to increase bird richness by 12–207% [4,7].

Similarly, predatory arthropods increased in abundance and

diversity in perennial grassland biofuel crops compared to corn

monocultures [8,9]. Transitioning the landscape into either annual

or perennial biofuel crops will affect species diversity and

community composition but also the provisioning of valuable

ecosystem services, such as arthropod-mediated predation of crop

pests [10,11].

Wild bees, which provide $3.1 billion in pollination services

annually to agricultural landscapes in the United States [12], are

also expected to be affected by the type of bioenergy crops

selected. Research at the field level has found bee abundance to be

three to four times higher within perennial grasslands than in corn

fields [8], while at the landscape level, pollinators respond

positively to increasing amounts of natural area and negatively

to landscapes dominated by annual agriculture [13,14,15]. The

response of pollinators to land-cover change suggests that the

selection of bioenergy crops for large-scale production has the

potential to positively or negatively impact these organisms.

Expanding production of annual bioenergy crops such as corn or

PLOS ONE | www.plosone.org 1 November 2014 | Volume 9 | Issue 11 | e110676

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0110676&domain=pdf


soybeans would further simplify the landscape by increasing the

proportion of monoculture plantings across landscapes, reducing

the availability of food and nesting resources for pollinators. In

contrast, expansion of perennial grassland bioenergy crops could

benefit pollinators by increasing landscape heterogeneity and

augmenting the amount of resource rich-habitat available for

foraging and nesting by bees.

With interest in identifying viable bioenergy crops, predictive

models have been employed to investigate the effect of different

bioenergy crops on species of conservation concern such as

grassland birds [4], as well as a range of ecosystem services

including biocontrol, carbon sequestration, and phosphorous

loading [11,16,17]. Because pollinators provide a valuable

ecosystem service and many are experiencing declining popula-

tions [18,19], models have also been developed to explore the

effects of landscape composition on bee populations [20,21,22].

The conversion of land into more intensive uses is expected to

have significant effects on pollinators [23], yet the use of modeling

to predict the effects of intensive large scale land use change on

pollinators is limited [24]. Because pollination is a critical service

provided to agricultural crops and to natural plant communities

[25,26], bioenergy policies should proactively address how bees

can benefit from the development of agricultural systems that

advance crop production as well as conservation objectives.

In this research, our aim was to explore the potential effects of

two different bioenergy crop production scenarios on pollinator

communities using a modeling approach. First, using observations

from flower-visiting bees across the state of Michigan, U.S.A, we

developed models that related bee abundance, diversity, and

community composition to the land cover surrounding study sites.

The three community metrics we modeled can indirectly provide

insights into how pollination services may be affected by changes

in bioenergy production. For example, pollination services tend to

increase as flower-visiting bees become more abundant and

diverse [27,28,29]. Also, shifts in community composition that

result from changes in bioenergy production may affect particular

species known to be important pollinators or of conservation

concern. Next, we used empirical models to predict the effect of

different bioenergy production scenarios on bees. The bioenergy

production scenarios tested in this study represented opposite

extremes of possible future production scenarios, and assumed a

transition to annual bioenergy crops or to perennial grassland

bioenergy crops on marginal lands. Production scenarios were

limited to marginal lands because a sustainable biofuel policy will

likely need to minimize competition between lands devoted to food

and biofuel production [30]. Because perennial grassland biofuel

production would increase landscape diversity and incorporate

more resource-rich habitats into the landscape [21], we predicted

that bee abundance, diversity, and community composition would

benefit from a biofuel policy that increases perennial grassland

production.

Methods

Study Sites
Field sampling was conducted with the permission of land

owners in 20 soybean fields located across southern Michigan

(Fig. 1) during the summer of 2012. We observed bee visitation at

sentinel insect-pollinated plants to estimate bee abundance,

diversity, and community composition. Sites were at least 3 km

apart and varied in the proportion of annual crops and semi-

natural habitats in a 1500 m radius surrounding each site. Land

use proportions surrounding study sites were calculated using a

geographic information system (GIS, ArcGIS, version 10.0, ESRI,

Redlands, CA). The proportion of grassland in the landscape

ranged from ,1% to 60%, representing a range of possible biofuel

production scenarios from sites dominated by annual production

to those dominated by perennial grassland production. Bee

observations were conducted in soybean fields across a landscape

gradient because soybean is a flowering, first-generation biofuel

crop that is intensively managed for even plant density and low

plant diversity using weed control. This approach reduced

variability in bee counts due to variation in flower abundance,

plant diversity, and other management practices. However, this

approach also requires that inferences about patterns in other

crops be viewed with an appropriate degree of caution.

