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This work studies the evolution of cortical networks during the transition from escape

strategy to avoidance strategy in auditory discrimination learning in Mongolian gerbils

trained by the well-established two-way active avoidance learning paradigm. The animals

were implanted with electrode arrays centered on the surface of the primary auditory

cortex and electrocorticogram (ECoG) recordings were made during performance of an

auditory Go/NoGo discrimination task. Our experiments confirm previous results on a

sudden behavioral change from the initial naïve state to an avoidance strategy as learning

progresses. We employed two causality metrics using Granger Causality (GC) and New

Causality (NC) to quantify changes in the causality flow between ECoG channels as the

animals switched to avoidance strategy. We found that the number of channel pairs with

inverse causal interaction significantly increased after the animal acquired successful

discrimination, which indicates structural changes in the cortical networks as a result

of learning. A suitable graph-theoretical model is developed to interpret the findings in

terms of cortical networks evolving during cognitive state transitions. Structural changes

lead to changes in the dynamics of neural populations, which are described as phase

transitions in the network graphmodel with small-world connections. Overall, our findings

underscore the importance of functional reorganization in sensory cortical areas as a

possible neural contributor to behavioral changes.

Keywords: auditory cortex, electrocorticogram, discrimination learning, granger causality, new causality, graph

theory, percolation, state transition

1. INTRODUCTION

There is a growing body of literature on the neural basis of learning and memory formation
over various sensory modalities in humans and animals (Goldstone, 1998; Seger and Miller,
2010; Chapuis and Wilson, 2012; Aizenberg and Geffen, 2013). For example, in auditory learning
there is ample experimental evidence of learning-induced plasticity in various neuronal structures
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including primary and higher-order auditory cortex (Eggermont
et al., 1983; Weinberger et al., 1984; Ohl and Scheich, 1996;
Villa et al., 1998, 1999a; Fritz et al., 2003; Weinberger, 2004,
2007; Plakke et al., 2013; Grosso et al., 2015, 2017; Cambiaghi
et al., 2016; Concina et al., 2018), corpus striatum (Znamenskiy
and Zador, 2013), and prefrontal cortex (Romanski et al., 1999;
Funamizu et al., 2013; Concina et al., 2018). In such neural
structures, the responses of single neurons and population
of neurons to relevant spectral, temporal, or spectrotemporal
features of stimuli undergo changes when these features attain
behavioral or cognitive relevance during learning or specific task
scenarios (Villa et al., 1999b; Machens et al., 2004; Ohl and
Scheich, 2005; Bar-Yosef and Nelken, 2007; Schreiner andWiner,
2007; Rabinowitz et al., 2013; Meyer et al., 2014; Weinberger,
2015).

However, learning is not a singular continuous process that
takes an individual from a naïve state to a learned state, rather
it constitutes a set of discernible subprocesses that typically take
the subject through several distinguishable phases, even for the
simplest learning scenarios (Cambiaghi et al., 2016; Deliano et al.,
2016). As these phases evolve, stimulus processing in the sensory
nervous system may change in association with changes in the
cognitive state.

Here we investigate the behavioral state changes and
corresponding neuronal changes in the auditory cortex during
a standard auditory-cued Go/NoGo task in a shuttle box. The
shuttle box Go/NoGo discrimination task is a well-established
experimental paradigm to investigate auditory learning (Ohl
et al., 1999; Wetzel et al., 2008; Deliano et al., 2009; Happel
et al., 2014; Schulz et al., 2016) and the formation of cognitive
categories in rodents (Ohl and Scheich, 1997; Wetzel et al., 1998;
Ohl et al., 2001, 2003). In this paradigm, the animal is placed
in a two-compartment cage (shuttle box) with a little hurdle
separating the two compartments. The animal is trained to cross
this hurdle in response to a specific auditory signal and to stay in
the current compartment in response to another signal, in order
to avoid a mild aversive electrical stimulation (“foot shock”) via
the floor grid. This is achieved by consequently preceding the
foot shock with the acoustic stimulus (to provide the possibility
for prediction), and by terminating the shock upon the desired
behavioral response, i.e., crossing the hurdle. Previous work
has shown that this type of learning is determined by complex
behavioral processes, involving at least three different stages that
occur in sequence:

1. Conditioning: In the first stage, the animal learns that the
sensory stimulus predicts the foot shock. The behavioral
process and its underlying mechanisms are akin to Pavlovian
conditioning in which a conditioned stimulus (CS) is
learned to have predictive power for the occurrence of an
unconditioned stimulus (US).

2. Escape Strategy: In the second stage, the animal learns
that the aversive effect of the foot shock can in fact
be terminated by crossing the hurdle (escape strategy).
Here the animal learns that an appropriate behavior can
have desirable effects on the reinforcement scenario (e.g.,
a reduced duration of an aversive event), which is an

important element of the classical concept of instrumental or
operant conditioning.

3. Avoidance Strategy: In the final stage, the animal learns that
the aversive foot shock can be avoided altogether, if it crosses
the hurdle fast enough after onset of the sensory signal. In the
avoidance phase, the animal acquires a new behavioral strategy
by re-evaluating its hitherto existing behavioral strategy
(escape) and replacing it by a new one (avoidance).

The transition from the escape to the avoidance strategy
represents a behavioral and cognitive state change (Ohl,
2015; Kozma and Freeman, 2016). The underlying neuronal
mechanisms of such state change are not well-understood. In
particular, it remains to be seen how the local interactions
between neural assemblies change after the switch to
avoidance strategy.

