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ABSTRACT
Computational modeling of antibody structures plays a critical role in therapeutic antibody design. Several
antibody modeling pipelines exist, but no freely available methods currently model nanobodies, provide
estimates of expected model accuracy, or highlight potential issues with the antibody’s experimental
development. Here, we describe our automated antibody modeling pipeline, ABodyBuilder, designed to
overcome these issues. The algorithm itself follows the standard 4 steps of template selection, orientation
prediction, complementarity-determining region (CDR) loop modeling, and side chain prediction. ABodyBuilder
then annotates the ‘confidence’ of the model as a probability that a component of the antibody (e.g., CDRL3
loop) will bemodeled within a root–mean square deviation threshold. It also flags structural motifs on themodel
that are known to cause issues during in vitro development. ABodyBuilder was tested on 4 separate datasets,
including the 11 antibodies from the Antibody Modeling Assessment–II competition. ABodyBuilder builds
models that are of similar quality to othermethodologies, with sub–Angstrom predictions for the ‘canonical’ CDR
loops. Its ability to model nanobodies, and rapidly generate models (»30 seconds per model) widens its
potential usage. ABodyBuilder can also help users in decision–making for the development of novel antibodies
because it provides model confidence and potential sequence liabilities. ABodyBuilder is freely available at
http://opig.stats.ox.ac.uk/webapps/abodybuilder.

Abbreviations: Fv, Variable Fragment; CDR, Complementarity–Determining Region; AMA, Antibody Modeling
Assessment; RMSD, Root–Mean Square Deviation; NGS, Next–Generation Sequencing; ESSS, Environment–Specific
Substitution Score
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Introduction

Antibodies are an important class of biotherapeutics.1 They effec-
tively bind their cognate antigens with high specificity and high
affinity.2 In humans, antigen binding occurs on the variable frag-
ment (Fv) between the variable domains of the heavy and light
chains (VH and VL, respectively). These two domains contain 6
complementarity–determining region (CDR) loops, which form
the majority of the antigen binding site.2,3 Three of these loops,
CDRH1, CDRH2, and CDRH3, are from the VH domain, and 3,
CDRL1, CDRL2, and CDRL3, are from the VL domain. Other
organisms, such as camelids, have single–domain antibodies that
are composed of only the heavy chain; such nanobodies have only
the 3 heavy chain CDR loops.4 The CDR loops’ relative positions
and their amino acid sequences determine most of an antibody’s
binding properties. Other structural features, such as the relative
orientation of the antibody’s domains,5 are known to affect an anti-
body’s affinity. Thus, knowledge of an antibody’s structure is useful
for clinical and biotechnological applications.6,7

The immense diversity of antibodies,8-10 and the value of struc-
tural models in engineering antibodies,6,11 have motivated the devel-
opment of several computational antibody modeling tools.7,11-15 To

compare such methodologies, 2 Antibody Modeling Assessments
have been held.6,16 In the second competition (AMA–II), 7 methods
were benchmarked on their ability to model 11 Fvs;6,17 only 3 of
these methods (RosettaAntibody, PIGS, and Kotai Antibody
Builder)18-20 are freely available. The competition was divided into 2
stages: modeling the entire Fv (stage I), or only the CDRH3 loop,
given the crystal structure of the remaining Fv (stage II). In stage I,
most Fvs were modeled relatively well (average root mean square
deviation [RMSD] of the Fv backbone: 1.1A

�
), though the CDRL1,

CDRL3, CDRH1, and the CDRH3 loops were often modeled with
lower accuracy.6,17

Currently, most antibody modeling pipelines follow a 4–stage
workflow, with minor variations in the steps. Initially, a template
structure is chosen for the target antibody, either for the VH and
VL domains separately, or for both domains combined.7,12-14 Alter-
natively, a fragment-basedmethod can be used to assemble the VH
andVL domains.15 TheVH–VL orientation21 is thenmodeled after
choosing the framework template.22 In the third stage, the ‘canoni-
cal’ CDR loops (CDRH1, CDRH2, CDRL1, CDRL2, CDRL3) are
modeled, followed by CDRH3. Themodels may also be refined.18
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No current pipelines comment on the expected accuracy of
the model, so a model’s accuracy is only known post hoc, once
a crystal structure has been determined. From a user’s perspec-
tive, it is impossible to determine how useful a prediction will
be. This is particularly problematic for the CDRH3 loop, which
can be modeled extremely poorly (RMSD >5A

�
) in some tar-

gets.6 In addition, no current publicly available pipeline com-
ments on the in vitro ‘developability’ of the antibody.23,24

Antibodies are prone to several post–translational modifica-
tions that hinder the production and retention of the antibody.
More importantly, these modifications can adversely affect the
antibody’s functional properties.23,24 Thus, knowledge of these
sequence liabilities prior to experimental work could reduce the
rate of failure of producing functional antibodies.