Bee abundance, diversity and community composition
Bee visitation to sentinel sunflowers, Helianthus annuus, variety

‘‘Sunspot’’, was measured at each study site to sample the

pollinating bee community. Plants were grown in 15.2 cm

diameter pots in a greenhouse under 24-h light and a temperature

of 26.762uC. Two sunflowers with open disk flowers were placed

at each of two sampling stations located 30 m from field edges and

20 m apart. Bee sampling was conducted simultaneously at each

station during a 30-min period with one observer per station. Bees

were collected using a hand-held vacuum (Bioquip, Rancho

Dominquez, CA) when bee contact was made with disk flowers

(i.e., anthers and/or stigmas). Each field (n = 20) was surveyed 3–5

times during the 2012 field season. Unequal sampling across sites

was the result of agronomic activities which prevented access to

fields on some dates. Sampling occurred on sunny days with

temperatures above 24uC, and each field was sampled at least

once in the morning and once in the afternoon. Bees were

returned to the lab and identified to species using the online key to

Bees of Eastern North America at www.discoverlife.org and

published species-level keys [31,32].

Bee abundance, diversity, and community composition were

quantified for each site. Bee abundance was calculated by

averaging the number of bees collected during a 60 min

Figure 1. Study sites. Location of study sites sampled for bees across
Michigan. Hectares of fruits and vegetables are calculated on a county
basis and shown for the lower region of Michigan.
doi:10.1371/journal.pone.0110676.g001
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observation period (2 plants/site 630 min) across all sampling

dates for each site, and these values were square-root transformed

prior to analysis to improve normality. To avoid obscuring the

response of wild bees to landscape change, we excluded Apis
mellifera, a managed pollinator commonly brought to agricultural

landscapes, from calculations of abundance. Because A. mellifera
was prevalent in agricultural landscapes and influenced compo-

sition (see Results), this species was included in calculations of bee

diversity and community composition. Bee diversity was quantified

for each site using Simpson’s diversity index because this index is

less sensitive to the degree of sampling effort (Simpson’s diversity

= 1-D)[33] than species richness and other diversity indices such as

Shannon’s diversity.

The response of the bee community was then analyzed across

sites. First, the abundance of each bee species at each site was

averaged across the 2012 season and then square-root transformed

and standardized by species and site (i.e., Wisconsin double

standardization) [34]. The similarity between sites was then

quantified using the Bray-Curtis coefficient. Bee community

composition was then ordinated using non-metric multidimen-

sional scaling (NMDS). Next, we explored the relationship

between measured landscape variables (e.g., proportions of

grassland, forest, wind-pollinated crops, and annual flowering

crops; see below) and bee community composition using environ-

mental vector fitting [34]. When viewing the plotted NMDS scores

from the community ordination, along with the corresponding

environmental vectors (i.e., landscape proportions), we found that

most of the variation in bee communities, and most of the

association between bee communities and landscape structure, was

represented along the first NMDS axis. In order to draw a

qualitative link between NMDS scores, bee community compo-

sition, and landscape composition, we identified the bee species

that contributed most to differences in NMDS scores using a

SIMPER (similarity percentages) analysis [34]. Here, the bee

community at each site was classified as having a high (.0) or low

(,0) NMDS score. The output of the SIMPER analysis elucidated

those species that were most highly associated with the two ends of

the NMDS spectrum. Given the association between NMDS and

landscape gradients, the SIMPER output allowed us to understand

how particular bee species responded to landscape composition.

Following these preliminary analyses, we used the first NMDS axis

values to represent bee composition in subsequent linear

regression modeling, described below. NMDS ordinations, envi-

ronmental vector fitting, and SIMPER analyses were performed

using the vegan package [35] written for R statistical computing

software [36].

Modeling bee abundance, diversity, and community
composition

Multiple linear regression was used to model bee abundance,

diversity, and community composition as a function of land cover.