Functional connectivity in various networks has been widely
analyzed using causality measures. Granger causality (GC) has
been successfully applied to identify the directional influence of
system components in many different fields, such as economics
(Chen et al., 2011), climate studies (Kodra et al., 2011), genetics
(Zhu et al., 2010), and neuroscience (Ding et al., 2006; Wang
et al., 2008; Bressler and Seth, 2011; Gao et al., 2011; Ge et al.,
2012; Barnett and Seth, 2014; Seth et al., 2015; Cambiaghi
et al., 2016). Granger formulated his approach to causal analysis
(Granger, 1969), following Wiener’s insight (Wiener, 1956). The
key idea can be summarized as follows: Time series X1 has GC
relationship with time series X2, if the prediction accuracy of X2

can be improved by using past values of X1. Granger causality has
many successful applications, but it has limitations in recovering
causal relationships in complex networks (see Spirtes et al., 2000;
Pearl, 2009). This is especially true in highly convoluted brain
networks with circular causality interactions, in the presence
of common-mode observation noise, field effects, and volume
conduction (see Friston et al., 2014; Pesaran et al., 2018; Pascual-
Marqui et al., 2021). To address some of the limitations of
Granger causality, Hu et al. (2011) proposed the New Causality
(NC) method, which considers the proportion that Y occupies
among all contributions to predict X. As demonstrated by a
number of applications, NC is often more robust than GC in
revealing causal relationships in data (Hu et al., 2011, 2012). NC
andGCmethods have been successfully applied inmotor imagery
to identify causal flows among regions Cz, C3, and C4, whereas
NC shows significantly improved classification rate, as compared
to GC (see, e.g., Hu et al., 2015; Kozma and Hu, 2015).

In this paper, we describe electrocorticographic (ECoG) data
recordings using a 5×4 electrode array centered on the top of the
primary auditory cortices of seven Mongolian gerbils, while they
perform an auditory Go/NoGo discrimination task using two
distinct frequency modulated (FM) tones as conditioned stimuli,
CS+ and CS−. Based on previous results, in particular (Ohl et al.,
1999, 2000a,b, 2001, 2003; Freeman, 2000), we focus our analysis
on the beta/gamma band (20–80 Hz). We extend on preliminary
results reported in Kozma et al. (2016a,b).

Transitions in the learning performance can be described
using various methods. This work uses the approach called d′

(d-prime), which is based on signal detection theory (Deliano
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et al., 2009; Happel et al., 2014). As an alternative criterion,
conditioned response (CR) behavioral signature be used as well,
in which case transition is detected when the CR rate exceeds a
given threshold the first time. We use d′-based discrimination in
the present work, following decades-long tradition of behavioral
and physiological analysis. We identified channel pairs with
inverse bidirectional causality flow for the two tone patterns
representing CS+ and CS−. The results show that learning
produces statistically significant increase in the number of causal
pairs, as the gerbils transit from the escape strategy to the
avoidance strategy. This, in turn, is an indication of adaptive
reorganization in cortical networks. Our results indicate the
emergence of spatial patterns of causality flow as learning
progressed. The increased causality flows are detectable both
by GC and NC measures, while NC appearing to be more
robust than GC in terms of extracting spatial patterns across
experiments with various animals.

We introduce a mathematical model of neurodynamical
processes across the cortical layers, based on percolation processes
in graphs and networks (Balister et al., 2006; Kozma et al.,
2016b; Janson et al., 2019). Of special interest is the adaptation
of brain networks during the learning process. Brain networks
have been intensively studied in recent decades, identifying
structural, functional, and effective connectivity graphs (Bollobás
et al., 2010; Bressler and Seth, 2011; Bullmore and Sporns, 2012;
Haimovici et al., 2013; Kozma and Freeman, 2016).

This study develops a neurodynamic theory based on the
hierarchy of Freeman K sets, corresponding to increasing
complexity of structure, dynamics, and function (Freeman et al.,
1975; Freeman, 1991). The analysis uses basic building blocks
of neurodynamics, including excitatory and inhibitory neural
populations, called Freeman KI sets, which can generate non-
zero fixed point dynamics for a sufficient level of mutual
interaction. We also study interacting excitatory and inhibitory
populations (Freeman KII sets), which may exhibit limit cycle
oscillations in response to previously conditioned sensory stimuli
(Kozma and Freeman, 2003, 2009). The implementation of
KI and KII networks dynamics using percolation processes
in 2-dimensional models of the cortical neuropil demonstrate
potential benefits of the proposed network theory approach
in the interpretation of the experimental findings, especially
when describing the emergence of common-mode oscillations in
neural cell assemblies as the result of the learning process. We
extend earlier results on stability analysis by Sokolov and Kozma
(2014) and on cortical phase transitions between fixed-point and
limit cycle oscillations by Kozma et al. (2016a,b) and Kozma
and Freeman (2016). The introduced results underscore the
importance of functional reorganization in early sensory areas of
rodents in discrimination learning and identify inverse causality
flows as possible neural signatures of behavioral changes.

2. MATERIALS AND METHODS

2.1. Experimental Paradigm
The behaviorial paradigm is summarized here; for details, see Ohl
et al. (2001). A rectangular electrode array with 20 electrodes
was implanted above the auditory cortex on top of the dura

mater; for the spatial arrangement of surface array electrodes
(see Supplementary Figure 2). In addition, a wire bundle of 8
depth electrodes was implanted into the ventral striatum. In the
present study only the signals from the auditory cortex were
analyzed. Gerbils were exposed to two different types of tones:
linear rising frequency modulated tones (FM 2–4 kHz, duration
200 ms) and falling FM (FM 2–4 kHz, duration 200 ms). FM
tones were presented not as single tones but in short sequences,
with 300 ms pauses, yielding an inter-stimulus-interval of 500
ms. This allowed to produce a sufficiently long auditory stimulus
while simultaneously keeping the frequency-modulation slope of
each segment sufficiently high for robust learning (Ohl et al.,
1999, 2000b). Every sequence consisted solely of rising or falling
FM signals, but not of a mixture of alternating rising and falling
FM signals.

