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Drug–target interactions (DTIs) are regarded as an essential part of genomic drug
discovery, and computational prediction of DTIs can accelerate to find the lead drug
for the target, which can make up for the lack of time-consuming and expensive wet-lab
techniques. Currently, many computational methods predict DTIs based on sequential
composition or physicochemical properties of drug and target, but further efforts are
needed to improve them. In this article, we proposed a new sequence-based method for
accurately identifying DTIs. For target protein, we explore using pre-trained Bidirectional
Encoder Representations from Transformers (BERT) to extract sequence features, which
can provide unique and valuable pattern information. For drugmolecules, DiscreteWavelet
Transform (DWT) is employed to generate information from drug molecular fingerprints.
Then we concatenate the feature vectors of the DTIs, and input them into a feature
extraction module consisting of a batch-norm layer, rectified linear activation layer and
linear layer, called BRL block and a Convolutional Neural Networks module to extract DTIs
features further. Subsequently, a BRL block is used as the prediction engine. After
optimizing the model based on contrastive loss and cross-entropy loss, it gave
prediction accuracies of the target families of G Protein-coupled receptors, ion
channels, enzymes, and nuclear receptors up to 90.1, 94.7, 94.9, and 89%, which
indicated that the proposed method can outperform the existing predictors. To make it as
convenient as possible for researchers, the web server for the new predictor is freely
accessible at: https://bioinfo.jcu.edu.cn/dtibert or http://121.36.221.79/dtibert/. The
proposed method may also be a potential option for other DITs.

Keywords: drug-target interactions, bidirectional encoder representations from transformers, BRL block,
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1 INTRODUCTION

In the process of drug development, there are many important drug-related interaction directions,
including drug-protein, drug-miRNA, drug-disease, drug-drug, etc. Small molecule therapeutic
drugs typically exert their effects through binding to one or a few protein targets (Dubach et al., 2014;
Lim et al., 2021), therefore identifying drug-protein interaction is an important part of genomic drug
discovery (Yamanishi et al., 2014). Besides, several studies have indicated that although ncRNAs lack
the potential to encode proteins, they play important roles in cellular functions, and their
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deregulation heavily contributes to various pathological
conditions. Among them, miRNAs are promising therapeutic
targets for complex diseases (Wang and Chen, 2019; Yin et al.,
2019; Zhou et al., 2020), it thus becomes important to understand
the relationship between ncRNAs and drug targets, what’s more,
several databases and studies are actively promoting development
(Chen et al., 2017). Drug-disease and drug-drug interaction play a
crucial role in drug relocation, often serving as important
information other than drug-target protein pairing and mainly
based on a processing framework called a heterogeneous network.
Qu et al. developed a novel computational model of HeteSim-
based inference for SM-miRNA Association prediction by
implementing a path-based measurement method of HeteSim
on a heterogeneous network combined with known miRNA-SM
associations, integrated miRNA similarity, and integrated SM
similarity (Qu et al., 2019). Jin et al. combine drug features from
multiple drug-related networks, and disease features from
biomedical corpora with the known drug-disease association’s
network to predict the correlation scores between drug and
disease (Qu et al., 2019). Drug-protein interactions play a key
role in the field of biochemistry due to their scientific significance
in drug discovery. This paper focuses on the identification of
drug-protein interactions.

Drugs modulate the biological functions of proteins by
interacting with target proteins, such as ion channels, nuclear
receptors, enzymes, and G Protein-coupled receptors (GPCRs).
For an in-depth understanding of the functions of drugs, the
knowledge of their target protein is indispensable. Despite the
substantial effort, only a few DTIs have been identified so far,
since the experimental determination of drug-target interactions
remains some defects, such as expensive, time-consuming, low
accuracy, and so on (Haggarty et al., 2003). It is highly demanded
to develop powerful computational tools, which are capable of
detecting potential DTIs. Computational prediction of DTIs has
emerged for 20 years as a research hotspot, which is not only for
better understanding of the molecular mechanism of drug side
effects but also for inventing new genomic drugs and identifying
new targets for existing drugs (Wang et al., 2010; Kotlyar et al.,
2012).

