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Abstract High-dimensional data have become ubiquitous in the biological sciences, and it is13

often desirable to compare two datasets collected under different experimental conditions to14

extract low-dimensional patterns enriched in one condition. However, traditional dimensionality15

reduction techniques cannot accomplish this because they operate on only one dataset.16

Contrastive principal component analysis (cPCA) has been proposed to address this problem, but17

it has seen little adoption because it requires tuning a hyperparameter resulting in multiple18

solutions, with no way of knowing which is correct. Moreover, cPCA uses foreground and19

background conditions that are treated differently, making it ill-suited to compare two20

experimental conditions symmetrically. Here we describe the development of generalized21

contrastive PCA (gcPCA), a flexible hyperparameter-free approach that solves these problems.22

We first provide analyses explaining why cPCA requires a hyperparameter and how gcPCA avoids23

this requirement. We then describe an open-source gcPCA toolbox containing Python and24

MATLAB implementations of several variants of gcPCA tailored for different scenarios. Finally, we25

demonstrate the utility of gcPCA in analyzing diverse high-dimensional biological data, revealing26

unsupervised detection of hippocampal replay in neurophysiological recordings and27

heterogeneity of type II diabetes in single-cell RNA sequencing data. As a fast, robust, and28

easy-to-use comparison method, gcPCA provides a valuable resource facilitating the analysis of29

diverse high-dimensional datasets to gain new insights into complex biological phenomena.30

31

Introduction32

Investigators in the biological sciences are increasingly collecting high-dimensional datasets that33

are challenging to analyze, with modalities ranging from imaging to electrophysiology to single-cell34

RNA sequencing. Dimensionality reduction algorithms such as principal components analysis (PCA)35

and itsmany variants (Pearson, 1901;Hotelling, 1933; Zou et al., 2006; Zass and Shashua, 2006; Tip-36

ping and Bishop, 1999) are used widely to help simplify these datasets and facilitate analysis. PCA37

examines the covariance structure of the data to find dimensions that account for more variance38

than chance; these constitute patterns that are overrepresented in the data, such as assemblies of39

neurons whose activity fluctuates up and down together across time in a neural recording (Chapin40
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and Nicolelis, 1999; Peyrache et al., 2010; Lopes-dos Santos et al., 2013; Sjulson et al., 2018), or41

networks of genes that are up- or down-regulated together across cells in a single-cell RNAseq42

dataset (Chung and Storey, 2015; Li et al., 2016). However, in many cases, the goal is to compare43

data collected under two different experimental conditions, which we refer to here as datasets.44

Since PCA and other dimensionality reduction techniques operate on only one dataset, they can-45

not take experimental conditions into account.46

The most common approach for comparing two high-dimensional datasets is linear discrim-47

inant analysis (Izenman, 2008) or its multidimensional analog, partial least squares discriminant48

analysis (Brereton and Lloyd, 2014). These methods find dimensions that optimally distinguish49

one dataset from the other, which could correspond to which neurons fire more, or which genes50

are upregulated, in condition 𝐴 vs. condition 𝐵. However, an analogous method to compare the51

covariance structure of two datasets is not as well established. This addresses more subtle and52

detailed questions, such as which subsets of neurons exhibit increased temporal correlations in53

condition 𝐴 than 𝐵, or which subsets of genes are more likely to be up- or downregulated together54

in individual cells in condition 𝐴 than 𝐵. Mathematically, answering these questions corresponds55

to finding dimensions that account for more or less variance in 𝐴 than 𝐵.56

Recently, contrastive PCA (cPCA) was proposed as amethod to address this problem (Abid et al.,57

2018). Although cPCA is an important first step, it requires a hyperparameter 𝛼, which controls how58

much covariance from the second condition to subtract from the first. The algorithm must there-59

fore iterate overmultiple choices of 𝛼 with no objective criteria to determine which value of 𝛼 yields60

the correct answer. Moreover, cPCA is asymmetric, identifying the most enriched dimensions in61

the first condition after subtracting out the second condition as background; it cannot treat the62

two experimental conditions equally.63

Herewepropose anovel solution to these problemswe call generalized contrastive PCA (gcPCA).64