The gerbils were trained in a shuttle box to move from one
side of the shuttle box to the other, by crossing a small hurdle,
when the rising FM tone (CS+) occurred (Go trial). The falling
FM tone (CS−) served as the NoGo signal. If the animal crossed
the hurdle within a time period of 6 s after CS+ onset (hit) the
tone was switched off, the trial terminated and after an inter-trial
interval of 25–30 s, the next trial started. If the animal missed
to cross the hurdle within the 6 s window (miss) in a Go trial,
it received a mild electrical foot shock via the metallic grid floor
of the shuttle box. This resulted in a forced escape response to
the other side of the box, after which both shock and tone were
switched off (end of trial).

For the falling FM (CS−) animals were supposed to stay
within the presently occupied compartment of the box for at least
10 s, which corresponded to a correct rejection and terminated the
trial. If animals did change compartments during such a NoGo
trial (false alarm), they also received a mild electrical foot shock
directly after hurdle crossing and the trial ended. One training
session, which corresponded to one training day, consisted of
96 trials (48 Go and NoGo 48 trials). The pseudo-randomized
trial sequence was identical for every day and was coded in an
offline list (based on a Gellermann sequence). Trials, in which
the signal was contaminated with artifacts, were removed from
further analysis. Consequently, the effective number of trials of a
session could be different from 96.

We calculated for every session a d-prime d′ value (signal
detection theory) based on the correct CR (hit) and incorrect CR
(false alarm). A d-prime value exceeding 1 indicates statistically
significant change (Deliano et al., 2009; Happel et al., 2014). We
used d-prime to identify two stages of the experiments, Stage 1
and Stage 2, always starting with Stage 1. If on three consecutive
sessions the condition d′ > 1 was satisfied, we marked the first
of these sessions as the first session of Stage 2. Therefore, the
identification of Stage 1 and Stage 2 was based on the behavior
of the animals.

2.2. Metrics for Causality Analysis of Gerbil
Data
We analyzed causal flows between electrodes implanted
over the auditory cortex of seven gerbils; for details, see
Supplementary Material. Granger Causality (GC) is based
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on the notion that if historical information of time series X1

significantly improves the prediction accuracy of the future of
time series X2, then time series X1 has causal relationship with
X2 in the sense of GC (see Granger, 1969). Granger Causality has
been widely applied to identify the directional influence of system
components in many different fields, including neuroscience
(e.g., Ding et al., 2006; Wang et al., 2008; Bressler and Seth,
2011; Gao et al., 2011; Ge et al., 2012). In addition to GC, we use
New Causality (NC) proposed by Hu et al. (2011, 2012). New
Causality generalizes the concept of GC, such that it considers
the proportion that X1 occupies among all contributions to
predict X2. As demonstrated by a number of applications, NC
may provide additional insight beyond GC in revealing details
of causal relationships in data, as shown by Hu et al. (2015) and
Kozma and Hu (2015). We use the following notations for causal
flow from X1 to X2 (X1 → X2):

nCS+X1→X2
and nCS−X1→X2

denote causal flow using NC

for CS+ and CS− trials, respectively;

FCS+X1→X2
and FCS−X1→X2

denote causal flow using GC

for CS+ and CS− trials, respectively.

If the experimental conditions involve two stimuli, e.g., CS+
and CS−, the notion of inverse causality may be of benefit.
When determining inversely causal pairs, we seek pairs (X1,
X2) with the property that the causal flows between X1 and
X2 are of the opposite direction for CS+ and CS− trials,
respectively. Specifically, for NC method, we collect all pairs
satisfying condition:

(nCS+X1→X2
− nCS+X2→X1

)× (nCS−X1→X2
− nCS−X2→X1

) < 0. (1)

Similarly, for GCmethod, we collect all pairs satisfying condition:

(FCS+X1→X2
− FCS+X2→X1

)× (FCS−X1→X2
− FCS−X2→X1

) < 0. (2)

Using the above conditions, we determine inverse causality pairs
for each animal in each session, where the causal flow values are
averaged over all CS+ or CS− trials in the specific session. Using
the GC and NC measures, we develop the following algorithm to
identify possible learning-induced changes in the cross-channel
causality flow:

1. Collect those pairs that satisfy condition (1) for NC or (2) for
GC, i.e., channel pairs that showed significant inverse causality
flow in CS+ vs. CS− trials; these are called collected pairs.

2. Identify a subset of collected pairs, which appeared only after
the animal switched to the avoidance strategy during the
learning process. These pairs are referred to as core pairs.

3. Analyze the causality flows for collected pairs in all sessions,
we introduced a statistical index (classification measure) to
characterize the discrimination performance of the given pair
of electrodes between CS+ and CS− trials.

4. Analyze the evolution of the spatial distribution of collected
pairs and core pairs in the 5× 4 electrode array.

5. Determine specific cortical activity patterns, which may serve
as mesoscopic neural correlates of the learning process.

In section 3, we determine causality indices (NC and GC)
for all electrode pairs band-passed evoked potentials filtered
over the gamma band (20–80 Hz). First we illustrate the
algorithm for one representative animal (Gerbil 1), then
we present a comprehensive group analysis for seven
animals.

3. RESULTS

3.1. Causality Analysis During Auditory
Discrimination Learning in Gerbil 1
3.1.1. Collected Pairs With Inverse Causality

Relationship
Data for Gerbil 1 include six daily training sessions. Figure 1A
shows the behavioral response of Gerbil 1 with hits (blue)
and false alarms (green) evolving during the training sessions;
the conditioned response (CR) rate indicates the percentage
of hits and false alarms per session. There is a marked
increase in the CR rate of the hits starting from day
3. These results are in accordance with previous research
conducted on gerbils using auditory learning (Ohl et al.,
2001). Causality flow analysis has been conducted using 18
channels with this animal, while 2 channels (#10 and #26)
have been excluded from this study due to artifacts (see
Supplementary Table 1), last column of the first row. As a result,
a total of 153 channel pairs have been analyzed for inverse
causality flow.