Knowledge of genomic space and chemical space is
indispensable for identifying DITs. With the coming of the
post-genome era and the emergence of molecular medicine,
transcriptome, and chemical compound, the rapidly increasing
knowledge in the field of genomic space and chemical space
enables researchers to study drug-target interaction problems
(Dobson, 2004) on the basis of high-throughput experimental
projects. Several different professional databases have been
established, such as Drug Bank, which is consist of two parts
information involving drug data and drug target information
(Wishart et al., 2018); Therapeutic Target Database (TTD)
provides comprehensive information about the drug resistance
mutations, gene expressions, and target combinations data (Qin
et al., 2014); BindingDB a public database of protein-ligand
binding affinities (Liu et al., 2007); Kyoto Encyclopedia of
Genes and Genomes (KEGG) including experimental
knowledge on protein and their drug target, etc. These
resources provide important materials for researchers to

predict drug-target interactions based on computational
methods, it is time to develop more integrative approaches
capable of taking genomic space, chemical space, and the
available known drug-target network information into account
simultaneously for the issue.

The development of identifying DTIs followed four main
directions for research. Firstly, the most direct method is to
use the docking simulation (Pujadas et al., 2008; Morris et al.,
2009), which is a process of scoring favorable intermolecular
interactions, the three-dimensional (3D) structures of proteins
and chemical compounds are indispensable. With the
development of techniques (e.g., X-ray crystallography, nuclear
magnetic resonance), the rate of 3D protein structure
determination is increasing every year, however, it is still not
able to keep up with the exponential growth of sequence
discovery, such as the PDB database only covers a small
fraction of the ion channels and GPCRs, both are considered
as the most pharmaceutically useful drug targets. Some programs
and webservers provide the prediction of the protein structure, in
practice, structure prediction is still relatively immature, and
interaction prediction may be affected by the inaccurate
structure. Secondly, based on the fact that similar molecules
usually bind to similar proteins, it is most straightforward to
apply the ligand-based approach (Keiser et al., 2007), for example,
conducting Quantitative Structure-Activity Relationship (QSAR)
studies that a new ligand can be categorized and compared to
known proteins ligands. However, ligand-based approaches often
present unreliable results due to available binding ligands of
targets’ insufficient number, and difficult to scientifically set
thresholds to divide positive and negative samples (Butina
et al., 2002). Thirdly, literature text mining could be used to
extract DTIs from the related articles (Zhu et al., 2005), but this
approach could not be used for new drugs and proteins. Fourthly,
to overcome the drawbacks of the above-mentioned traditional
approaches, chemogenomic approaches are universally studied
directions. Chemogenomic approaches integrate information of
chemical space, genomic space, and known drug-target
interactions, which provide an architecture for deep learning
approaches.

Chemogenomic approaches can be classified into three
categories: graph-based approaches (Chen et al., 2012),
network-based approaches (Alaimo et al., 2013), and learning-
based approaches (Mousavian and Masoudi-Nejad, 2014). In the
graph-based approach, drugs and targets are represented with
graphs, in which nodes for chemical elements or amino acids and
adjacency matrices for edges between nodes, adjacency matrices
including atom/bond or residue/bond information (Lim et al.,
2021). Drug and target graphs can be fed into Graph Neural
Network (GNN); after a set of training iterations, information
learned by Graph Convolutional Network (GCN) can be
converted into vectors for DTIs prediction. Torng and Altman
proposed a graph-convolutional framework to determine the
interaction patterns (Torng and Altman, 2019). Karlov et al.
used the message passing neural network to overcome the
limitation of graph convolutional network by considering both
nodes and edges (Karlov et al., 2020). Furthermore, the self-
attention mechanism in Neural Networks is often coupled with
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Graph convolutional network to predict DTIs better. But some
research showed that there are difficulties in predicting the local
non-covalent interactions between drugs and proteins (Li et al.,
2020). Network-based approaches utilized the DTI network of
identified edges between drugs and targets to identify new DTIs.
Indeed, by constructing a heterogeneous network that includes
information on drugs, proteins, diseases, and side-effects, the
DTINet method can improve the accuracy of DTIs prediction
(Luo et al., 2017), but the learning model only takes relatively
simple log-bilinear functions, obtaining features may not be the
inherent representations of drugs or targets for the final DTI
prediction task (Wan et al., 2019). Supervised learning-based
approaches are classified into similarity-based approaches and
feature-based approaches (Chen et al., 2018). Similarity-based
approaches generate the similarity matrixes for drugs and targets
respectively, via various similarity measurement strategies such as
chemical-based similarity (Haggarty et al., 2003),
pharmacological-based similarity (Kim et al., 2013),
therapeutic-based similarity, and drug-drug interaction
similarity for drugs, and sequence-based similarity (Yamanishi
et al., 2008), functional-bases similarity, protein-protein
interaction similarity for targets. These similarity matrices
have been used in bipartite local models (Mei et al., 2013),
matrix factorization models (Ezzat et al., 2016), and the
nearest neighbor methods (Zhang et al., 2016) to predict DTIs.
The feature-based approaches extract more useful information
from protein sequences and drug chemical structure, via the
adequate support offered by the rapid development of algorithms.