Using the 2012 Cropland Data Layer (USDA NASS 2012), the

proportion of land cover was calculated in the 1,500 m

surrounding sites for nine classes, which accounted for

0.8760.19 (SD) of land cover: annual wind-pollinated crops,

which combined 24 classes of annual crops but was dominated by

corn (average proportion of corn = 0.60 in this category, based on

all 20 sites); annual flowering crops, which combined 17 classes of

annual crops that benefit from pollinators but were dominated by

soybean (average proportion of soybean = 0.89); perennial

flowering crops (all fruit crops); grasslands (included herbaceous

grasslands, old fields, pastures, wildflowers, hayfields, alfalfa fields,

and shrublands); forests (combined deciduous, coniferous, mixed

forest, and wooded wetlands); wetlands (herbaceous wetlands);

suburbs (areas of low development and open areas dominated by

turf); cities (areas of moderate to high development); and other

(included water, walnut and Christmas tree farms, and barren).

Wind-pollinated crops, annual flowering crops, forests, and

grasslands were included as explanatory variables because they

accounted for a large proportion of the land cover and (with the

exception of forest) are the cover classes that will change under

contrasting bioenergy scenarios. Although the proportion of forest

does not change under the different bioenergy scenarios, this

variable was retained in the model because forests are ecologically

important to pollinators, providing nesting habitat and floral

resources early in the season [37,38,39].

An information theoretic approach to model selection began

with the full model, which included the proportion of wind-

pollinated crops, annual flowering crops, grassland, and forest.

The full model and all possible subsets of the full model were

analyzed using the multimodel inference package, MuMIn, in R

[36,40]. The overall best model and all competing models were

identified and ranked using bias-corrected Akaike’s Information

Criterion (AICc). Because multiple competing models explained

bee abundance, diversity, and community composition, we used

model-averaged coefficients from the model set to make predic-

tions about changes in bee communities under the different

bioenergy scenarios. Model-averaged coefficients were calculated

as weighted averages using model coefficients and Akaike weights,

where coefficients were set to zero when a variable was not

included in a given model (i.e., a shrinkage coefficient) [41].

Spatial autocorrelation in model residuals was assessed with spline

correlograms using the ncf package in R [42]. Statistically

significant spatial autocorrelation was not detected in model

residuals (Text S1).

Projecting bee abundance, diversity, and community
composition

Bee abundance, diversity, and community composition were

first estimated across the lower peninsula of Michigan under the

current landscape scenario. In GIS, proportional land cover maps

were calculated separately for each cover type using a moving

window approach. The moving window analysis, which was

preformed across Lower Michigan, calculates for each pixel the

proportion of cover (e.g., grassland, forest, etc.) in a neighborhood

with a radius of 1500 m. To generate predicted values for bees

under the current land cover scenario, model-averaged coefficients

from the empirical models were multiplied by their respective

proportional maps. For example, the model-averaged coefficient

for grassland was multiplied by the proportion grassland map and

then summed with the products of other terms to produce

predicted values for each pixel. The equation used to calculate

predicted values for bees in GIS was as follows:

Yi, j~ bjz gjGiz fjFiz wjWiz ajAi ðeq:1Þ

where Y is the prediction for the ith pixel for the jth bee

community metric (i.e., bee abundance, diversity, or composition),

bj is the intercept for the jth metric, and gj, fj, wj, and aj are the

metric-specific model-averaged parameter values for the propor-

tions of grassland, G, forest, F, wind-pollinated crops, W, and

flowering annual crops, A, in the landscape surrounding the ith
pixel. The results of this analysis generated maps that estimated

bee abundance, diversity, and community composition under

current landscape conditions.

The next step was to model abundance, diversity, and

community composition under the two contrasting bioenergy

Pollinator Response to Contrasting Bioenergy Scenarios
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scenarios. Because a sustainable bioenergy policy will need to

minimize competition with highly productive agricultural land

[30], the bioenergy scenarios we developed were focused on

marginal land. The U.S. Department of Agriculture’s SSURGO

database, which lists land capability classes based on soil quality,

erosion potential, and water saturation, was used to identify

marginal land. Marginal land was defined as cropland with

‘‘severe limitations’’ to ‘‘very severe limitations’’ (land capability

classes 3 and 4, respectively) in addition to other lands consider

unsuitable for row crop production (classes 5–8).