Here, we present ABodyBuilder, an antibody modeling pipe-
line that uses our increasing knowledge–base of antibody struc-
tures10 to guide decision–making in modeling antibodies. The
overall methodology behind ABodyBuilder is similar to other
pipelines. We select template structures based on sequence
identity, and, if necessary, predict the antibody’s orientation
based on the ABangle parameters.21 All 6 CDR loops are then
predicted by FREAD25-27 using a CDR–specific database. The
model’s side chains are then completed by SCWRL4.28

ABodyBuilder differs from other methods in that it anno-
tates the confidence of a model as the probability that a
region (e.g., the framework) will be modeled within a spe-
cific RMSD threshold. ABodyBuilder also flags structural
motifs within the model antibody that are known to hinder
in vitro development.23 Finally, ABodyBuilder is the only
publically available software that is capable of modeling
nanobodies (e.g., camelid VHH antibodies). Unlike other
pipelines that allow manual input,18-20 ABodyBuilder is a
rapid, fully automated method for antibody model genera-
tion, making it ideal for challenges such as modeling large,
next–generation sequencing (NGS) data sets.29-31 Here, we
show that ABodyBuilder produces models of similar quality
to other leading methods in its fully automated mode, and
describe how it provides meaningful information for anti-
body development.

Results

Framework selection

The first stage in ABodyBuilder is the selection of a single tem-
plate, or 2 templates (one for the VH and one for the VL), to
model the framework region. In order to determine how
sequence identity between template and target influences the
accuracy of model building, the framework regions of all pairs
of structures in our redundant set were superimposed. First,
both chains were superimposed (Fv–Fv superimposition), and
second, the heavy and light chains were superimposed sepa-
rately (VH–VH or VL–VL). The RMSD between the pairs were
compared to their sequence identities (Fig. 1).

Given our observations, we use a single ‘global’ template
(both VH/VL structures and orientation) if a single template
structure for the target could be found with �80% sequence
identity for both heavy and light chains’ framework regions. In
this scenario, we expect to have a sub–Angstrom template for

the VH and VL domains with a probability of 0.75. If either
chain has <80% sequence identity to the target, 2 separate
structures are used, and the orientation of the highest sequence
identity global template is used (example template selections
are described in Table S1).

Modeling the CDR loops

Once a template framework structure is selected, ABodyBuilder
uses FREAD,25-27 a database method, to model the CDR loops.
A CDR–specific database was used for each CDR loop; if a suit-
able decoy was not found in the database, an Fv–specific data-
base was used. If a decoy is still not found, the most sequence–
similar, length–matched CDR loop (based on its BLOSUM62
score) is used as the template. If no length–matched templates
are found, the most sequence–similar loop is then used as the
template for ab initio modeling by MODELLER (see Meth-
ods).32 Fig. 2 shows the accuracy of individual CDR loop pre-
dictions from FREAD on template framework structures for
our non–redundant set. In this initial assessment, the RMSD
between the model and native CDR loops was calculated after
superimposing both chains’ framework regions’ backbone
atoms (i.e., excluding the CDR loops). CDRL2 was modeled
with the highest accuracy (average backbone RMSD 0.5A

�
), fol-

lowed by CDRL1, CDRL3, CDRH2, CDRH1. CDRH3 was
modeled with the lowest accuracy (average backbone RMSD
1.9A

�
).

The order of CDR loop modeling is important because each
modeled CDR may influence the conformations of the next
CDR loop. We used the accuracy of predicting individual CDR
loops and the occurrence of Cb¡Cb contacts between CDR
loops (Figs. S2, S3) to decide the ordering. The CDR loops are
modeled in the following order: CDRL2, CDRH2, CDRL1,
CDRH1, CDRL3, and CDRH3. The CDRL2 loop is modeled
first as it is usually predicted with the highest accuracy. Next,
CDRH2 is modeled as it is the best predicted CDR loop within
the heavy chain, and is not in contact with CDRL2. CDRL1
and CDRH1 follow on as they are the next–best predicted CDR
loops on the light and heavy chains, respectively. Finally, the
CDRL3 is modeled before CDRH3. An alternative order of
CDRL2, CDRL1, CDRL3, CDRH2, CDRH1 and CDRH3 was
considered on the basis of FREAD accuracy per variable
domain. As the results were unaffected, the proposed order was
retained. When modeling a nanobody, the order is conserved,
i.e., CDRH2, CDRH1, CDRH3.

Side chain modeling

At this stage in the ABodyBuilder methodology, we have a
complete backbone, and side chains where the template and
target share identical residues. The side chains of the target
antibody could be modeled by 2 different methods. ‘Com-
plete’ prediction, where every side chain is predicted, or
alternatively, ‘partial’ prediction where side chains of identi-
cal residues from the template are retained, and the remain-
ing side chains are predicted. The side chains of the
framework region and the CDR loops were either
completely re–modeled or partially predicted using
SCWRL4.28 Side chain clashes occasionally arise from
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Figure 1. (A) Boxplot of pairwise Fv–Fv framework region superimpositions in the redundant set; only pairs with sequence identity �60 % are shown. (B) Boxplot of
pairwise VH – VH framework region superimpositions and VL–VL framework region superimpositions where sequence identity �80 %.