According to Figure 1C, the number of collected pairs
per session was consistently higher in sessions (S3–S6) after
the animal switched to avoidance strategy, as compared to
naïve sessions before the switch (S1 and S2) for NC analysis.
Similar conclusion can be drawn from Figure 1D in the case
of GC criteria. In Table 1, sessions corresponding to the escape
behavior (S1 and S2) are marked as Stage 1, while sessions after
the switch to avoidance stage are marked as Stage 2. Table 1
displays the mean values of the collected pairs in Stages 1 and 2,
respectively, clearly indicating the increased number of collected
pairs in Stage 2. The observation that the number of the collected
pairs is larger in Stage 2 than in Stage 1 gives rise to the
hypothesis that the number of causal pairs obtained using NC
and GC methods contain relevant information on the cognitive
state of the animal. Next, the consistency of this hypothesis
is evaluated.

3.1.2. Core Pairs Marking the Transition to Avoidance

Phase
From the pool of all collected channel pairs, we sought to
identify those pairs that emerged as potential predictors of
CS contingency in Stage 2; i.e., the pairs that can be used
to discriminate CS+ vs. CS- trials after the transition to the
avoidance phase. To this aim, we defined core pairs that were
collected in every session of Stage 2, but were absent during the
sessions of Stage 1. Table 2 shows the example of (C21, C23) as
a core pair for the NC method, while (C1, C19) is a core pair
using GC approach. Indeed, according to Table 2, NC values are
always larger from C21 to C23 than from C23 to C21 in the case
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FIGURE 1 | Analysis of data over six training sessions for one animal (Gerbil 1). (A) Conditioned response (CR) rate per session. From Session 3 onwards, the

discrimination performance of the gerbil markedly improves in terms of hits; the CR rate corresponding to false alarms maintains a low value around 0.1 through the

training sessions. (B) d’ (d-prime) quantifies detection sensitivity independently of the response bias of the animal; d′ > 1 indicates better than chance level; from

Session 3, the gerbil performed significantly above chance level. (C,D) Number of collected pairs using the inverse causality criterion determined by NC and GC

methods, respectively. The dashed line is drawn to guide the eye in separating Stage 1 (Sessions 1 and 2) and Stage 2 (Sessions 3–6).

of CS+ trials, while NC values are always smaller from C21 to
C23 than from C23 to C21 for CS− trials. Similar conclusions
are valid for (C1, C19) using GC method. Note that (C21, C23)
and (C1, C19) have not been selected in Sessions S1 and S2, as
they do not satisfy the inverse causality conditions using NC and
GC, respectively.

For Gerbil 1, there are 6 core pairs for NC: (C21, C23), (C3,

C18), (C17, C18), (C17, C22), (C17, C23), and (C21, C22), while
we have 3 core pairs for GC analysis: (C1, C19), (C3, C22), and

(C19, C21). The significance of some of the core pairs in the
discrimination capability of neural signatures measured over the
gerbil auditory cortex is studied next.

3.1.3. Core Pairs for the Discrimination of CS− and

CS+ Conditions
We define a classification rate for CS− and CS+ trials based on
the inverse causality flow in a core pair. We use the following
notations: NCS+ is the number of CS+ trials in a session; NCS−

is the number of CS− trials in a session; N+ is the number
of CS+ trials with causality values satisfying Equations 1 or 2
for NC or GC, respectively; N− is the number of CS− trials
with causality values satisfying Equations 1 or 2 for NC or GC,
respectively. For pair (C1, C2), the classification rates for CS+
and CS− conditions are given by R+

(C1,C2)
= N+/NCS+ and

R−
(C1,C2)

= N−/NCS−, respectively. The overall classification rate
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TABLE 1 | Number of collected pairs in Gerbil 1 Sessions S1–S6; NC and GC

methods.

Stage 1 Stage 2

S1 S2 S3 S4 S5 S6

NC 11 18 39 63 44 52

GC 5 16 25 56 43 30

Mean of stage (NC) 14.5 49.5

Mean of stage (GC) 10.5 38.5

TABLE 2 | NC values of the pair (C21, C23) and GC values of the pair (C1, C19) in

Gerbil 1.

CS+ CS−

Session nA
C21→C23 nA

C23→C21 nB
C21→C23 nB

C23→C21

(10−6) (10−6) (10−6) (10−6)

S3 1.1318 1.0218 0.5327 0.5631

S4 1.4024 1.2361 0.4163 0.5078

S5 1.1401 1.0943 0.3122 0.4232

S6 0.9102 0.8403 0.4060 0.4904

FA
C1→C19 FA

C19→C1 FB
C1→C19 FB

C19→C1

S3 0.0178 0.0149 0.0118 0.0126

S4 0.0241 0.0184 0.0122 0.0145

S5 0.0264 0.0226 0.0145 0.0167

S6 0.0219 0.0147 0.0144 0.0147

TABLE 3 | Classification rates in Gerbil 1 using pairs (C1, C19) for GC and (C21,

C23) for NC.

Stage 1 Stage 2

S1 (%) S2 (%) S3 (%) S4 (%) S5 (%) S6 (%)

NC

CS+ 10.6 4.3 8.3 75.0 42.6 50

CS− 89.1 89.1 95.8 89.6 91.5 80.9

Overall 49.5 46.7 52.1 82.2 67.0 65.6

GC

CS+ 85.1 78.2 70.8 91.6 68 78.2

CS− 19.5 30.4 58.3 70.8 61.7 57.4

Overall 52.6 54.3 64.5 81.2 64.8 67.7

is R(C1,C2) = (N+ + N−)/(NCS+ + NCS−). Using the above
procedure, Table 3 displays the classification rates in Gerbil 1 for
core pair (C21, C23) using NC and for core pair (C1, C19) using
GC. For these core pairs, the mean classification rates are higher
in Stage 2 than in Stage 1.