Of the marginal land in Lower Michigan, we identified

1,200,352 ha in grassland, 550,750 ha in annual wind-pollinated

crops (76% corn), and 290,033 ha in flowering annual crops (86%

soybean). To keep the number of hectares converted in each

scenario consistent, 600,000 ha of marginal lands were converted

in each scenario. In the ‘‘perennial grassland bioenergy scenario’’

approximately 360,000 ha of wind-pollinated crops on marginal

land and approximately 240,000 ha of flowering annual crops on

marginal land were randomly selected and converted into

grassland in GIS. In the ‘‘annual bioenergy scenario’’,

600,000 ha of grassland on marginal land was randomly selected

and converted into wind-pollinated crops or flowering annual

crops based on the proportion of corn (0.58) and soybean (0.41) in

the current landscape (CDL 2012). Once the land-cover conver-

sions were completed in GIS, resulting maps represented land

cover change under the perennial grassland bioenergy scenario

and the annual bioenergy scenario.

The final step was to predict bee abundance, diversity, and

community composition under the annual and perennial bioen-

ergy production scenarios. First, we created proportional land

cover maps for each cover type using the annual and perennial

bioenergy scenario maps. Then model-averaged coefficients from

the empirical models were multiplied by their respective propor-

tional land cover maps (Eq. 1). Finally, we calculated the percent

change in bee abundance and diversity between the current

landscape (Yi,j,c) and each bioenergy scenario (Yi,j,s) using the

equation: percent change = ((Yi,j,s – Yi,j,c)/Yi,j,c) 6100. Because

bee composition used NMDS axis scores, which include both

positive and negative values, the difference between the bioenergy

landscape and the current landscape was calculated using:

difference = Yi,j,s – Yi,j,c.

We produced aggregate summaries of the percent change in bee

communities for each scenario across the study region in two

distinct ways. First, we calculated summary statistics for changes in

bee community metrics across all grassland and cropland pixels in

the study region. Second, we calculated summary statistics for

changes in bee community metrics only for changed pixels and

their immediate neighbors across the study region. Hereafter, we

refer to results from the former calculations as landscape-level

results, and from the latter calculations as local-level results.

Results

Empirical data
During 4,800 min (80 hr) of observation on sentinel plants

across all study sites, we observed an average of 0 to 7.25 bee

visitors per hour. A total of 38 bee species were identified, and

species richness ranged from 1 to 16 species per site, which

translated into a range of Simpson’s diversity values of 0 to 0.89

per site. The NMDS and vector fitting analyses showed that bee

community composition changed along a landscape gradient

(Fig. 2, two-dimensional stress = 0.17), where communities in sites

with low proportions of grassland and forest had positive NMDS

axis scores, while communities associated with high proportions of

grassland and forest had negative NMDS axis scores. The

proportion of grassland and forest were significantly negatively

correlated with the first NMDS axis (Fig. 2; Grassland: R2 = 0.46,

P = 0.005; Forest: R2 = 0.43, P = 0.007), while the proportion of

wind-pollinated and flowering annual crops were positively

correlated with the first NMDS axis (Fig. 2; Wind: R2 = 0.51,

P = 0.003, Flowering annual: R2 = 0.45, P = 0.006). In general, the

bee communities in landscapes dominated by annual crops were

less diverse while those in grassland and forest dominated

landscapes were more diverse (Text S2). The SIMPER analysis

indicated that A. mellifera, Augochlorella aurata, and Halictus
ligatus contributed to the largest difference: 17%, 8%, and 7%,

respectively, among sites along the landscape gradient (Text S2).

A. mellifera and A. aurata contributed more to the bee

community in agricultural landscapes while H. ligatus was

increasingly associated with sites having higher proportions of

grassland and forest in the surrounding landscape (Text S2).

Modeling pollinators
Bee abundance was best explained by the proportion of forest

and grassland in the surrounding landscape (Table 1). Because

several competing models were present, model-averaged coeffi-

cients calculated with shrinkage were used to predict and map bee

abundance in GIS (Table 1, Fig 3A). Overall, forest and grassland

had positive model-average coefficients for bee abundance, while

wind-pollinated crops and flowering annual crops had negative

model-average coefficients.