Predicting DTIs with machine learning algorithms has
recently become the focus of research. There are 1-D, 2-D,
and 3-D representations of drugs (Rognan, 2007). Simplified
Molecular Input Line Entry System (SMILES) string is a
typical 1-D representation of the drug (Öztürk et al., 2016)
that are commonly used descriptors (Kombo et al., 2013;
Sawada et al., 2014). For targets, the sequences of protein are
encoded by the physicochemical properties of amino acids,
sequential evolution information formulation and general form
of pseudo amino acid composition (Li et al., 2020). Lastly,
machine learning algorithms are applied for decision-making.
Recently, Wang et al. used a novel bag-of-words model and
discrete Fourier transform to extract target sequence feature
and molecular fingerprint pattern information, respectively,
and then use a distance-weighted K-nearest-neighbor
algorithm as a predictor (Wang et al., 2020). This paper
motivates our work, that instead of using amino acid physic-
chemical properties to encode words and perform clustering, we
can vectorization drugs and protein by using advanced methods
such as word2vec and ProtBert(Elnaggar et al., 2021), which
could map every word (amino acids are regarded as words) into
the latent vector space where the geometric relationship can be
used to characterize the semantic relationship between the words.
And based on the present situation of identifying DTIs by the way
of investigating a series of recently published articles (Keiser et al.,
2007; Ezzat et al., 2016; Zhang et al., 2016) as well as some review
papers (Rognan, 2007; Kombo et al., 2013; Öztürk et al., 2016), we
have proposed a novel feature-based computational model for
predicting drug-target interactions to enhance prediction

performance. The novelty of this proposed work 1) Compared
with the end-to-end predictor, we treat DTIs task more flexibly.
The protein sequences are regarded as natural language and
vectorized by the state-of-art ProtBert model, and drug
molecular is transformed by DWT, which is commonly used
in signal processing. 2) Calculating the hybrid loss function
(contrastive loss and cross-entropy loss), which can make the
samples of the same interaction label closer, and the distance
between different labels as far as possible and help the predictor
achieve higher accuracy.

2 MATERIALS AND METHODS

2.1 Benchmark Dataset
Identifying DTIs can be regarded as a supervised prediction task
to predict whether a pair of counterparts interact with each other
or not in the drug-target networks. In this study, the benchmark
dataset was taken from (He et al., 2010). There are mainly two
reasons, 1) The information about the DTIs was collected from
the DrugBanks, BRENDA, SuperTarget, and KEGG BRITE
databases, which included four main drug target proteins of G
Protein-coupled receptors (GPCR), enzymes (Ezy), ion channels
(Chl), and nuclear receptors (NR). 2) In recent years, many
researchers have been proposed to predict DTIs, which are
based on this benchmark dataset, and hence will facilitate the
comparison under the same condition. It can be summarized as
follows:

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

S � SGPCR−Drug + SChl−Drug + SEzy−Drug + SNR−Drug

SGPCR−Drug � S
+
GPCR−Drug(630) + S

−
GPCR−Drug(1240)

SChl−Drug � S
+
Chl−Drug(1372) + S

−
Chl−Drug(2744)

SEzy−Drug � S
+
Ezy−Drug(2719) + S

−
Ezy−Drug(5438)

SNR−Drug � S
+
NR−Drug(82) + S

−
NR−Drug(164)

(1)

There are 4,803 drug-target pairs in positive subsets, 2,719 for
enzymes, 1,372 for ion channels, 630 for GPCRs, and 82 for
nuclear receptors. Negative samples are randomly synthesized by
separating each target and drug in S+, and none of them appear in
the corresponding positive dataset. The proportion of positive
samples and negative samples was set as 1:2. For comparison with
previously published papers, both our positive and negative
samples are consistent with He et al. (He et al., 2010)

Check390 is a dataset constructed by Hu et al. It contains 130
pairs of positive samples from the KEGG database, and 260
negative samples generated using the above method (Hu et al.,
2016). Each pair in Check390 cannot be found in S.