Table 4 contains the average classification rates in Stages 1
and 2 for all 6 core pairs determined by NC method for Gerbil
1. We observe that the six core pairs show better classification
performance in Stage 2 than in Stage 1 for NC method. The
GC method gives the following three core pairs for Gerbil 1:
(C1, C19), (C3, C22), and (C19, C21). Table 5 shows that two
of the three GC core pairs have considerably better classification

TABLE 4 | Classification rates for the 6 core pairs obtained by NC method for

Gerbil 1.

Stage 1 Stage 2

Mean of S1 and S2 (%) Mean of S3 ∼ S6 (%)

(C21,C23) 48.10 66.75

(C3,C18) 56.75 65.15

(C17,C18) 54.65 65.15

(C17,C22) 55.10 66.68

(C17,C23) 51.35 64.88

(C21,C22) 57.20 67.73

TABLE 5 | Classification rates for the 3 core pairs obtained by GC method for

Gerbil 1.

Stage 1 Stage 2

Mean of S1 and S2 (%) Mean of S3∼S6 (%)

(C1,C19) 53.55 69.63

(C3,C22) 55.70 66.20

(C19,C21) 44.30 32.75

performance in Stage 2 than in Stage 1, while one pair has better
classification in Stage 1. A comprehensive analysis involving all
gerbils, however, shows that core pairs frequently produce worse
classification in Stage 2 than in Stage 1. To characterize the
corresponding effect, we will study a subset of core pairs with
improved classification at Stage 2.

3.2. Group Analysis of Emergent Cortical
Activity Patterns
In this section, we introduce results of the causality analysis
for Gerbils 2–7 in a similar way as previously for Gerbil 1 (see
Supplementary Material for details). Here, we will study core
pairs collected for all seven animals to obtain a comprehensive
understanding of the emerging inverse causality flows following
the switch to the avoidance phase. In particular, we study
the common spatial patterns of the causality flows in the
auditory cortex.

3.2.1. Statistical Analysis of the Transition to

Avoidance Phase
Results on the collected pairs with inverse causality flows for
all seven gerbils are summarized in Table 6. Details of the tests
of statistical significance using surrogate data are described in
the Supplementary Material. We used the d′ criterion from
signal detection theory with d′ > 1 to identify the transition
from escape to avoidance strategy. According to this criterion,
transitions occurred at S3 for Gerbil 1, then at S4, S2, S5, S2, S2,
and S2 for Gerbils 2 though 7, respectively.

The number of collected pairs in any session of Stage 1 was
smaller than the number of collected pairs in any session of Stage
2 in the case of NC. The collected pairs showed generally similar
behavior using the GC analysis, with the exception of Gerbils 2

Frontiers in Systems Neuroscience | www.frontiersin.org 6 April 2021 | Volume 15 | Article 641684

https://www.frontiersin.org/journals/systems-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/systems-neuroscience#articles


Kozma et al. State Transitions in Auditory Discriminatory Learning

and 4 in some sessions toward the end of Stage 2. Still, the average
number of collected pairs was larger in Stage 2 than in Stage 1 also
for GC method.

In order to test the statistical significance of the difference
in the number of collected pairs between Stages 1 and 2, we
applied a paired group analysis using non-parametric Wilcoxon
test, when all animals were pooled together for Stage 1 and Stage
2, respectively. The Wilcoxon test showed that the differences
in the collected pairs between Stage 1 and Stage 2 were indeed
statistically significant. Namely, for NC: meanStage1 = 12.4 ±

1.2 (SEM), meanStage2 = 30.1 ± 5.7 (SEM); Wilcoxon signed-
rank test (W = 1), p < 0.05. For GC: meanStage1 = 11.5 ± 1.6
(SEM), meanStage2 = 30.0 ± 6.4 (SEM), Wilcoxon signed-rank
test (W = 1), p <0.05. The statistical t-test has limitations in our

TABLE 6 | Number of collected pairs using NC and GC in the experiments with 7

Gerbils∗.

Gerbil Method Session

# NC or GC S1 S2 S3 S4 S5 S6 S7

1
NC 11 18 39 63 44 52

GC 5 16 25 56 43 30

2
NC 15 9 22 27 29

GC 16 5 29 30 21

3
NC 11 25 51 75

GC 11 43 61 78

4
NC 17 17 13 22 25 28 25

GC 17 17 20 17 30 33 17

5
NC 8 38 27 34 16 29

GC 11 50 22 40 23 24

6
NC 9 12 28 16 23

GC 6 11 30 14 26

7
NC 3 21 10 7

GC 1 14 4 9

Bold numbers indicate session beyond the transition based on CD criteria.

experiments due to the small number of data points, nevertheless,
t-test also points to the significance of the difference between
Stage 1 and Stage 2 in terms of collected pairs.

3.2.2. Group Analysis of the Spatial Distribution of

Collected and Core Pairs
We pooled channels that were part of collected pairs (in Stage
1) and core pairs (in Stage 2) for all animals where the array
had a similar orientation with respect to the cortical surface,
i.e., Gerbils 2, 4, 6, and 7 (see Supplementary Material). The
spatial distribution of the corresponding electrodes are given
in Table 7 for the pooled animals Gerbil 2, 4, 6, and 7. The
numbers in Tables 7A,B indicate how many times a particular
channel was counted as part of a collected pair in Stage 1 using
(Table 7A) NC and (Table 7B) GC method, while Tables 7C,D

shows the number of times a particular channel was counted as
part of a core pair in Stage 2 using (Table 7C) NC and (Table 7D)
GC method.