The best model for bee diversity included only one variable, the

proportion of forest in the landscape (Table 1). Again, multiple

Figure 2. Ordination of bee communities with landscape
variables. Ordination of bee community composition using non-
metric multidimensional scaling (NMDS) shows that communities
change as the proportion of grassland and forest cover increase in a
1500 m radius surrounding sites (stress = 0.17). Sites with negative
NMDS axis one scores are correlated with grassland (R2 = 0.46,
P = 0.0054) and forest (R2 = 0.43, P = 0.0071), while sites with positive
NMDS axis one scores are correlated with wind pollinated crops
(R2 = 0.52, P = 0.0025) and flowering annual crops (R2 = 0.45, P = 0.0057).
Increasing circle size represents sites with higher bee abundance while
decreasing color intensity (black to light gray) indicates sites with
higher levels of bee diversity.
doi:10.1371/journal.pone.0110676.g002
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competing models were present in the model set for pollinator

diversity and model-averaged coefficients calculated with shrink-

age were used to estimate bee diversity in GIS (Table 1, Fig 3B).

Model-averaged coefficients for bee diversity were also generally

positive for grassland and forest and negative for wind-pollinated

crops and flowering annual crops.

Bee community composition, as reflected by the first axis in the

NMDS ordination, was best explained by the proportion of

grassland and wind-pollinated crops in the surrounding landscape

(Table 1). Given the large set of competing models, model-

averaged coefficients were used to predict community composition

in GIS (Table 1, Fig. 3C). Generally, grassland and forest had

negative model-averaged coefficients for this factor, while the

model-averaged coefficients for wind-pollinated and flowering

annual crops were positive. These results agree with results from

vector fitting, which are discussed above in the first paragraph of

the results, and have an analogous interpretation.

Projected landscape-level effects of biofuel scenarios on
bees

Bee abundance responded positively to the perennial bioenergy

scenario and negatively to the annual bioenergy scenario. Under a

perennial bioenergy scenario, abundance increased from 0 to

600%, with a landscape-level mean increase of 24% (Fig. 4a). The

highest predicted increases in abundance occurred where marginal

annual cropland was converted into perennial bioenergy crops

(Fig. 5a). Under the annual bioenergy scenario, bee abundance

was predicted to decline from 0 to 71%, with a landscape-level

mean decrease of 6% (Fig. 4b). The largest loss of abundance is

projected to occur in central and western Michigan (Fig. 5a).

Areas expected to experience little or no change in abundance,

such as pockets of central Michigan and the northwest peninsula of

Michigan (Fig. 5A), are regions dominated by prime agricultural

soils that are not available for conversion into either perennial or

annual bioenergy crops. In contrast, bee abundance is expected to

change substantially in regions of Michigan where landscapes

support grassland and annual crops on marginal lands. For

example, in west Michigan wild bee abundance was projected to

experience large declines under the annual scenario, whereas

increases were predicted for north-central and southwest Michigan

under the perennial scenario.

Similar to the results found for abundance, bee diversity was

predicted to increase under the perennial bioenergy scenario and

decrease under the annual bioenergy scenario. Bee diversity was

predicted to increase from 0 to 53% (Fig. 4c), with a landscape-

level mean increase of 10%, under the perennial bioenergy

scenario (Fig. 5b). In contrast, bee diversity was predicted to

decrease from 0 to 28% (Fig. 4d), with a landscape-level mean

decrease in diversity of only approximately 1% under the annual

bioenergy scenario (Fig. 5b). Increases in bee diversity under the

perennial scenario were predicted for the counties in the peninsula

neighboring Lake Michigan, while declines in bee diversity were

not predicted for this area of Michigan under the annual scenario.

This region of Michigan is an area of intensive agriculture,

meaning that areas of annual crops on marginal soils were

available for conversion into perennial bioenergy crops, with

potential for increasing pollinator diversity. However, areas of

marginal grassland were lacking in this region, preventing land

conversion into annual bioenergy crops.

Community composition is also predicted to respond to

contrasting bioenergy production scenarios. Change in community

composition under the perennial scenario, based on NMDS axis

one scores, ranged from 0 to 21.73 under the perennial bioenergy

scenario (increasing bee abundance and diversity, Fig. 4E), while

changes in scores ranged from 0 to 1.37 (decreasing bee

abundance and diversity, Fig. 4F) under the annual scenario.