We first demonstrate the role the 𝛼 hyperparameter plays in cPCA, then explain our strategy for65

eliminating it. We then describe an open source toolbox for Python and MATLAB implementing66

several versions of gcPCA with different objective functions that are either asymmetric or symmet-67

ric, orthogonal or non-orthogonal, or sparse or dense, tailored to suit the specific application at68

hand. Finally, we demonstrate the utility of gcPCA in the analysis of diverse biological datasets.69

Results70

The cPCA hyperparameter 𝛼 compensates for bias toward high-variance dimen-71

sions in noisy, finitely-sampled datasets72

To explain the need for the hyperparameter 𝛼 in cPCA andhowweavoid it in gcPCA,wewill describe73

the objective function of eachmethod and showhow they perform in generated synthetic data. For74

illustration purposes, we generated synthetic data for two experimental conditions containing two-75

dimensional manifolds on a background of high-variance shared dimensions. The generated data76

consisted of condition 𝐴, with a manifold (additional variance) in the 71st and 72nd dimensions77

(ranked in order of descending variance), and condition 𝐵, with a manifold in the 81st and 82nd78

dimensions (Fig. 1A). Themanifold dimensions contained less total variance thanmost of the other79

dimensions in the dataset, but their variance is two-fold higher in one condition relative to the other80

(i.e., the 81st and 82nd dimensions have twice as much variance in condition 𝐵 than condition 𝐴).81

An important property of real-world biological datasets is that they are noisy and finitely sam-82

pled. We aimed to model the finite data regime by comparing 1 × 103 samples (finite data) to83

1 × 105 samples, which approximates infinite data. To inspect the effects of finite sampling on es-84

timated variance, we projected the "finite" and "infinite" data onto the ground truth dimensions85

and calculated the variance explained by each (see methods). Our results (Fig. 1B) reveal that86

finite sampling yields noisy estimates of the true variance, with greater noise in high-variance di-87

mensions.88

To understand the practical consequences of this, it is helpful to start by reviewing traditional89
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Figure 1. Generalized contrastive PCA avoids cPCA’s need for the hyperparameter 𝛼 in noisy, finitely-sampled data. AWe generated two
conditions in noisy synthetic data that each contain low-variance manifolds that are not present in the other. These manifolds have lower
overall variance than many other dimensions and are not trivially discoverable. B Eigenvalue spectra for each condition estimated from finite
(dark line) or infinite (light line) data. Note the sampling error in the finite date case. CWith infinite data, eigendecomposition of (𝐂𝐴 − 𝐂𝐵)
suffices to extract the correct answers (dimensions 71-72 and 81-82, light lines). However, with finite data, these peaks are smaller than the
sampling error in high-variance dimensions, creating a bias toward high-variance dimensions being selected. D cPCA uses the hyperparameter 𝛼
to adjust how much influence 𝐂𝐵 has on 𝐂𝐴. As 𝛼 increases, the bias toward high-variance dimensions decreases until it becomes negative with
𝛼 > 1, eventually exposing the differences in lower-variance dimensions. Importantly, there is no way to know which value of 𝛼 yields the correct
solution. E Using gcPCA, the dimensions most changed in each condition are identified correctly, even with finitely-sampled data. F cPCA with
the optimal choice of 𝛼 does not extract the correct dimensions in 𝐵. G gcPCA identifies the enriched dimensions in each condition and correctly
returns the low-variance manifolds. Because gcPCA is symmetric, it extracts the correct dimensions in both 𝐴 and 𝐵.
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PCA. With PCA, the principal components of a data matrix 𝐃, of size 𝑛 × 𝑝 (samples × features), are90

the dimensions explaining themost variance. These can be identified by estimating the covariance91

matrix 𝐂 = 𝐃⊺𝐃∕(𝑛 − 1), then solving the following quadratic optimization problem in equation 1:92

argmax
𝐱 ∶ 𝐱⊺𝐱=1

𝐱⊺𝐂𝐱 (1)