To help visualize the spatial distribution of the pairs, Figure 2
provides a color coded representation of data in Table 7, where
light yellow and deep purple colors mark high and low values,
respectively. Data in Figure 2 have been obtained by normalizing
each map with the total number of channel pair counts across
the array. The distribution of collected pairs across the array
in Stage 1 is rather uniform spatially for both NC and GC,
without the emergence of a salient localized spatial clusters of
channels with high degree of connectivity across the array (see
Figures 2A,B). If the formation of pairs would be biased by the
spatial neighborhood relationships, then channels in the middle
of the array would be preferred as they have more neighbors
that are physically close to them. This is not what we see in
Figures 2A,B and in Table 7, where the nodes with the highest
connectivity are in fact located at the boundary of the arrays; see
first column of Table 7A and first and last columns of Table 7B.

For core pairs in Stage 2, on the other hand, there are localized
spatial “hubs” for NC (electrodes 23, 2, and 8) and GC (electrodes
2 and 6; see Figures 2C,D). Moreover, the variance of the spatial
distribution is higher in Figures 2C,D than in Figures 2A,B.
Overall, we observe a marked difference between Stage 1 and

TABLE 7 | The number of times a given channel is used as part of a collected pair in Stage 1 and as part of a core pair in Stage 2 for NC and GC.

(A) (B)

Stage 1 (NC) Stage 1 (GC)

1 4 0 3 6 0 11 3 7 20

24 14 14 20 15 20 15 12 14 19

16 14 16 16 16 14 21 16 10 14

28 10 18 13 16 24 11 19 16 16

(C) (D)

Stage 2 (NC) Stage 2 (GC)

1 2 0 0 5 3 1 1 2 6

6 1 3 2 2 5 5 9 6 2

3 6 8 3 5 3 11 5 5 5

4 4 5 1 5 5 4 3 3 6
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FIGURE 2 | Spatial distribution of the contribution of the electrodes to inverse causality relationships over the auditory cortex of gerbils; illustrating data from a

rectangular array of size 1.8 × 2.5 mm with 4 × 5 electrodes. The colorbar indicates the proportion of a specific channel appearing in the inverse causality pairs. (A,B)

Case of collected pairs in Stage 1 using NC (A) and GC (B); (C,D) Electrodes contributing to core pairs in Stage 2 for NC (C) and GC (D). The bright regions around

electrodes 23, 2, and 8 in (C), and around 2 and 6 in (D) indicate the increased significance of those local areas in avoidance learning for these gerbils. To create the

figures, piecewise linear interpolation is applied between the data points using MATLAB interp function.

Stage 2 based on the spatial distribution of causality relationships
between channels. This result indicates that causal pairs can be
useful tools to trace the neural basis underlying the transition
from the escape strategy to the avoidance strategy.

4. DISCUSSION AND INTERPRETATION OF
THE RESULTS

4.1. Significance of the Experimental
Findings
We applied causality analysis to ECoG data recorded from
seven Mongolian gerbils, which perform an auditory Go/NoGo
discrimination task. We investigated how pairwise causal
interactions between channels of the surface electrode array
were affected by the progression of the learning. We studied
inverse causality flows for CS+ and CS− stimuli, using the well-
established Granger Causality (GC) and the recently introduced
New Causality (NC). Our main findings are summarized
as follows:

1. The number of channel pairs, which were collected based
on the inverse causality criteria using GC and NC metrics
significantly increased after the animals made a transition

from the escape strategy (Stage 1) to the avoidance strategy
(Stage 2) during the learning process.

2. Spatial patterns of core pairs have been analyzed during the
learning process. It has been observed that the core pairs are
more broadly distributed before transition to avoidance, while
some regional hot spots emerged after the transition. This may
imply that the implicated local areas play an important role
in FM-tone discrimination during the learning process. This
observation is especially prominent for NC analysis, while
GC measure is more broadly distributed with less evidence of
learning-related clustering.

3. The core pairs have been evaluated for classification
performance regarding CS+ and CS− conditions. Some of the
core pairs demonstrated statistically significant discrimination
power after the transition to avoidance strategy, while most of
the pairs did not possess such a property. These results require
further detailed studies.

Our data with ECoG recordings in small rodents show that both
NC and GC are capable to reliably track the development of
causal interactions in primary sensory areas during learning. We
found that NC and GC are comparable in terms of identifying
the increase of the absolute numbers of collected channel pairs
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after the switch to the avoidance strategy. When applying the
core pairs for classification of CS+ and CS− stimuli, NC appears
to be a more robust method with respect to extracting common
features expressed at the inter-individual level. Hence, our study
supports earlier reports which point out advantages of NC over
GC in the analysis of neuronal data based on human EEG (Hu
et al., 2011, 2012, 2015), and extends these findings to ECoG
recordings in small rodents.

In the present study we have focused on the gamma
frequency band. We note that other frequency bands play
also an important role in grouping and segregating neuron
assemblies and consequently encode stimulus identification,
memory and drive (goal directed) behavior. However, signals in
the theta band are prone to contamination of volume-conducted
electrical activity generated by distal sources e.g., hippocampus,
particularly during locomotion (Lalla et al., 2017). Delta bands
might be affected by entrained neuronal activity caused by the
inter-stimulus interval of 2 Hz of the FM-tones in the tone
sequences in the present study. On the other hand, local gamma
band synchrony seems to drive discrimination learning. Concina
et al. (2018) found an increased coherence of slow gamma band
activity between prelimbic and auditory cortex only for animals
which did learn an auditory discrimination task. This increased
coherence was absent for other frequency bands (theta, beta) and
non-learning animals.

Our results contribute to the ongoing discussion on the role
of neuronal assembly interactions for auditory learning and their
qualitative nature (Eggermont, 2006; Grosso et al., 2015; Keating
and King, 2015; Ohl, 2015; Weinberger, 2015). For instance,
the behavioral relevance of temporal coherence or coupling
for auditory information processing has been demonstrated by
numerous recent studies both in intra-cortical circuits (Noda
et al., 2014; Yokota et al., 2015), as well as on cortico-subcortical
circuit levels (Bachiller et al., 2014; Liégeois-Chauvel et al., 2014;
Schulz et al., 2016). In this context, our finding of an increase
in inverse predictive causality flow among certain channel pairs
with the progression of learning can be reasonably interpreted
as an indication of spatial reorganization or remapping of
effective intra-cortical connectivity on the mesoscopic level of
neuronal assemblies (Weinberger and Bakin, 1998; Pienkowski
and Eggermont, 2011).