Figure 2. RMSD distributions of the top–ranked decoy from FREAD for each CDR loop. FREAD was used to model individual CDR loops on template framework struc-
tures of our non–redundant set. The RMSD was calculated by superimposing the backbone atoms of the framework regions of the template and target. Decoys with
RMSD >4 A

�
are not displayed. m: mean; s: standard deviation.
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SCWRL4 predictions. We removed these by subjecting the
clashing side chains to an initial round of relaxation by
MODELLER.32 If clashes are still found in the structure, all
side chains are relaxed. The x1 angle and x1C2 angle accura-
cies of the complete and partial predictions were compared.
Our analyses showed that preserving side chains of com-
mon residues leads to better accuracy than re–modeling
every side chain (Fig. 3); however, MODELLER relaxation
decreases the x1 angle accuracy at the expense of resolving
clashes in the model structure.

Confidence estimates

ABodyBuilder estimates the confidence of the model antibody
structure as the probability that a region (e.g., framework,
CDRL3) will be modeled within xA

�
given the sequence identity

or loop length (Fig. 4). Thus, the confidence calculations can
also be used to obtain the expected RMSD for a specified proba-
bility. The confidence measures are data–driven, and are based
on the results from the pairwise framework region superimpo-
sitions or the FREAD predictions for the individual CDR loops.
They are empirical approximations, and are not de facto RMSD
values for the model.

We use our »1.2 million pairwise superimpositions of frame-
work regions (Fig. 1) to estimate these confidence values. For exam-
ple, a template VH domain with 80% sequence identity to a target
VH domain will be modeled at RMSD�1.0A

�
with a probability of

0.75. This does not necessarily mean that the VH domain will have
RMSD �1.0A

�
to the target. Rather, it states that there is a 75%

chance that the target will be modeled at RMSD �1.0A
�
. Confi-

dence increases with the RMSD threshold, i.e., there is a greater
probability that a region will be modeled with lower accuracy, or
higher RMSD.

We also estimate the accuracy of the CDR loops as a function of
loop length. The backbone RMSDs of the top–ranked FREAD

predictions on template framework regions for our non–redundant
set were used to estimate the confidence of modeling a CDR loop.

Benchmarking ABodyBuilder

To benchmark ABodyBuilder, it was tested on the antibodies in
the non–redundant set, and on our blind test set, which is a set
of 136 structures that have been deposited in SAbDab since we
built our methodology. When modeling these structures,
sequence–identical antibodies were ignored. The accuracy of
the models was calculated as described in the Methods section.
Briefly, the Fv and framework regions’ RMSD was calculated
after superimposing the backbone atoms for both chains (Fv
RMSD), or for each chain separately (framework region
RMSD). For the CDR loops, the backbone atoms of each
chain’s framework region were superimposed, and the RMSD
between the model and native CDR loops was calculated there-
after, similar to the method used in the AMA–II competition.6

Our RMSD calculations use North et al.’s CDR loop definitions,
whereas the AMA–II competition calculated a model’s RMSD
using Chothia’s definitions.6,33 As discussed later, when using
the AMA–II dataset, we used the Chothia definition to be con-
sistent with the competition.3,6

ABodyBuilder gives confidence estimates in its structural
predictions. A complete antibody is modeled as 8 regions (2
framework regions and 6 CDR loops), and each of these is sepa-
rately considered. Comparably, a nanobody’s 4 regions (one
framework and 3 CDR loops) are annotated individually. In all
our models, a default confidence of 75% was used to calculate
the expected RMSD. This value indicates, based on our frame-
work region superimpositions and FREAD results on individ-
ual CDR loops, that there is a 75% chance that a component
will be modeled within xA

�
. These confidence measures were

used to identify components that would be difficult to model.
ABodyBuilder modeled the 462 ‘complete’ Fvs in the non–

redundant set with average backbone RMSD for the Fv of 1.3A
�
.