93

This problem can be solved by eigendecomposition of 𝐂, yielding the matrix of eigenvectors 𝐗94

known as principal components (PCs).95

To extend this to two datasets, a logical strategy involves formulating an objective function to96

describe the difference in variances between the two conditions, enabling us to extract dimensions97

that show the greatest increase in variance in𝐴 relative to𝐵. We nowhave two covariancematrices,98

𝐂𝐴 and 𝐂𝐵 , and the contrastive PCs (cPCs) are the vectors that maximize the objective function 2:99

argmax
𝐱 ∶ 𝐱⊺𝐱=1

𝐱⊺(𝐂𝐴 − 𝐂𝐵)𝐱 (2)

100

Analogous to traditional PCA, this problem can be solved by eigendecomposition of (𝐂𝐴−𝐂𝐵). This101

yields cPCs that account for more variance in either condition 𝐴 or 𝐵, corresponding to the eigen-102

vectors with the largest or smallest eigenvalues, respectively. With infinite data, this approach103

correctly finds the dimensions enriched in conditions 𝐴 and 𝐵 (Fig. 1C, light line), but with finite104

data, it fails to do so because the sampling error in higher-variance dimensions is larger than the105

true signal in the lower-variance dimensions (Fig. 1C, dark line). In other words, it has a system-106

atic bias toward high-variance dimensions. To compensate for this effect, cPCA Abid et al. (2018)107

introduces the hyperparameter 𝛼, changing the following objective function to 3:108

argmax
𝐱 ∶ 𝐱⊺𝐱=1

𝐱⊺(𝐂𝐴 − 𝛼𝐂𝐵)𝐱 (3)

109

As discussed in Abid et al. (2018), 𝛼 represents a trade-off determining the extent to which 𝐂𝐵 influ-110

ences the identification of enriched vectors in 𝐂𝐴. In our synthetic data, we can visually appreciate111

the effect of different values of 𝛼 in the resulting cPCA objective function value (Fig. 1D). In effect,112

𝛼 tunes the amount of bias toward high-variance dimensions in the cPCA calculation, with 𝛼 < 1113

biasing toward high-variance dimensions and 𝛼 > 1 biasing against them. In this case, 𝛼 = 2 yields114

the correct solution that dimensions 71-72 are enriched in 𝐴 (Fig. 1F), but other values of 𝛼 yield115

equally plausible, but incorrect, solutions. Importantly, we can only determine which solution is116

correct because we knew the answer in advance, which is not typically the case for experimental117

data. Further, negative values in cPCA are generally interpreted as dimensions enriched in condi-118

tion 𝐵 (Abid et al., 2018; Boileau et al., 2020), but our simulation shows that values of 𝛼 larger than119

1 bias the highest-variance dimensions to be negative (Fig. 1D). This creates the illusion that these120

dimensions are enriched in condition 𝐵, even though the correct answer is that only dimensions121

81-82 are enriched in 𝐵. Similar to the situation of finding dimensions enriched in 𝐴, the results122

depend on the choice of 𝛼, with no way to determine which solution is correct (Fig. 1F). Importantly,123

the range of 𝛼’s yielding the correct solution can be incredibly narrow, as in Fig. S1, where 𝛼 = 2.6124

yields the correct solution, but 2.2 or 3.0 do not.125

gcPCA avoids hyperparameters by including a normalization factor126

Our goal for gcPCA was to eliminate the need for hyperparameters and provide unique, correct so-127

lutions. Tomitigate the bias toward high-variance dimensions, we introduce a normalization factor,128

such as the total variance in both conditions, which can be calculated by summing the covariance129

matrices (𝐂𝐴 + 𝐂𝐵). The objective function then becomes (eq. 8):130
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argmax
𝐱 ∶ 𝐱⊺𝐱=1

𝐱⊺(𝐂𝐴 − 𝐂𝐵)𝐱
𝐱⊺(𝐂𝐴 + 𝐂𝐵)𝐱

(4)

131

Solving this problem is slightly more complicated than with PCA or cPCA, but ultimately it can also132

be reduced to a computationally efficient eigenvalue problem (seeMethods). The resulting general-133

ized contrastive PCs (gcPCs) maximize relative, rather than absolute, changes in variance between134

conditions 𝐴 and 𝐵. This effectively handles the bias toward high-variance dimensions and suc-135

cessfully extracts the ground truth dimensions in our synthetic data, even with finite sampling (Fig.136