The criterion of inverse causality flow seems particularly
suited in revealing the potential reorganization of intra-cortical
interactions during learning, because it emphasizes qualitative
changes in the directional component of pairwise interactions
that emerge over the course of the training, as opposed to
quantitative changes in the absolute magnitude of unidirectional
causal flows. These findings emphasize the importance of
functional connectivity changes in unimodal sensory areas,
including the primary auditory cortex, as potential neural
contributors to behavioral changes.

4.2. Evolving Graph Model of Dynamic
Cortical Activity Patterns
We introduce a graph theoretical model featuring phase
transition behavior, to interpret learning effects in the gerbil
experiments. We develop a random graph to model the

cortical neuropil with short- and long-range connections (edges)
describing the combination of short dendritic connections and
long axons (see Kozma et al., 2005, 2012; Kozma and Freeman,
2016). The short dendritic connections are modeled by lattice
edges on a torus, while long axons are described by a few
additional edges superimposed on the lattice. This model is
related to small-world networks, and it provides a systematic
treatment of some of their properties related to cortical networks
(see Bollobás et al., 2010; Bullmore and Sporns, 2012; Haimovici
et al., 2013). The definition of the model captures an important
property of cortical networks; namely, it is more likely for a
neuron to be connected to nearby neurons than to neurons which
are far from the given one. The long-range connections have
power law length distributions, leading to drastic reduction of the
diameter of the brain graph (see Janson et al., 2019).

4.2.1. Bootstrap Percolation on G
Z
2
N
,pd

The spread of activity in the cortical tissue will be described
by a simplified mathematical model—bootstrap percolation (BP)
(see, e.g., Balister et al., 2006; Bollobás et al., 2010). The model
is defined as follows. The set of vertices of the random graph
G
Z
2
N ,pd

is given by the vertex set of Z2
N , where Z

2
N is a torus on

N2 vertices. All edges of the torus Z2
N are presented in G

Z
2
N ,pd

.

The random edges of G
Z
2
N ,pd

are distance-dependent, i.e., the

probability that an arbitrary pair of vertices, u, v, that are at graph
distance d apart of each other, is given by

pd = P

(

(u, v) ∈ E(G
Z
2
N ,pd

)|dist(u, v) = d
)

=
c

Ndα
, (3)

where d > 1, c is a positive constant, and α is the power
exponent of long-range edge length distribution. In this work, we
use α = 1, for simplicity. It is assumed that there are no multiple
edges between the vertices. We will use the following notation
λ = 4 c ln 2, i.e., λ is proportional to the probability of adding
long-range edges.

We state here a generalized definition of bootstrap percolation
that consists of two types of vertices, which correspond to
excitatory and inhibitory units. Bootstrap percolation with one
type of vertices (excitatory or inhibitory) can be viewed then
as a special case. At the beginning each vertex of the graph is
described by two random variables, its type and state. The types of
vertices are excitatory (1) or inhibitory (2). We define the type as
a Bernoulli random variable Be(ω), which is selected at the start
of the process and remains unchanged afterwards. In contrast,
state of a vertex may change during the process as follow. At each
time step a vertex is either active or inactive. For each vertex v
of the graph we assign a binary function χv(t) which describes
the activity state of the vertex at time t. A vertex is said to be
active if χv(t) = 1, otherwise it is inactive and χv(t) = 0. For
each vertex v, the potential function χv(0) at the beginning is a
Bernoulli random variable Be(p).

Let Ai(t) = {v ∈ V(G
Z
2
N ,pd

)
∣

∣ χv(t) = 1 & v is of type i},

i ∈ {E, I}, denote the set of active vertices of type E and I at time t,
respectively,A(t) = AE(t)∪AI(t).A(0) consists of all vertices that
are active at the beginning. Each vertex may change its activity
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based on the states of its neighbors. For a vertex vwhich is of type
E, the evolution rule is given by

χv(t + 1) = 1





∑

u∈NE(v)

χu(t)−
∑

u∈NI (v)

χu(t) ≥ k1



 , (4)

where NE(v) and NI(v) denote the subset of vertices in the closed
neighborhood of vertex v, which are of E and I type, respectively;
and 1 is the indicator function. For a vertex v of type I, the
following rule holds

χv(t + 1) = 1





∑

u∈NE(v)

χu(t)+
∑

u∈NI (v)

χu(t) ≥ k2





= 1





∑

u∈N(v)

χu(t) ≥ k2



 , (5)

whereN(v) = NE(v)∪NI(v) is the closed neighborhood of vertex
v. The rules try to capture the behavior that a node is active if its
neighbors total activity (considering sign) exceeds a threshold k1
or k2, respectively.

We consider the evolution of the following two density
functions, corresponding to active nodes of type 1 (excitatory)
and type 2 (inhibitory). Let:

ρ
(1)
t =

|A1(t)|

ωN2
(6)

and

ρ
(2)
t =

|A2(t)|

(1− ω)N2
(7)

be the densities of the first and second types, correspondingly,
where Ai(t) is the number of active vertices of type i, i = 1, 2,
at time t. Then, in particular, the density of all active nodes is
given by

ρt = ωρ
(1)
t + (1− ω)ρ

(2)
t =

|A1(t)| + |A1(t)|

N2
.

The dynamics of the BP with one type of (excitatory) vertices is
fully described in Janson et al. (2019).