Figure 3. Density plot of x1 angle accuracy (%) for side chain prediction, using only the template’s rotamers, completely re–modeling every side chain using SCWRL4, or
using both the template rotamers where available, and SCWRL4s rotamers elsewhere. The x1 angle accuracy of models that were refined by MODELLER is also shown.
Note that the x1 angle accuracy for ‘Template Only’ is calculated from fewer rotamer comparisons as it is based on comparing only the identical residues between the
template and target.
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On average, the canonical CDR loops were predicted with sub–
Angstrom accuracy (average backbone RMSD 0.5A

�
, 0.4A

�
, 0.6A

�

for CDRL1, CDRL2, and CDRL3, respectively, and 0.6A
�
, 0.6A

�
,

1.9A
�
for CDRH1, CDRH2, and CDRH3, respectively). The

RMSD values are lower than those in the original investigation
using FREAD to predict CDR loops.27 It appears that the
increase in available structural data has led to an improvement
in CDR loop modeling. Sixty of the 79 nanobodies in the
non–redundant set were VHH antibodies, with an average
domain RMSD of 2.6A

�
; the average backbone RMSD for the

CDRH1, CDRH2, and CDRH3 loops were 1.4A
�
, 0.9A

�
and

3.5A
�
, respectively. On the other hand, the domain RMSD of

the 19 VL–only nanobodies was 1.0A
�
; the average backbone

RMSD of the CDRL1, CDRL2, and CDR3 loops were 0.6A
�
and

0.3A
�
, and 1.1A

�
respectively.

The confidence metric was particularly useful in identifying
CDR loops that were modeled poorly. For instance, the CDRH3
loop of 2vxv:HL was estimated with 75% confidence to be modeled
within 3.1A

�
, and its actual RMSD was 3.0A

�
. However, the default

confidence measure can over– or under–estimate accuracy. For
example, ABodyBuilder was 75% confident that the CDRH1 loop
of 3aaz:HL is modeled within 1.3A

�
, although its actual RMSD was

1.7A
�
. The framework regions’ confidence measure is relatively

robust, but, in the case of the CDR loops, the lack of data can lead
to less accurate confidence estimates.

ABodyBuilder was also used to build models of 136 structures
(108 Fvs, 24 VHHs, 4 VL–only antibodies) that were deposited in
the PDB between 24 February 2015 and 20 December 2015 (our
blind test set). Here, the average backbone Fv RMSD of ‘complete’
antibodies was 1.5A

�
. Similar to the non–redundant set, the ‘canoni-

cal’ CDR loops of Fvs were predicted with sub–Angstrom accuracy
(average backbone RMSD 0.6A

�
, 0.5A

�
, and 0.8A

�
for CDRL1,

CDRL2 and CDRL3, respectively; 0.6A
�
and 0.7A

�
for CDRH1 and

CDRH2, respectively; Fig. S4). For the 24 VHH antibodies, the
domain RMSDwas 1.9A

�
, and the CDRH1 and CDRH2 loops were

predicted with average backbone RMSDs of 1.5A
�

and 1.1A
�

(Fig. S4). In contrast, the VL–only antibodies were predicted with
sub–Angstrom accuracy for the entire domain (0.6A

�
), and for the

CDR loops (0.4A
�
, 0.2A

�
and 0.6A

�
for CDRL1, CDRL2, and CDRL3;

Fig. S4). Despite the low averages, the blind test set posed several
challenges. Some canonical CDR loops were poorly modeled (e.g.,
the CDRL1, CDRL2, and CDRL3 loops of one target, 4yfl:HL), and
ab initiomodeling was necessary for modeling the CDRL3 loop of
5c0n:CD. The average RMSD for the CDRH3 loops in the blind
test set was 2.1A

�
for Fv antibodies, and 2.4A

�
for VHH antibodies.

Fifty–nine of the CDRH3 loops in this set were long (�15 resi-
dues), which may explain the high average backbone RMSD; fur-
thermore, 51 of the CDRH3 loops were not modeled by FREAD
(50 were modeled by a sequence similar template, one ab initio).
For CDRH3 loops not modeled by FREAD, it was not possible to
determine the confidence, but we suggest that they are likely to be
modeled poorly. Overall, the results on these 2 datasets suggest that
ABodyBuilder can generate high–quality models for most targets.

Benchmark on AMA–II targets

ABodyBuilder was also tested on the 11 antibodies from the AMA–
II competition.6,17 To replicate the blind test conditions as far as
possible, all structures that were deposited in the PDB after 31
March 2013 were omitted from the template search and FREAD
databases. The accuracy of the models was calculated as described
in the Methods section, and here the Chothia–defined CDR loops
were used as in the AMA–II competition.6

The ABodyBuilder models were of similar quality to that
of the methods used in AMA–II (Fig. S5). The average
RMSD for the whole Fv for our models was 1.2A

�
; this is

comparable to other publically available pipelines: Roset-
taAntibody (1.1A

�
), Kotai Antibody Builder (1.1A

�
), and

PIGS (1.5A
�
). Except for the CDRL2 loop where the average

backbone RMSDs of ABodyBuilder models (0.3A
�
) were

marginally lower (RosettaAntibody: 0.4A
�
, Kotai Antibody

Builder: 0.3A
�
, PIGS: 0.5A

�
), the average backbone RMSD of

all other CDR loops was far lower. In particular, ABody-
Builder showed an improvement of >0.5A