1E, G), and even when the range of acceptable 𝛼 is narrow (Fig. S1).137

This creates twominor complications to be aware of: first, unlike PCA or cPCA, gcPCs are not or-138

thogonal by default. If orthogonality is important for a particular application, we have implemented139

versions of gcPCA with an orthogonality constraint (see Methods). Second, the normalization fac-140

tor can create numerical instability if the data are rank-deficient, yielding dimensions with zero or141

near-zero variance in the denominator. Our implementation of gcPCA prevents this by detecting142

and excluding those dimensions before performing the calculation (see Methods).143

The open-source gcPCA toolbox containsmultiple gcPCA variants enabling optimal144

handling of diverse use cases145

We developed an open-source gcPCA toolbox with implementations in Python and MATLAB of sev-146

eral different variants of gcPCA. This toolbox is freely available at:147

https://github.com/SjulsonLab/generalized_contrastive_PCA.Herewewill present the different vari-148

ants of gcPCA and their use cases.149

gcPCA v1.0: traditional cPCA150

For version 1.0, we include an implementation of the original cPCA algorithm that finds cPCs max-151

imizing the objective function in Eqn. 3.152

gcPCA v2.0: gcPCA maximizing A/B153

Here we include an implementation that finds gcPCs maximizing the ratio of variance in A to B:154

argmax
𝐱 ∶ 𝐱⊺𝐱=1

𝐱⊺𝐂𝐴𝐱
𝐱⊺𝐂𝐵𝐱

(5)

155

Like cPCA, this method is asymmetrical, meaning it is suitable for situations in which 𝐴 is a fore-156

ground condition and 𝐵 is a background condition; in other words, 𝐴 is presumed to be equal to 𝐵157

with a low-dimensional pattern added, and the goal is to extract that pattern. The resulting eigen-158

values are the ratio of the variance a given gcPC accounts for in 𝐴 to the variance it accounts for in159

𝐵. Thus, they fall in the range [0,∞), with gcPCs enriched in 𝐴 having eigenvalues > 1.160

gcPCA v3.0: gcPCA maximizing (A-B)/B161

The second method developed is also asymmetrical but based on a relative change:162

argmax
𝐱 ∶ 𝐱⊺𝐱=1

𝐱⊺(𝐂𝐴 − 𝐂𝐵)𝐱
𝐱⊺(𝐂𝐵)𝐱

(6)

163

This method is closely-related to v2.0 and is suitable for scenarios in which the investigator wishes164

to define the gcPCs based on a relative change to a background condition (i.e., finding a 30% in-165

crease in the neural activity in condition 𝐴 relative to 𝐵). The eigenvalues returned are in the range166

[−1,∞), with gcPCs enriched in 𝐴 having eigenvalues > 0.167
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gcPCA v4.0: gcPCA maximizing (A-B)/(A+B)168

The last of the three methods is based on a relative change:169

argmax
𝐱 ∶ 𝐱⊺𝐱=1

𝐱⊺(𝐂𝐴 − 𝐂𝐵)𝐱
𝐱⊺(𝐂𝐴 + 𝐂𝐵)𝐱

(7)
170

This method is symmetrical, treating conditions𝐴 and 𝐵 equally, and is appropriate for contrasting171

conditions in which 𝐵 is a distinct condition and notmerely a background to be removed, for exam-172

ple comparing neural data in sleep vs. wakefulness. The eigenvalues are in the range [−1, 1] and173

are easily interpretable as a traditional index of the form (𝐴−𝐵)∕(𝐴+𝐵): 1 means that a gcPC only174

accounts for variance in 𝐴, -1 means it only accounts for variance in 𝐵, and 0 means it accounts for175

equal variance in both. This method is fully symmetrical in the sense that switching 𝐴 and 𝐵 will176

yield the same gcPCs with the signs of the eigenvalues reversed.177

gcPCA v2.1, v3.1, and v4.1: Orthogonal gcPCA178

Unlike PCs or cPCs, gcPCs are not orthogonal by default. Because orthogonality may be important179

for some applications, we also include versions of gcPCA with an orthogonality constraint (see180