Under the perennial scenario, shifts in composition were predicted

to occur in north central, western, and south central Michigan

(Fig. 5c). Bee composition scores under the annual scenario were

expected to change predominantly in west Michigan (Fig. 5c)

where bee communities are expected to experience species

declines.

Discussion

Biofuel policies set at the national level are expected to expand

biofuel crop production [5,43], causing substantial changes in land

cover across the Midwest [44,45]. Policies have the potential to

influence crop choice as well as crop placement within the

landscape, shaping land cover change in ways that are predicted to

affect biodiversity and the provisioning of ecosystem services. Our

study shows that bee abundance, diversity, and community

composition are sensitive to changes in land cover. We found

that bee abundance and diversity were greater where there was a

greater proportion of grassland and forest in the landscape and

were lower where annual agriculture was more prevalent. These

results were used to make predictions about how bees in

Figure 3. Observed versus predicted bee community metrics. Relationships between observed and predicted values for abundance, diversity,
and community composition. Pseudo-R2 is derived from regressing observed values versus model-averaged predictions. The graph for abundance
displays only 19 points because two data points overlap.
doi:10.1371/journal.pone.0110676.g003
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agricultural landscapes would change as annual or perennial

bioenergy crops expanded across the region. In a scenario where

perennial grassland bioenergy crops are favored, we expect bee

abundance and diversity to increase, with shifts to communities

that are more dominated by wild bees. In contrast, if policies and

markets favor increased adoption of annual bioenergy crops, we

predict a reduction in bee abundance and diversity, with

community composition moving towards fewer species dominated

by generalists such as A. mellifera.

In the results reported here, the bee-related metrics were

sensitive to landscape-scale land cover change. Mean values

reported for increases and decreases in bee abundance and

diversity were calculated using all grassland and agricultural pixels

across our study region, whether or not they were changed under

each scenario. As a result, the magnitudes of the reported percent

changes (landscape-level) are smaller than they would be if they

were calculated only for the pixels adjacent to those selected for

land use change (local-level). At a local level, mean bee abundance

increased by 40% under the perennial crop scenario and

decreased by 14% under the annual crop scenario. Interestingly,

local mean values for bee diversity remained relatively unchanged,

with a 9% increase (landscape-scale increase 10%) under the

perennial crop scenario and a 2.6% decrease (landscape-scale

decrease 1%) under the annual crop scenario. These results

suggest that the local effects of bioenergy crop production are

more pronounced for bee abundance than for bee diversity.

Forested land played an important role in explaining bee

abundance and bee diversity, having the highest variable weight in

both sets of models (Table 1). Grassland, however, had the second

highest variable weight when explaining bee abundance but the

lowest variable weight for bee diversity. The significant relation-

ship between grassland cover and bee abundance may explain why

strong local effects are predicted for bee abundance under the

perennial and annual land change scenarios but not for bee

diversity. The strongest driver of bee diversity was forest cover,

and the proportion of forest in the landscape was not changed

under either bioenergy scenario. This might explain why switching

energy crops had limited local effects on bee diversity. Although

our results suggest that increasing perennial grassland bioenergy

production will have local effects on bee abundance, conserving

forest habitat will be important for maintaining landscape-level

bee diversity.

The response of the bee community to annual and perennial

bioenergy scenarios was similar for bee abundance and diversity.

In general, the bee community under annual bioenergy produc-

tion shifted to a community composed of fewer bee species, while

the bee community under perennial grassland production

transitioned to a more diverse community of wild bees (Text

S2). The effect of annual bioenergy crop production on bee

community composition is of particular interest in the western

counties of Michigan where there is significant production of

pollinator-dependent fruit and vegetable crops. Because diverse

pollinator communities are expected to provide more reliable

pollination services by containing redundant [46] or complimen-

tary [47] pollinator species, a shift to annual biofuel production

may lead to a decline in bee diversity, with potential effects on the

pollination services provided to fruit growers in this region. The

relative location of land used for pollinator-dependent crops and

biofuels would be expected to influence the degree to which these

changes might affect crop yield.