�
RMSD for the

CDRL3 and CDRH3 loops compared to the other pipelines.
This is likely due to the choices made by FREAD. For Ab06
(PDB: 4m6o), ABodyBuilder selected 3hr5:HL as the tem-
plate framework, as done by the Schrodinger group;14 how-
ever, ABodyBuilder used 1om3 over 2aab as its CDRH3
template. Despite the differences in environment–specific
substitution scores (ESSS; 1om3: 26, 2aab: 47), FREAD’s
ranking based on anchor RMSD (1om3: 0.188A

�
vs. 2aab:

0.223A
�
) led to this selection, which was ultimately a better

template for CDRH3. In many cases, ABodyBuilder

Figure 4. (A) Conditional probability (Equation 1) curve for VH framework region
accuracy. Framework superimposition data on the redundant set (Fig. 1) was used
to calculate the probability that a framework region will be modeled within xA

�
.

The calculations depend on the sequence identity of the template. (B) Conditional
probability curve for CDRL3 loop accuracy. The calculations depend on the length
of the CDRL3 loop, and the 3 most common CDRL3 loop lengths (as defined by
North et al.33) are shown.
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generated the top, or joint–top prediction for a component
of an antibody. However, some cases were more challenging
to ABodyBuilder in comparison to other pipelines, such as
the CDRL1 loop of Ab05 (PDB: 4m6m, RMSD 2.8A

�
). Here,

ABodyBuilder chose 1lgv because it had the lowest anchor
RMSD (0.127A

�
), despite its low ESSS (31). Of the top 10

predictions, 3h42 had the highest ESSS (96) but was ranked
fourth in terms of anchor RMSD (0.151A

�
); using this tem-

plate would have led to a prediction with a backbone
RMSD of 0.8A

�
.

Large–scale modeling of antibody sequences

Given the growing availability of large datasets of antibody sequen-
ces,31 in particular from NGS,29,30 a desirable aspect of an antibody
modeling pipeline is the ability to rapidly generate models. To test
the scalability of ABodyBuilder, a non–redundant set of 6267
(3490 human, 2373 mouse) paired antibody sequences from
DIGIT,34 Abysis (http://www.abysis.org), and SAbDab10 were
modeled. For any sequence that required ab initio intervention
by MODELLER,32 only one model was generated.

The average runtime for each sequence was 34 seconds, taking
222.9 seconds atmost. In total, the entire set of 6267 paired sequen-
ces was modeled in 3552 CPU hours (Fig. 5), which is »567 CPU
hours per 1000 sequences. This compares to»250,000 CPU hours
per 1000 sequences that were modeled in a recent study modeling
antibodies from an NGS data set of human antibody sequences.30

In this study, the framework region RMSD to a non–redundant set
of crystal structures was 1.0 § 0.29A

�
. The CDR loops’ RMSDs

were only calculated for models of na€ıve antibodies, ranging from
0.8–2.4A

�
.30 In contrast, for every ABodyBuilder model, model con-

fidence is annotated where possible. At the default 75% confidence
level, the average expected RMSD values are 0.9A

�
and 0.7A

�
for the

heavy and light chain framework regions, and 0.8A
�
, 0.7A

�
, 1.0A

�
,

1.1A
�
, 1.0A

�
, and 3.1A

�
for the CDRL1, CDRL2, CDRL3, CDRH1,

CDRH2, and CDRH3 loops, respectively. Themodels are currently

hosted in http://opig.stats.ox.ac.uk/webapps/abodybuilder/models,
and the time elapsed for each model is shown.

Server output

As described above, ABodyBuilder can rapidly build accurate
models of antibodies from sequence. Once a model has been
generated, it can be downloaded by the user, or interactively
analyzed. We created a web server application for ABody-
Builder, which is freely available at http://opig.stats.ox.ac.uk/
webapps/abodybuilder.

For each model structure, an annotations page is created
using PV (Fig. S6).35 Here, the secondary structure elements,
domains, solvent exposure, confidence measures, and the
sequence liabilities can be visualized on the model structure.
For example, if a particular target antibody has an N–linked
glycosylation motif36 in its CDRL1 sequence (Asn–X–Ser/Thr),
this portion of the CDRL1 is then highlighted if its relative
accessible surface area is >10%.37 Each sequence liability is
given a unique color, allowing simultaneous visualization of
multiple liabilities (should they be present). A full list of anno-
tated sequence liabilities is provided in Table S2.

Discussion

Here, we describe ABodyBuilder, an antibody modeling pipe-
line that builds antibody models that are comparable to other
current freely available methodologies, but is the first to offer
model accuracy estimates. ABodyBuilder can also model com-
plete Fvs, or nanobodies. ABodyBuilder follows the archetypal
4–stage workflow that is characteristic of most antibody model-
ing pipelines. In order to design ABodyBuilder, we tested sev-
eral strategies for every step and selected the best method given
the currently available structural data.