Methods). gcPCA v2.1 is the orthogonal version of 2.0, and v3.1 is the orthogonal version of v3.0,181

and v4.1 is the orthogonal version of v4.0.182

Sparse vs. dense gcPCA183

In high-dimensional datasets, it is often desirable to perform feature selection for easy interpre-184

tation of the results. With that in mind, we have also developed sparse versions of gcPCA. This185

method works by first finding the gcPCs based on the objective function selected, then performing186

feature selection using an 𝐿1 lasso penalty (see Methods). All non-orthogonal versions of gcPCA187

can be run in either sparse or densemode, but sparsification cannot be usedwith the orthogonality188

constraint (Zou et al., 2006).189

Table 1. gcPCA variants in the gcPCA toolbox

gcPCA version Symmetric Orthogonal Sparse solution Note

v1 ✘ ✓ ✓ Equivalent to cPCA
v2 ✘ ✘ ✓ Objective function 5
v2.1 ✘ ✓ ✘ Objective function 5
v3 ✘ ✘ ✓ Objective function 6
v3.1 ✘ ✓ ✘ Objective function 6
v4 ✓ ✘ ✓ Objective function 7
v4.1 ✓ ✓ ✘ Objective function 7

Successful extraction of facial expression features with gcPCA190

To illustrate the utility of gcPCA with real-world datasets, we first use the Chicago Face Dataset (Ma191

et al., 2015), which contains faces with different facial expressions. Here we used happy and angry192

expressions as condition 𝐴 and neutral faces as condition 𝐵 (Fig. 2A). This dataset is useful for193

two reasons: 1) the categorical separation of facial expressions allows an easy evaluation of the194

contrastive methods, and 2) the dimensions can be visually inspected for features that are being195

discovered by the method.196

We first applied cPCA to the two conditions and used its automatic 𝛼 selection algorithm to197

pick two different 𝛼 values. The automatic 𝛼 selection algorithm developed by Abid et al. (2018)198

finds representative 𝛼’s that yield different cPC embeddings so that the investigator can choose199

the appropriate 𝛼 value. The algorithm is explained fully in the original paper (see supplementary200
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Figure 2. gcPCA correctly extracts contrastive facial features in the Chicago Face Dataset. A For this test, contrastive methods were
applied to a set of happy and angry face images (Condition 𝐴) versus neutral face images from the same subjects (Condition 𝐵). Facial
expression changes along the happy-angry axis were therefore the low-dimensional pattern that is enriched in condition 𝐴. B The first 𝛼
identified by cPCA’s algorithm, 𝛼 = 0.2, yields loadings similar to the first PCA dimensions, i.e. eigenfaces. C Projecting the faces onto the cPCs
reveals clusters unrelated to the happy and angry facial expressions in condition 𝐴, indicating an incorrect solution. D cPCA with 𝛼 = 1.7 correctly
reveals features associated with the expected facial expressions in condition 𝐴, such as furrowed eyebrows and the region around the mouth
and nose. E Projecting the faces onto these cPCs reveals the separation of happy and angry faces along the first cPC. Importantly, it was only
possible to determine this answer was correct because we knew the labels in advance. F Dimensions identified by gcPCA correctly reflect
features related to the facial expressions in condition 𝐴. G Projecting the faces onto the first two gcPCs also reveals the separation of happy and
angry faces along the first gcPC.
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methods - algorithm 2 Abid et al. (2018)). Briefly, it calculates cPCA for an array of different 𝛼’s201

(default: 40 different 𝛼 values ranging from 0.01 to 1000 spaced on a log scale), defining a subspace202

with the top 𝑘 cPCs (default: 2 dimensions), and calculating an affinity matrix between subspaces203

of different 𝛼’s. This affinity matrix is then clustered to find 𝑝 clusters, and the medoid of each204

cluster is a candidate 𝛼.205

The first value returned is 𝛼 = 0.2, and we can see that the first two cPC loadings resemble206

"eigenfaces" (Turk and Pentland, 1991), the largest principal components of facial images (Fig. 2B).207