2.2 Framework of the Constructed Model
In this article, we construct a novel model for DTIs based on
large-scale pre-trained Bidirectional Encoder Representations
from Transformers (BERT) and the fully connected neural
network-based module called the BRL block. Figure 1 showers
an overview of the DTIs model. The model has four modules:
feature engineering, feature extraction, optimization, and
decision-making. Firstly, in the feature engineering module, we
use the auto-encoder ProtBert model, which is pre-trained on

Frontiers in Genetics | www.frontiersin.org June 2022 | Volume 13 | Article 8591883

Zheng et al. Drug-Target Interactions Prediction

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


data from UniRef100 containing 216M protein sequences, to
generate embedding vectors for protein sequences. As a result, the
proteins can be represented via 1024-D vectors (dimensionality of
the features extracted by the ProtBert model). Drug molecular
fingerprints are represented by 128-D vectors through semi
decomposition process discrete wavelet transform (DWT).
Secondly, the 1152-D vectors (a concatenation of protein
sequence feature and drug feature) are fed into the feature
extraction model to generate interaction information through
the first BRL block and CNN Afterwarderwards, in the decision-
making module, the second BRL block is used to map interaction
features into a unified vector space. The optimization module
contains a contrastive loss and a cross-entropy loss. The
contrastive loss is used to calculate the interaction information
(generated by CNN block), which can reduce the distance
between samples with the same label, and increase the
distance between samples with different labels, while the cross-
entropy loss is computed as the loss of second BRL block, bathes
are used to adapt weights in the module during the learning
process by minimizing the total loss. At the end of model, we can
obtain the interaction score (generated by a softmax layer after
second BRL block, and range from 0-1), the pair is interaction if
the prediction score is > 0.5.

2.2.1 Feature Extraction From Protein
Recently, many word-embedding methods have been used for
protein feature extraction, for example, Zheng et al. identified the
ion channel-drug interaction using both word2vec and node2vec
as molecular representation learning methods (Zheng et al.,
2021). However, there are still imperfect, like in these word-
embedding methods may map every word with their unique
vector, therefore this representation is context-independent.
With the exponential growth of textual data, major progress
has beenmade in the pre-training language representations (Peng
et al., 2019; Bianchi et al., 2021). Bidirectional Encoder

Representations from Transformers (BERT) was the first fine-
tuning-based representation model (Devlin et al., 2018), which
can generate different representations for the same word based on
context (Devlin et al., 2018; Nozza et al., 2020).

Almost all sequence-based language models (e.g., context
ELMo (Ilić et al., 2018), BERT (Devlin et al., 2018), Xlnet
(Yang et al., 2019)) have been promoted the development of
processing natural languages successfully, but model
architectures and pre-training tasks may not be suitable for
representing proteins. The primary reason is that proteins are
more variable than sentences in length, and show many
interactions in distant positions (due to their 3D structure).
The length of English sentences is multiple, usually around
15-30 words (Brandes et al., 2022). Although the length limit
of a sentence is not an issue in sentence-level NLP tasks (Dai et al.,
2019; Brandes et al., 2022), however, many proteins are more than

FIGURE 1 | Flowchart of the DTI-BERT model.

FIGURE 2 | The distribution of protein sequence length.
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20-times longer than nature sentences, reaching an average length
of up to 600 residues in drug–the target benchmark dataset and
over 20% of the sequences are longer than 1,000. The average
length of GPCR, ion channel, enzyme and nuclear receptor are
470, 760, 570 and 540, the distribution of protein sequence length
is shown in Figure 2.

For protein sequence representation, Elnaggar et al. released a
model called ProtBert, which was trained on UniRef100 datasets
(contained 216M protein sequences) (Elnaggar et al., 2021). In
the ProtBert model, amino acids are set as single words and
protein sequences as sentences. The model can deal with protein
sequences up to 40k in length, and can download from: https://
github.com/agemagician/ProtTrans (Elnaggar et al., 2021). In the
current study, the protein sequence feature can be extracted by
ProtBert based on transfer learning (Lee et al., 2019; Noorbakhsh
et al., 2020).

The sequence expressed as an amino acid residue may be
formulated in the following format:

G � R1R2R3 . . .RL (2)
where R1 is the first residue in the protein sequence, R2 is the
second residue, . . . , RL is the L- th residue.

The framework of ProtBert is similar to the original Bert
publication, some special encoding symbols like [CLS] and [SEP]
remain in the BERT model. [CLS] means classification, is added
as the first token in the Bert sequence information. When
designing the model, [CLS] token was considered as the
representation of subsequent text classification. [SEP] means a
separator, for example, the task was sentence-pair regression, the
input for BERT consists of the two sentences, that would be
separated by a special [SEP] token.

We add a [CLS] token at the beginning of the protein sequence
marked as R0, which acts as an aggregate sequence representation
and is usually used for sequence classification tasks in the BERT
model, and the [SEP] token at the end of the sequence, marked as
RL+1.

We get protein features from the last layer of ProtBert, and
every amino acid can be converted to a 1024-dimensional vector
BRj, and the protein can be represented as a feature matrix PBERT:

BRj � [B1
Rj
B2
Rj
. . .Bi

Rj
. . .B1024

Rj
] (3)

PBERT � ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
B1
R0

/ B1024
R0

..