The framework region’s RMSD was rarely above 1.5A
�
in all

the models generated in our study. The framework region had
the highest average RMSD after CDRH3; this may be due to
the length dependence of RMSD. However, the relatively high
RMSD value may also stem from 2 features: VH/VL orienta-
tion, and the framework loops. Currently, ABodyBuilder re–
orients the VH and VL chains using the ABangle parameters
from the best available global template. However, predictions
from machine learning methods22 or energy minimization12,38

could be used to enhance prediction in the future. The choice
of the template could also be enhanced by the use of detailed
structural features, for example, ‘bulge’ structures near the
N–terminus of the VH domain.39

ABodyBuilder models the ‘canonical’ CDR loops with sub–
Angstrom accuracy (on average) in the blind test and AMA–II
datasets. In the AMA–II set, the CDRL1 and CDRL3 loops were
modeled particularly well in comparison to the other methods
(Fig. S5), reinforcing the benefits of a knowledge–based approach.6

However, FREAD was incapable of generating a decoy in some
cases (e.g., CDRL3 of 5c0n:CD). This is perhaps due to the lack of
data in FREAD’s databases; for example, 5c0n:CD represents a rab-
bit antibody. In 31 March 2013 (the deposition date cut–off for
benchmarking with AMA–II targets), there were only 6 rabbit anti-
body structures, and as of 27 January 2016, there are only 11 in
SAbDab.10,40 However, as FREAD’s performance has already

Figure 5. Time elapsed by ABodyBuilder in modeling the non-redundant set of
6267 paired antibody sequences from DIGIT,34 Abysis (http://www.abysis.org.)
and SAbDab.10 Time is measured from when the sequence is given as input to
ABodyBuilder until it finishes re–numbering models into the IMGT numbering
scheme. For each target requiring ab initio modeling by MODELLER (e.g., CDR
loops), only one possible model was generated.
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improved since the previous benchmark,27 and the amount of anti-
body data in the PDB steadily increases, we expect predictions to
continue to improve over time.

The choice of a poor framework template could have affected
the prediction of the CDRL1 loop of Ab05. The template’s light
chain framework region had a backbone RMSD of 1.5A

�
. Further-

more, the target structure has an unusual tilt angle, as previously
commented;15 our chosen template had a high deviation in tilt
angle with respect to the target structure. Both features could have
affected the choice of the CDRL1 loop by FREAD.

Once ABodyBuilder generates a model structure, it displays
several features of the antibody model, including the confidence
measurements and sequence liabilities. Both metrics are
intended to assist users in pursuing in vitro development of
their target antibody. The confidence measures successfully
identified structures that were modeled poorly. This feature of
ABodyBuilder will help users to identify cases where current
methodologies may not be able to produce high–quality decoys.
However, the confidence calculations assume that the distribu-
tion of antibody sequences in SAbDab is representative of all
antibody sequences. Therefore, if a query sequence is very dif-
ferent from those in SAbDab, the assumptions underlying our
confidence measures will not hold, and incorrect estimates may
occur.

ABodyBuilder currently identifies 11 possible sequence
liabilities that are known to affect antibody development
(Table S2). In our non–redundant set, ABodyBuilder identi-
fied an N–linked glycosylation site in the VH framework
region of cetuximab (PDB: 1yy8, IMGT position H97),41

and aspartate isomerization sites in the CDRL1 of omalizu-
mab (PDB: 2xa8, IMGT positions L34, L36).42 However,
these liabilities were identified solely on the basis of the
sequence motif and solvent accessibility. Thus, ABody-
Builder will flag sequence motifs as liabilities despite the
fact that they may only be problematic in certain conditions
(e.g., low pH).

ABodyBuilder automatically builds high–quality models for
most targets in »30 seconds, allowing users to quickly obtain a
model structure for any antibody sequence. Our tool uniquely
estimates the model’s confidence and flags sequence liabilities;
in particular, we demonstrate that the confidence estimate can
help identify components that have been poorly modeled. ABo-
dyBuilder serves to facilitate antibody design by translating
candidate antibody sequences into structural prototypes for
further study, such as antibody–antigen docking and antibody
humanization.

ABodyBuilder is freely available as a web application at http://
opig.stats.ox.ac.uk/webapps/abodybuilder.

Methods

All of the antibody sequences to be modeled by ABodyBuilder
were numbered using the IMGT numbering scheme43 via
ANARCI,44 and the CDR loop positions were those defined
by North et al.33 At the end of the modeling process, ABody-
Builder annotates model structures with all the major number-
ing schemes and CDR definitions (e.g., Chothia;3 Kabat45). For
all prediction steps, sequence identical antibodies were ignored.