This suggests that this 𝛼 is too small, leading cPCA to extract the highest-variance components in208

condition 𝐴. Looking at the individual faces projected on these cPCs, two clusters can be identified209

that separate cleanly along cPC1 (Fig. 2C). However, this solution is incorrect because these clusters210

do not reflect the two facial expressions comprising condition𝐴. Instead, they represent skin color,211

which should account for equal variance in both datasets because images of the same subjects212

are present in both conditions. For the second 𝛼 value returned (𝛼 = 1.7), the cPC loadings exhibit213

features specific to condition𝐴 (Fig. 2D), and data projected onto these cPCs recovers the different214

expressions (Fig. 2E). It is important to note that if we did not have the class labels a priori, we215

could easily believe 𝛼 = 0.2 was the correct answer because it produces better clustering than for216

𝛼 = 1.7 (Fig. 2C,E). Using gcPCA v3.0 (asymmetric, non-orthogonal) also reveals features specific to217

condition𝐴 (Fig. 2F), and the two expressions in the dataset can be distinguished by their projection218

onto gcPC1 (Fig. 2G), without the requirement of fine-tuning a hyperparameter.219

Applying gcPCA to neurophysiological recordings reveals hippocampal replay220

without a priori knowledge of replay content221

A key application for gcPCA is neuronal recordings, which frequently contain hundreds of iso-222

lated single units (de Oliveira et al., 2022; Jun et al., 2017). A well-studied neurophysiological223

phenomenon is hippocampal replay, in which hippocampal neurons encoding spatial trajectories224

traversed during a behavioral task "replay" the same activity patterns in post-task periods (Wil-225

son and McNaughton, 1994). It is important to note that spatial location is a continuous variable,226

so we are not expecting gcPCA or cPCA to find dimensions that cluster the activity into different227

groups, as with the facial expression data. Instead, we are hoping to see replay of the firing pat-228

terns that encode the linear track the animal recently explored (Wilson and McNaughton, 1994;229

Foster, 2017). For our analysis, we used a previously published dataset recorded from hippocam-230

pal CA1 Girardeau et al. (2017) where rats learn the location of an aversive air puff on a linear track.231

The air puff is only delivered when the rat is running in one direction, called the danger run, and232

the other direction is the safe run (Fig. 3A). Using previously-establishedmethods (Kudrimoti et al.,233

1999), Girardeau et al. (2017) found that hippocampal neurons exhibit reactivation of the task rep-234

resentation in post-task activity when compared to pre-task activity. We tested whether cPCA or235

gcPCA could extract hippocampal replay directly from neuronal activity by contrasting post-task236

activity (condition 𝐴) with pre-task activity (condition 𝐵) (Fig. 3B). For this, we used cPCA and gcPCA237

to extract cPCs or gcPCs from the pre- and post-task data, then projected the during-task data onto238

the cPCs/gcPCs to test whether any spatial structure was discernible.239

Using cPCA, it was not straightforward to detect replay. Whenwe requested the cPCA algorithm240

evaluate all the dimensions (𝑘 = 48), the 𝛼 values identified by the automatic selection did not reveal241

any obvious task-related spatial structure (Fig. 3C – left column, 𝛼 values 0.44 and 701.70). Whenwe242

requested a smaller set of dimensions (𝑘 = 2), the automatic 𝛼 selection returned several different243

values, with one of them (𝛼 = 1.43) revealing spatial structure in the task data (Fig. 3C - right column).244

This reveals that although the only hyperparameter for cPCA is 𝛼 in theory, the automatic alpha245

selection algorithm depends on 𝑘, the number of components requested, constituting a second de246

facto hyperparameter.247

Applying gcPCA v4 (symmetrical, non-orthogonal), we readily recovered replay of task-related248

spatial structure (Fig. 3D, top). Importantly, traditional replay analyses require knowledge of the249