Changes in bee abundance, diversity, and community compo-

sition under the perennial bioenergy scenario highlight where

opportunities and challenges for grassland bioenergy production

exist across Michigan. Several counties located in north-central

and south-east Michigan show little or no change in bee

abundance, diversity, or community composition. The lack of

change in these counties is due to the presence of fruits, vegetables,

corn, and soybeans on prime agricultural soils, yielding few

opportunities for perennial grassland bioenergy production on

marginal lands. In some cases, small isolated patches of perennial

Figure 4. Distribution of percent change for measured bee metrics. The distribution of percent change values calculated under the perennial
grassland bioenergy scenario for bee abundance (A), diversity (C), and community composition (E) and under the annual bioenergy scenario for bee
abundance (B), diversity (D), and community composition (F). In the annual bioenergy scenario 600,000 ha of marginal grassland was converted into
annual bioenergy crops, whereas in the perennial bioenergy scenario 600,000 ha of marginal agricultural land were converted into grassland.
Predicted changes in bee communities are only shown for the lower portion of the state where empirical data were collected.
doi:10.1371/journal.pone.0110676.g004
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habitats may actually serve as population sinks for bees [48,49],

suggesting that one challenge for perennial bioenergy production

will be to determine how the size and position of these crops within

the landscape will influence pollination services. While placement

of bioenergy plantings across the landscape might present

challenges, an opportunity exists to target the placement of

perennial bioenergy crops near pollinator dependent crops in an

effort to increase pollinators and potentially augment pollination

services and crop yield.

While the models developed here give insights into the possible

effects of future bioenergy production on bees, the resulting maps

and our interpretation of these maps depend on several

assumptions. First, the models used to predict bee abundance,

diversity, and community composition were based on empirical

data collected from the lower portion of Michigan and may not

Figure 5. Projected bee metrics. Percent change in bee abundance (A), percent change in bee diversity (B), and difference in community
composition (C) predicted for Michigan by an empirical model under annual (left maps) and perennial (right maps) bioenergy production scenarios.
doi:10.1371/journal.pone.0110676.g005
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extend to other parts of the Midwest. Furthermore, visitation to

sunflower measured during the summer may not serve as a good

proxy for other pollinator dependent crops, especially early season

crops. However, many of the bees we collected, including those in

the genus Bombus and Halictus, are generalists that are present

throughout the growing season. Second, conclusions regarding the

effect of perennial and annual bioenergy production assume that

management practices currently employed for annual crops and

perennial grassland habitats do not change substantially with

increased bioenergy production. Increasing insecticide use to

control emerging pests or annual harvest of bioenergy grasslands

could affect bees in ways not reflected in our models. Third, forest

was an important variable explaining bee abundance, diversity,

and community composition in our study. Under the contrasting

bioenergy scenarios developed here, we assumed the proportion of

forest remains constant across the landscape, suggesting future loss

of forest habitat due to agricultural intensification or urbanization

could alter model predictions. Finally, while increasing bee

abundance and diversity are generally correlated with higher

rates of pollination [28,50,51], we recognize that transitioning the

landscape into perennial grassland bioenergy production may not

translate into increased pollination services, especially if one

effective pollinator species is capable of persisting under both

scenarios. However, biologically diverse pollinator communities

play an important role in providing stable pollination services

[52,53,54], suggesting that land conversion to perennial grassland

bioenergy crops can contribute to supporting services in regions

where bees have experienced declines.

Conclusions

Using field observations, we generated empirical models and

predicted bee abundance, diversity, and community composition

across Lower Michigan for two contrasting bioenergy production

scenarios. From these analyses, we identified areas where bees are

expected to benefit substantially from bioenergy policies that

promote perennial grassland production, as well as areas where

further land conversion to annual bioenergy crops is likely to

produce significant challenges for the persistence of diverse bee

communities. The methods and models developed here have

application for the identification of area thresholds required to

maximize biodiversity conservation and target areas of the

landscape where perennial bioenergy plantings could facilitate

pollination services. However, given market values for annual

commodity crops, conversion to perennial grassland bioenergy

production will likely be limited without policy changes [55].

Policies that acknowledge the value of biodiversity and the services

it provides will be necessary for implementing bioenergy

production systems that balance trade-offs between crop produc-

tion and the support of ecosystem services [56].
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