.
1 ..

.

B1
RL+1 / B1024

RL+1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (4)

It can be seen from Eqs. 3, 4 that different protein has different
size of PBERT. To formulate the protein sequences with the same
size mathematics formulation, the matrix was averaged (mean-
pooled) over the vertical axis and a 1024-dimensional vector was
obtained to be used as a representation of protein named
BERT_Mean:

bn �
∑j�L+1

j�0 Bn
Rj

L + 2
(1≤ n≤ 1024) (5)

PPROT � [b0b2 . . . bn . . . b1024] (6)

2.2.2 Feature Extraction From Drug Molecule
A drug is saved as an MOL file (a file format that represents a
compound in the form of a graph connection table) or SMILES in
the database, both formats containing information about the
molecule structure, and can be retrieved from the KEGG
database (http://www. kegg. jp/kegg/) or ChEMBL (https://
www.ebi.ac.uk/chembl/) according to drug IDs. We can also
use the MOL file or SMILES as the input of the OpenBabel
tool (http://openbabel.org/) to generate the molecular fingerprint
file, including FP2, FP3, FP4, and MACSS. FP2 is an enumeration
of linear fragments or ring substructures of one to seven
connected atoms in a molecule, then maps them to a 256-bit
hexadecimal string through a hash function. FP3, FP4, and
MACSS use predefined structures to generate fingerprints. FP2
retains more sequence information, we use FP2 as
molecular input.

The FP2 molecular fingerprint is represented by a 256-bit
hexadecimal string, the hexadecimal char “0~F” can be converted
to the number 0–15, drug molecule is represented as SFP2 in the
following formulation:

SFP2 � [f1f2 . . .f256] (7)
In previous studies, the FP2 can be further processed using

some transposition functions, and Hu et al. (Hu et al., 2016) and
Wang et al. (Wang et al., 2020) have confirmed the effectiveness
of applying Discrete Fourier Transform (DFT). DFT can convert
molecular fingerprints into frequency-domain values, reflecting
the specific characteristics of drug molecules. DFT can freely
choose frequency domain or time domain according to the needs
of practical applications, however, it cannot obtain information in
both cases simultaneously, and we cannot know the time when a
signal occurs (in our study, it means sequence position
information). To solve the local non-stationary components
contained in the FP2, DWT was chosen to extract drug
features. Daubechies family is the wavelet basis function in
DWT, which can support discrete transformation and have
good orthogonality and symmetry compared to other wavelet
bases. In this paper, the specified wavelet basis function is used to
decompose the fingerprint vector, and the approximation
coefficients are used as the wavelet coefficients of the
fingerprint vector.

After the transformation of DWT with the Daubechies family,
128 approximation coefficients can be obtained to form a vector:

SA � [a1a2 . . . a128] (8)
To better characterize the drug, SA was subjected to a standard

conversion as described by the following equation:

di � ai∑128
j�1aj

(9)

DDWT � [d1d2 . . . d128] (10)
And DDWT a 128-dimensional vector is obtained to be used as
representation of drug. Finally, through the above several steps, a
drug-protein pair can be represented with an 1152-D vector
given by:
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Φ � [Φ1 Φ2 / Φi / Φ1152 ] (11)

2.3 CNN Block
The CNN block includes a convolution layer, a rectified linear
unit activation (ReLU), and a max-pooling layer. Instead of using
multi-channels, we applied one channel only (Peng et al., 2018).
In the convolution layer, apply a convolution kernel with a
window size of h*k to extract the DTIs features, then use the
rectified linear unit activation function and performed max-
pooling to get the most useful interaction feature from the
feature matrix subsequently. Through this block, an output of
input xis formulated as:

v � maxpool(f(w · x + b)) (12)
where w ∈ Rhk, which is applied to a window of h � 18, k � 64 to
produce a new feature; b ∈ R is a bias term and f is a non-linear
function.

2.4 BRL Block
The BRL is built as a special block in the neural network, where
data is normalized and then mapped into a specific vector space.
This block consists of three layers: a batch-norm layer (BN), a
leaky rectified linear activation layer (Leaky ReLU), and a linear
layer (Pedregosa et al., 2011).

The input data x is first Batch-normalized, which serves to
increase the learning rates further, remove the dropout layer, and
apply other modifications afforded by the batch normalization
(Ioffe and Szegedy, 2015); then input to the Leaky ReLU
activation layer, and finally linearly mapped. BRL block can
mathematically be represented as:

X � Linear (LeakyReLU(BN(x)))
� W × (LeakyReLU(BN(x))) + B (13)

where x is the input data, the BN transform is applied
independently to each dimension of x, W is the weight of the

linear layer, and B is the bias of the linear layer. The first BRL
block and CNN block are used for capturing both global and local
information to represent the drug-protein pair; the second BRL
block is used for predicting DTIs.