Datasets

Our initial dataset was a redundant set of antibodies with resolution
�2.5A

�
, downloaded from SAbDab on 24 February, 2015. Struc-

tures that could not be numbered, or those with unusual structures
(e.g., PDB: 1oay, PDB: 1sjv; Fig. S1) were omitted, leaving 1170
structures (998 complete Fvs, 1104 VHs and 1064VLs). For bench-
marking FREAD and the rotamermodelingmethod, a non–redun-
dant set of 541 antibodies was used (462 complete Fvs, 79
nanobodies; 522 VHs and 481 VLs overall), based on a 90% Fv
sequence identity cutoff using CD–HIT.46 A ‘blind test’ set of 136
structures (with resolution�4.0A

�
; 108 complete Fvs and 28 nano-

bodies) that had been deposited in the PDB between 24 February
2015 and 20 December 2015 was used to blind test the ABody-
Builder pipeline. To test the efficiency of ABodyBuilder, ABody-
Builder was run on a non–redundant set of 6267 paired antibody
sequences from DIGIT,34 Abysis (http://www.abysis.org/), and
SAbDab10 based on a 99% Fv sequence identity cutoff.

Calculation of model accuracy

For all measurements of accuracy, we represent RMSD as the
backbone RMSD between the model and native structures. Fv
RMSD is calculated by superimposing all backbone atoms
between the model and native structures. Similarly, the frame-
work regions’ RMSD is determined for each chain of the model
by superimposing the framework backbone atoms to the corre-
sponding chain in the native structure.

For each of the CDR loops, accuracy is calculated by first
superimposing the respective chain’s framework region back-
bone atoms, then calculating the RMSD between the loops,
similar to the method used in the AMA–II competition.6 The
only difference is in the definition of the CDR loops; we use
North et al.’s definition rather than the Chothia–defined CDR
loops.6,33 However, for calculating the CDR loops’ RMSD for
the AMA–II targets, the Chothia–defined CDR loops were
used. To measure the accuracy of the CDRH3 loop, the heavy
chains’ framework regions are first superimposed, and the
RMSD is then calculated between the model and native
CDRH3 loops. Likewise, for the CDRL3 loop, the light chains’
framework regions are superimposed before calculating the
RMSD between the CDRL3 loops. In our initial analysis when
we determined the order of CDR loop modeling, the RMSD
between CDR loops was calculated after superimposing the
backbone atoms of both chains’ framework regions, which is a
more stringent test.

Template selection

Because ABodyBuilder is a homology modeling pipeline, the
first step is template selection. In order to identify templates,
ABodyBuilder searches SAbDab for structures with a resolution
of 2.5A

�
or better that are close in sequence to the target. Tem-

plate selection is based on sequence identity over the frame-
work region of the Fv, i.e., residues that are outside of North
et al.’s33 CDR definitions. ABodyBuilder can either select a sin-
gle ‘global’ template from one antibody (VH/VL framework
structures and the orientation) or a ‘hybrid’ template, where 2
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template structures, one for the VH and one for the VL frame-
work, are used.

VH–VL orientation prediction

If a ‘global’ template is selected, the VH–VL orientation is given
by that template. For hybrid templates, the VH and VL
domains are re–oriented using the orientation from the highest
sequence identity global template. This re–orientation proce-
dure is carried out as described in Bujotzek et al.22 Briefly, the
Ca coordinates of the ABangle consensus structure are trans-
formed according to the ABangle parameters from the global
template. The heavy and light chains of the hybrid template are
then superimposed to the rotated consensus structure.

CDR prediction

The CDR loops are modeled sequentially in an order deter-
mined by our ability to accurately predict them, and the con-
tacts between them. The CDR loops are predicted by FREAD,
which is a database search algorithm that selects for potential
structures based on anchor Ca separations, its ESSS, and
anchor RMSD.25-27 For each CDR loop, FREAD first searches
for fragments from a CDR–specific database. Each of the six
CDR–specific databases contains a particular CDR loop’s frag-
ments; in other words, a CDRL1 database only contains
CDRL1 loop fragments. The six CDR–specific databases were
built using the redundant data set to capture various conforma-
tions of sequence–identical loops.

If a suitable decoy cannot be found for a given CDR loop, a
second iteration of FREAD is performed on the missing CDR
loop(s) using an Fv–specific database. The Fv–specific database
contains all possible fragments of antibodies from the redun-
dant dataset. If FREAD fails to find a decoy from the CDR–spe-
cific or Fv–specific databases, the most sequence–similar,
length–matched CDR loop with resolution �2.5A

�
is used as

the template. Sequence similarity is determined by using the
BLOSUM62 score between the template and target CDR loops.
If there are no length–matched templates, an ab initio predic-
tion is performed using MODELLER.32

Of the 3009 CDR loops in the non–redundant set, 164 loops
were predicted by using the most sequence–similar loop, and
17 required ab initio modeling. For our blind test set of 136
antibodies, 732 CDR loops were predicted, of which 74 were
predicted using the most sequence–similar loop, and 10 were
modeled ab initio. In the AMA–II set, only one of the 66 was
modeled by using the most sequence–similar loop. Finally, for
the 37602 CDR loops from the set of 6267 paired antibody
sequences from DIGIT,34 Abysis (http://www.abysis.org/), and
SAbDab,10 2166 were predicted by using a sequence–similar
template, and 230 were modeled ab initio.