firing patterns during the task to test whether they were overrepresented in post-task sleep (Kud-250
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Figure 3. gcPCA v4.0 correctly identifies hippocampal replay in neurophysiological data without prior knowledge of replay content. A
In Girardeau et al. (2017), rats were trained to traverse a linear track where one direction has an aversive air puff and the other does not. Rats
learned the location of the air puff and which direction was dangerous or safe. B Girardeau et al. (2017) recorded hippocampal neurons in pre-
and post-task periods and used activity recorded during the task as a template to determine that that activity was "replayed" during post-task.
We reanalyzed their published data using post-task activity as condition 𝐴 and pre-task activity as condition 𝐵 to identify the dimensions most
enriched in post-task activity without taking task-related activity into account. CWe first performed cPCA, then projected task-related neuronal
data onto the cPCs to determine whether task-related data was enriched in the post-task period. The automatic 𝛼 selection algorithm from cPCA
returns various 𝛼 values depending on the number of cPCs requested (parameter 𝑘). Left Column Representative 𝛼 values returned with 𝑘=48
cPCs. cPC1−2 are the dimensions most enriched in post-task, and cPClast and cPClast-1 are the most enriched in pre-task. No discernible spatial
structure is identified, indicating that replay was not detected. Right ColumnWith 𝑘=2, the 𝛼 values returned are of different magnitudes, and
one of them (𝛼 = 1.43) reveals spatial structure related to the task, indicative of hippocampal replay. D gcPCA readily identifies the replay of the
spatial task structure (left) with no parameter search.
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Figure 4. gcPCA v4.0 reveals possible disease heterogeneity in type II diabetes. AMartínez-López et al. (2023) performed scRNA-seq on
isolated pancreatic cells from type II diabetes (T2D) patients and healthy controls. We used gcPCA v4.0 to compare the two conditions and found
clustering of beta cells by donor identity (each color is a donor) in gcPC1,2 (top left panel). Such clustering was not found in the last gcPCs (top
right panel) or in the control donors (bottom left and right panels) B The list of 40 genes with the highest loadings on gcPC1 includes several
previosly linked to T2D (red). Notably, the top two hits, TMEM176A and TMEM176B, were shown byMartínez-López et al. (2023) to play functional
roles in beta cell function.

10 of 20

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 9, 2024. ; https://doi.org/10.1101/2024.08.08.607264doi: bioRxiv preprint 

https://doi.org/10.1101/2024.08.08.607264
http://creativecommons.org/licenses/by-nc/4.0/


rimoti et al., 1999; Wilson and McNaughton, 1994; Foster, 2017). gcPCA was able to extract signa-251

tures of replay without prior knowledge of the task-related activity. This may prove useful in many252

analogous situations in which the experimenter does not have prior knowledge of the pattern they253

are searching for.254

We also took advantage of the symmetric nature of gcPCA and investigated the patterns en-255

riched in pre-task activity, gcPClast and gcPClast-1. As expected, they did not exhibit task-related spa-256

tial structure (Fig. 3D, top), suggesting they contain replay of environments other than the linear257

track.258

Applying gcPCA to scRNA-seq data prioritizes disease genes and reveals disease259

heterogeneity in type II diabetes260

Another key application of gcPCA is high-dimensional omics datasets, which often reflect a com-261

parison of two conditions (e.g. disease vs. healthy). For this analysis, we used published single-cell262

RNA sequencing data from pancreatic beta cells taken from healthy controls or patients with type263

II diabetes (T2D)Martínez-López et al. (2023)). We used T2D beta cells as condition 𝐴 and healthy264

control beta cells as condition 𝐵 to test whether gcPCA 4.0 could identify groups of genes that265

vary more among T2D patients or controls. gcPC1 and gcPC2 therefore represent axes along which266

cells from patients vary more and the gcPClast and gcPClast-1 represent axes along which control267

cells vary more. We found that T2D and control data had similar levels of variability (Fig. 4A), but268

in T2D patients this variability exhibited clear donor-based clustering (Fig. 4A, top left) that was269

not observed in controls (Fig. 4A, bottom right). Several of the genes with the highest loadings270

on gcPC1 have been previously implicated in T2D (IMMP2L (Diabetes Genetics Initiative of Broad271

Institute of Harvard and MIT, Lund University, and Novartis Institutes of BioMedical Research272

et al., 2007; Greenwald et al., 2019), STMN1 (Horn et al., 2016), PDHA1 (Srinivasan et al., 2010), CLU273