The BRL block was implemented with PyTorch (version
1.6.0), and a fully connected layer was used for the linear
mapping. The parameters of the first BRL block were set as:
the number of input neurons and the batch normalized
dimensions dimension were both 1,152, and the number of
output neurons was set to 128. The parameters of the second
BRL block were set as 192 (128-D from the first BRL block and
64-D from the CNN block), and two respectively. A softmax layer
is applied after the second BRL block, which is used to generate
the prediction score. Other hyperparameters used default values
in Pytorch. The source code for the related methods is available
on a GitHub repository at: https://github.com/Jane4747/DTI-
BERT.

2.5 Optimization Module
In this frame, given two vectors v1 and v2, input them into the
same network in turn, the network will map the inputs to the new
vector space where the similarity between two inputs can be
evaluated by the distance measure function. Here, Euclidean
distance was served as the distance measure, denoted
as D(v1, v2):

D(v1, v2) � ‖v1 − v22‖2 (14)
To make the samples of the same interaction label closer, and

the distance between different labels as far as possible, the
contrastive loss was applied as the loss function of the CNN
network:

L1(v1, v2, Y) � 1
2
(1 − Y)D(v1, v2)2

+ 1
2
Y{max(0, m −D(v1, v2))2} (15)

FIGURE 3 | The performance of different protein and drug descriptors on the GPCR dataset.
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where Y � 0 if sequences v1 and v2, have the same label and Y � 1
if they are different,m> 0 is a margin. In other words, the margin
defines a radius, and dissimilar pairs contribute to the loss
function only if their distance is within the radius.

In this study, the second BRL block was used to convert the
representation vector v to binary category outputs, the
backpropagation algorithm was used to update network
parameters, and the cross-entropy loss function was selected
as the loss function of the second BRL block:

L2(v, Y) � −Y log(D(v)) − (1 − Y)log(1 −D(v)) (16)
Therefore, the loss function of the DTI-BERT model is:

L(v1, v2, Y, Y1, Y2) � L1(v1, v2, Y) + L2(v1, Y1) + L2(v2, Y2)
(17)

where Y1 and Y2 are the labels of v1 and v2.

We implemented our model using Python three and Pytorch
(version 1.6.0). Optimizer, training epochs and batch size are set
with “Adam”, 70 and 64, respectively. In our work, the optimizing
function, “Adam”, use its default parameters value. All codes and
trained models can be found via https://github.com/Jane4747/
DTI-BERT.

3 RESULTS AND DISCUSSION

3.1 Performance Metrics
The determination of a pair belongs to an interactive drug-target
pair or non-interactive drug-target pair, is in the case of single-
label classification. The metrics such as accuracy (ACC),
sensitivity (Sn), Specificity (Sp), strength (str, the average of
Sn and Sp) and Matthew’s correlation coefficient (MCC) are
frequently used. The specific formulas are as follows:

FIGURE 4 | The performance of different protein and drug descriptors on the ion channel dataset.

FIGURE 5 | The performance of different protein and drug descriptors on the enzyme dataset.
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Acc � TP + TN

TP + TN + FP + FN

Sn � TP

TP + FN

Sp � TP

TP + FP

Str � Sp + Sn

2

MCC � TP × TN − FP × FN���������������������������������������(TP + FP)(TP + FN) + (TN + FP)(TN + FN)√
(18)

where TP represents the true positive, FN the false negative, TN
the true negative, FP the false positive.

3.2 Comparison of Several Classic Protein
and Drug Feature Extraction Methods
On the protein representation task, auto-encoder models
(word2vec and BERT) with different model parameters scales
were tested. For the drug representation task, a variety of
algorithms in various fields, including natural language

FIGURE 6 | The performance of different protein and drug descriptors on the nuclear receptors dataset.

TABLE 1 | Results of comparison with several traditional machine learning
methods on four datasets.