Side chain prediction

SCWRL428 is used to predict the side chain rotamers of residues
that are not identical between the template and target. The model
is then checked for backbone and side chain clashes; 2 atoms are
considered to be clashing if the distance between them is less than
65% of the sum of their van der Waal’s radii. For example, the van

der Waal’s radius of a carbon atom is 1.7A
�
; thus, 2 carbon atoms

would be clashing if they are less than 2.21A
�
apart. If clashes are

detected, models are first relaxed by MODELLER32 by only refin-
ing the clashing residues. If clashes still exist, then all side chains
are refined by MODELLER.32 Rotamer accuracies were calculated
as the fraction of rotamers that were ‘correct’, i.e., the fraction of
rotamers within 40� of the native rotamer.28

Confidence measurements

The confidence we have in a segment of the model is calculated
for a specific RMSD threshold as a conditional probability,
given the sequence identity of that segment. If the segment is a
CDR loop, the loop length is used. Confidence measurements
for the framework region are based on the pairwise superimpo-
sitions carried out on the redundant set. The probability that
the framework region will be modeled with �xA

�
accuracy for a

sequence identity bin s is calculated as

P.x j s/D P.x\ s/
P.s/

(1)

and each bin is 1% wide. To obtain the probability of a
sequence identity bin, P(s), we first calculate the sequence iden-
tity of antibodies a and b, S(a,b), in the set of all antibodies, A.
We then divided the pairs of antibodies with sequence identity
s§2.5% by the number of all possible antibody pairs, i.e.,

P sð ÞD
P

a2A
P

b 6¼a;b2AI.S.a; b/ 2 s§ 2:5/

jA j . jA j ¡ 1/
(2)

where jAj represents the cardinality of the set A, and I is the
indicator function. The joint probability, P(x\s), represents
the probability that antibody pairs with sequence identity
s § 2.5% will have RMSD �xA

�
. Thus,

P x\ sð ÞD
P

a2A
P

b 6¼a;b2AI.S.a; b/ 2 s§ 2:5;RMSD.a; b/�x/

jA j jA j ¡ 1ð Þ
(3)

For example, of the 608856 VH–VH superimpositions in the
redundant set, 32904 are within sequence identity bin s D 80%.
Thus,

P 80ð ÞD 32904
608856

� 0:0540:

Of the 32904 superimpositions within this sequence identity
bin, 24696 superimpositions had RMSD �1 .0A

�
. Thus, the joint

probability is calculated as

P 1:0\ 80ð ÞD 24696
608856

� 0:0406:

Thus, the conditional probability that a template framework
region would have �1.0A

�
RMSD to a target antibody, given
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80% sequence identity, is

P.1:0 j 80/D 0:0406
0:0540

D 0:752:

The framework regions’ confidence measures are separate for
VH and VL because we do not have a method that will reliably
estimate the accuracy of orientation prediction.21,47 The CDR
loops’ confidence measures were based on the results from run-
ning FREAD on model framework structures of the non–
redundant set. The conditional probability is calculated as a
function of CDR loop length, l. As RMSD is dependent on
length, it is possible to encounter situations where the CDR
loops have higher confidence values at lower RMSD thresholds
than the framework. For example, it is possible to have 75%
confidence that CDRL1 is accurate to within 1A

�
, and 75% con-

fidence that the framework is accurate to within 2A
�
. Further-

more, the lack of data per loop length bin for the CDR loops in
comparison to a sequence identity bin for the framework may
lead to poorer estimates of accuracy for the CDR loops.

The probability–based metric was preferred over estimating an
RMSD value with error e (i.e., estimating that a region will be mod-
eled at x§ eA

�
) as the latter assumes that each sequence identity or

length bin has the same distribution of RMSD values. Our data
showed that this is not the case (Fig. 1), and any measurement of e
(e.g., standard deviation) will vary for each bin. Thus, we opted for
a distribution–free metric. Furthermore, the probability estimate
allows a more dynamic expectation of a model’s accuracy, as we
can derive the accuracy for a wide range of RMSD thresholds (x) or
probabilities (P.x j s/), depending on the user’s application.

Sequence liabilities

The target antibody’s sequence and structure is analyzed for poten-
tial issues that can conflict with in vitro development. This is based
on data collected from publications.23,24 Currently, ABodyBuilder
flags 11 possible issues with antibody development; a full list is
given in Table S2. For a predicted sequence liability, it is only visu-
alized if the position’s relative accessible surface area, calculated by
DSSP,37 is greater than 10%.
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