Theorem 1. In the mean-field approximation of the activation
process A(t) over random graph G

Z
2
N ,pd

there exists a critical

probability pc such that for a fixed p, with high probability for large
N, all vertices will eventually be active if p > pc, while all vertices
will eventually be inactive for p < pc. The value of pc is given as
the function of k and λ as follows:

(i) For k = 0 and any λ, pc = 0 and all vertices will become active
in one step for any p.

(ii) For k = 1 and any λ, pc = 0, i.e., for any fixed p > 0, all
vertices will eventually become active with high probability.

(iii) For k = 2, 3, 4 and any λ, pc = xk(λ), where xk(λ) ∈ (0, 1) is
a nontrivial solution to x = f̄k(x).

(iv) For k = 5 and λ > ln(5), pc = x5(λ), where x5(λ) ∈ (0, 1) is
a nontrivial solution to x = f̄5(x); for λ ≤ ln(5), pc = 1.

It is possible to describe the dynamics of BP with two types
of (excitatory and inhibitory) nodes (Kozma et al., 2016b). In
this case, one needs to find the solutions of the following set of
fixed-point equations, for the mathematically derived nonlinear
mapping functions f1(x, y) and f2(x, y):

{

f1(x, y) = x,
f2(x, y) = y.

(8)

The fixed point can be either stable or unstable, which determines
the nature of the percolation dynamics, e.g., fixed point,
limit cycle, or non-periodic oscillations (Kozma et al., 2016b).
Numerical examination of BP with two types of vertices shows
dynamic behavior that is richer than in BP with only one
type of vertices. In particular, when the threshold parameter
in the update rules for vertices of the first and second types
are different, limit cycle dynamics may appear. A bifurcation
diagram of the process with excitatory-inhibitory nodes is shown
in Figure 3A with respect to ω, λ, where parameters k1 = 2
and k2 = 3. The type of a vertex is determined at the beginning
uniformly at random, thusω defines the overall ratio of excitatory
and inhibitory nodes, which is unchanged throughout the
process. It is observed that limit cycle behavior belongs to the
excitatory to inhibitory ratio of around 4/1. The next section
will investigate how the phase transitions to narrow-band (limit-
cycle) oscillations in the percolation model may be beneficial in
the interpretation of the experimental findings on the emergence
of common-mode oscillations in neural populations as the result
of the learning process.

4.3. Graph Models for Describing
Learning-Induced Phase Transitions
In this section we analyze the potential role of several key model
parameters in the interpretation of the learning dynamics of
the cortical tissue. Based on Freeman’s neurodynamics theory,
we know that learning is closely related to the onset of narrow
band oscillations in the cortex as a consequence of sustained
reinforcement signal, and the possible formation of Hebbian cell
assemblies (Freeman, 1991). These insights provide important
input to our modeling studies, which provide theoretical insights
into the interpretation of the experimental results.

Our bootstrap percolation model describes phase transitions
between fixed point and limit cycle dynamics when certain
control parameters of the model vary. Here let us focus on the
significance of long-range edges (λ) and threshold values of the
update rule (k1 and k2). For example, in the case of k1 = k2 =

3 our model shows fixed point behavior, which can change to
oscillatory behavior if k1 is decreased to 2. Decreasing k1 can
be interpreted as the reduction of the dynamic threshold in
the interaction between the cortical locations due to learning.
Moreover, changes in λ can also produce transitions between
dynamic regimes. This is illustrated in Figure 3B, which is based
on the phase diagram obtained from our model and depicted
in Figure 3A. Three main regions are shown as follows: Region
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FIGURE 3 | Illustration of the potential of bootstrap percolation (BP) model to describe learning-induced state transitions in the sensory cortex. (A) Bifurcation diagram

of BP with two types of nodes (excitatory and inhibitory), where k1 = 2 and k2 = 3. Parameter ω gives the proportion of excitatory neurons; increasing λ signifies

stronger long-range connections. Limit cycle dynamics exists in region I, processes of both types eventually die out in II, and non-zero fixed point dynamics exist in

region III; (B) Proposed interpretation of dynamic regimes illustrated over the phase diagram in the λ vs. ω space. The solid dark (blue) region corresponds to

conditions with limit cycle oscillations created as the result of learning. There is a transitionary region (light blue) illustrate transitionary conditions due to local

parameters and inhomogeneities. Transitions from limit cycle regime to non-zero base state (dark green area) indicate the absence of learnt stimuli. Zero fixed point

(light green) is shown in the lower segment of the phase diagram. The region corresponding to the hypothetic cognitive phase transitions is illustrated by pink arrows;

modified and reprinted with permission from Kozma et al. (2016b).

I: limit cycle oscillations at the middle range of ω (deep blue);
Region II: zero fixed point regime (light green) at the bottom
section; Region III: nonzero fixed point (dark green) at the top
half. The region corresponding to the hypothetic cognitive phase
transitions is indicated by pink arrows (pink).

The presence of the oscillatory behavior in a narrow frequency
band is shown in Figure 3B using Region I (dark blue).
Oscillatory behavior is a hallmark of learning effects, which
are modeled in our model using the adaptation (decrease) of
excitatory threshold k1 from its original value of 3 to 2, while the
inhibitory threshold k2 remained unchanged; the corresponding
effect is visualized by the transitionary region with light blue
color around Region I. Note, that in the case of high values of
both excitatory and inhibitory thresholds k1 = k2 = 3 no
oscillatory behavior takes place, rather the dynamics converges
to fixed points (not shown). In short, k1 may be indeed a control
parameter for a state transition in neurodynamics accompanying
a cognitive state transition during learning.

The results introduced in this study show that it is possible
to detect neural correlates of cognitive state changes in the
gerbil’s cortex using causality measures. The difference between
the behavior of the early escape stage and advanced avoidance
strategy in the trained animal has an experimentally observable
neural measure through the formation of connections (causal
links) between certain cortical regions as the result of learning.

The regions and links between them may be the manifestations
of Hebbian cell assembly (HCA) formation, and our results may
provide evidence for the existence of HCAs.
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