Dataset Method Sn(%) Sp(%) ACC(%) Str (%) MCC

GPCR MLP 86.8 75.3 82.8 81.5 0.61
GPCR LightGBM 87.5 80.5 86.3 84.0 0.67
GPCR BRL + CNN 89.3 91.0 90.1 90.2 0.80
Ion channel MLP 93.3 83.1 89.6 88.2 0.77
Ion channel LightGBM 92.7 89.3 91.7 91.0 0.81
Ion channel BRL + CNN 95.9 91.4 94.7 93.7 0.87
Enzyme MLP 92.2 86.0 90.1 89.1 0.79
Enzyme LightGBM 92.8 90.5 92.4 91.7 0.83
Enzyme BRL + CNN 95.9 92.0 94.9 94.0 0.88
NR MLP 84.2 76.9 79.9 80.6 0.60
NR LightGBM 84.4 83.1 82.7 83.8 0.65
NR BRL + CNN 92.5 85.2 89.0 88.9 0.78

The best results for each metric are in bold.

TABLE 2 | Performance comparison on four datasets inaccuracy rate.

Method GPCRs Ion-Channels Enzymes NR

He et al. (2010) 78.5 80.8 85.5 88.4
DrugRPE Zhang et al. (2017) 85.2 89.0 90.0 91.1
Hu et al. (2019) 88.4 91.9 94.3 85.7
Our method 90.1 94.7 94.9 89.0

The best results for each metric are in bold.

TABLE 3 | Performance comparison on GPCR dataset over leave-one-out cross-validation.

Method Sn(%) Sp(%) ACC(%) Str (%) MCC

IGPCR-Drug Xiao et al. (2013) 78.3 91.4 86.9 84.9 0.71
OET-KNN Hu et al. (2016) 77.8 88.7 85.0 83.3 0.67
QuickRBF Hu et al. (2016) 74.8 92.4 86.4 83.6 0.69
SVM Hu et al. (2016) 74.2 92.7 86.4 83.6 0.69
RF Hu et al. (2016) 76.5 92.9 87.3 84.7 0.71
RF + PP Hu et al. (2016) 79.7 92.8 88.3 86.3 0.73
DWKNN(Ensemble) Wang et al. (2020) 81.1 87.1 85.1 84.1 0.67
BOW-GBDT Qiu et al. (2021) 79.8 93.1 88.5 86.3 0.74
Our method 92.2 92.0 91.9 90.1 0.84

The best results for each metric are in bold.
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processing (word2vec), graph (node2vec and GCN), and signal
processing (DWT) were tested.

We evaluated the BERT_Mean + DWT feature extraction
method and compared it with several other classic protein and
drug feature extraction methods, such as Pr ord2vec (a 64-D
vector is obtained to represent the protein, it was extracted by an
un-supervised word2vec model and implicated important
biophysical and biochemical information (Yang et al., 2018;
Zhang et al., 2020), BERT_First (the first row of PBERT is
obtained to represented protein, it is a 1024-D vector)
(Nambiar et al., 2020), FP2_Word2vec (Jaeger et al., 2018),
drug_Node2vec (Grover and Leskovec, 2016; Tetko et al.,
2020), drug_Word2vec (Zhang et al., 2020; Zheng et al., 2021),
drug_GCN (Chen et al., 2020). Figures 3–6 show the Matthews
correlation coefficient (MCC) for the datasets SGPCR−Drug,
SChl−Drug, SEzy−Drug, and SNR−Drug obtained for each approach
in CNN + BRL classifier via 10-fold cross validation.

It was found that BERT_Mean for the proteins and DWT for
drugs can improve the performance of the classifier greatly in four
datasets. The BERT_Mean + DWT increased capacity for
identifying DTIs compared to the using BERT_First,
PRO_Word2vec, drug_Node2vec, drug_Word2vec, and
drug_GCN, and BERT_Mean can find the most compact and
informative features subsets which are deeply hidden in protein
sequences. It is showed that word2vec for protein sequences and
GCN for drugs in DTIs tasks, could also obtain good prediction
results on three datasets (SGPCR−Drug, SEzy−Drug, and SNR−Drug),
which inspires us that different protein representation methods
need to consider different drug molecule representation methods,
which need to be determined experimentally.

3.3 Comparison With Some Machine
Learning Methods
In order to test the performance of the BRL + CNN and compare
it with the existing machine learning methods, we use the same
benchmark dataset (listed in Eq. 1) and the same BERT_Mean +
DWT feature as the input of the prediction model. The proposed
BRL + CNN predictor and other commonly used classifiers
provided by the Scikit-learn library, like Multi-Layer
Perceptron (MLP) with two hidden layers (Pedregosa et al.,
2011) and gradient boosting tree-based ensemble method
called LightGBM (LGB) (Ke et al., 2017), were tested via 10-

fold cross-validation, the results are listed in Table 1. It was found
that the proposed BRL + CNN predictor in this article has better
performance than other classifiers in all metrics.

3.4 Comparison With Existing Predictor
To further demonstrate the power of the DTI-BERT predictor, we
compared it with some existing methods. There are some new
models for identifying DTIs trained with the datasets established
by He et al. (He et al., 2010). For example, Hu et al. proposed a
deep learning-based method to predict DTIs by using the
information of drug structures and proteins sequences (Hu
et al., 2019), this CnnDIT predictor has better prediction
performance in predicting DTIs, and it has its own web
server. Zhang et al. proposed a random projection ensemble
approach DrugRPE to predict DTIs (Zhang et al., 2017), and
several random projections build an ensemble REPTress system.
In general, the method of fusing multiple predictors outperforms
a single predictor. To facilitate comparison, the scores of
accuracies (defined in Eq. (18)) obtained by these three
predictors (He et al., 2010; Hu et al., 2016; Zhang et al., 2017)
based on the benchmark datasets used in He et al. (He et al., 2010)
via the 10-fold cross-validation test were listed in Table 2.
Comprehensively, the comparative results showed that our
model is more accurate than other existing methods.

GPCRs have proved to be one of the most important target
families of modern drugs. Identifying the GPR-drug interaction is
an important issue in bioinformatics, and a number of
researchers have proposed effective predicted methods to
identify GPCR-drupredictedions. Our method was also
compared with the performance of different methods which
predicting GPCR-drug interaction on the training dataset
SGPCR−Drug over leave-one-out cross-validation, and validated
in independent test dataset check390 (Xiao et al., 2013; Hu et al.,
2016; Wang et al., 2020; Qiu et al., 2021). The results of the
different methods tested on SGPCR−Drug over leave-one-out cross-
validation were shown in Table 3. The results of the other eight
methods were reported in (Qiu et al., 2021). From Table 3, we can
find that the MCC values of our method were 10% higher than
others.

The generalization ability of machine learning models is
usually evaluated through an independent test. The D92M is
the GPCR-drug interaction dataset in (Wang et al., 2020), which
is applied as a training dataset, and check390 as a validation

TABLE 4 | Performance comparison on Check390.

Method Sn(%) Sp(%) ACC(%) Str (%) MCC

IGPCR-Drug Xiao et al. (2013) 80.8 66.9 71.6 73.9 0.45
OET-KNN Hu et al. (2016) 67.7 84.2 78.7 76.9 0.52
QuickRBF Hu et al. (2016) 76.2 77.7 77.2 77.6 0.52
SVM Hu et al. (2016) 76.2 78.9 78.0 77.6 0.53
RF Hu et al. (2016) 78.5 78.1 78.2 78.3 0.54
RF + PPP Hu et al. (2016) 83.1 79.6 80.8 81.3 0.60
DWKNN Wang et al. (2020) 83.9 80.0 81.3 81.9 0.61
DWKNN(Ensemble) Wang et al. (2020) 83.1 82.7 82.8 82.9 0.63
BOW-GBDT Qiu et al. (2021) 80.0 90.0 86.7 85.0 0.70
Our method 87.1 89.4 88.4 88.3 0.76

The best results for each metric are in bold.
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dataset. The results of the validation test on check390 were listed
in Table 4, which demonstrated that our method almost
outperform the others across the five metrics, except for
BOW-GBDT achieves the highest value of Sp (93.1%).
Compared with other state-of-the-art methods, the ACC value
of our method is 3.4% higher, the MCC value is 6% higher than
the second one. All these results demonstrate the effectiveness of
the proposed methods.

4 CONCLUSION

In this work, we developed a powerful predictor based on the
sequences of proteins and FP2 of drugs. We attempted to use pre-
trained BERT to present proteins in DTIs and choose a useful
representation for drugs via extensive experiments, including
several state-of-art drug descriptions like drug_Word2vec,
drug_Node2vec, drug_GCN, FP2_Word2vec, FP2_DWT. The
presenting results showed that FP2_DWT is more efficient to
present drug molecules than other descriptions. Furthermore, we
used the deep learning method to generate interaction
information and optimized the predicting network based on
contrastive loss and cross-entropy loss, which performed much
better than other common machine learning models. Moreover,
compared with other existing predictors, DTI-BERT has better
prediction performance in different target families of GPCRs, ion
channels, enzymes and nuclear receptors, without any help of
prior knowledge and handcrafted feature engineering. Overall,
DTI-BERT can predict drug-target interactions that achieved
high accuracy and we established a prediction web-server for
the convenience of the most experienced scientists.

The BERT model has very excellent general capabilities and
has very outstanding feature extraction capabilities for DNA
sequences (Le et al., 2021) and RNA sequences (Zhang et al.,
2021). The DTIs prediction framework proposed in this paper
has very good potential for predicting other drug targets
as well.
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