(Kim et al., 2001, 2006), DDIT3 (Li et al., 2022; Yong et al., 2021), SSTR5-AS1, (Jian and Felsenfeld,274

2018), TFF3 (Fueger et al., 2008), Fig. 4B, red), notably the top two hits, which were the TMEM176A/B275

genes that Martínez-López et al. (2023) demonstrated are functionally important for T2D-related276

beta-cell function. The fact that gcPCA identifies known T2D-related genes and that clustering is277

specific to cases suggests that gcPCA is revealing disease heterogeneity (Ahlqvist et al., 2020).278

Discussion279

Discovering low-dimensional patterns that vary between conditions in high-dimensional datasets280

is a crucial analysis inmany research contexts. Here we present gcPCA, amethod that achieves this281

by examining the covariance structure of the datasets to find dimensions that exhibit the largest282

relative changes in variance between conditions. This work builds on the pioneering insights in283

the development of cPCA Abid et al. (2018) but solves cPCA’s key problem, the requirement for284

the hyperparameter 𝛼. Here we showed that the function of 𝛼 is to compensate for bias toward285

high-variance dimensions in noisy, finitely-sampled data. Further, we showed how this can be cir-286

cumvented by introducing a normalization factor. Previous work Abid et al. (2018); Boileau et al.287

(2020) has focused on developing and improving methods to find appropriate choices for 𝛼, but288

with gcPCA we chose instead to eliminate the 𝛼 hyperparameter entirely. Importantly, the advan-289

tage of our approach is not merely that it is computationally cheaper than scanning a range of290

𝛼’s; it is that in most real-world cases there is no way to know whether a given choice of 𝛼 yields a291

correct solution.292

Wewish to address a common point of confusion by reiterating how gcPCA differs from LDA or293

PLS. These are methods that find patterns optimally distinguishing two datasets, but gcPCA finds294

patterns that exhibit more within-dataset variability in one dataset than another. As a fictitious ex-295

ample, LDA might find a height/weight dimension distinguishing a university rugby team from the296

general population because rugby players are taller and heavier. In contrast, gcPCAwould bemore297

likely to find an age/education-level dimension because those features exhibit more variability in298
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the general population than in a university team. Despite the simplicity of this analysis, it reveals299

interesting phenomena in high-dimensional biological data such as hippocampal replay (Fig. 3) or300

transcriptomic heterogeneity in disease states (Fig. 4).301

gcPCA has a few caveats: first, unlike ordinary PCs or cPCs, gcPCs are not orthogonal by default.302

Our toolbox includes versions of gcPCAwith anorthogonality constraint (v2.1, v3.1, and v4.1), which303

comes at increased computational cost because a new eigendecomposition must be performed304

for each gcPC. Second, the normalization factor introduces the possibility of numerical instability305

if the denominator matrix is rank-deficient, meaning it has dimensions with zero (or near-zero)306

variance that create a "divide-by-zero" situation. However, the implementation of gcPCA in the307

toolbox automatically excludes these dimensions if they exist. Finally, there may be situations in308

which cPCA’s 𝛼 could be a feature, rather than a bug, if the investigator has prior knowledge that309

the patterns of interest will lie in high- or low-variance dimensions. Choosing an appropriate 𝛼310

could then intentionally bias the analysis in favor of the results of interest. In such cases, it would311

be relatively straightforward to extend gcPCA by adding a parameter that accomplishes a similar312

result by adjusting the eigenspectrum of the denominator matrix in the objective function, e.g.313

(𝐂𝐴−𝐂𝐵). There are also other extensions that could be added, such as contrasting more than two314

conditions or incorporating nonlinearity, which can be relevant to specific data problems. However,315

we leave the development of such tools for future efforts.316

The biological sciences are currently undergoing an explosion of technologies that produce317

high-dimensional datasets, including novel forms of microscopy and neuroimaging, high-speed318

video tracking, Neuropixels recordings, -omics approaches with single-cell resolution, and many319

others. In addition to the analyses of electrophysiological recordings or single-cell RNA sequencing320

data demonstrated here, gcPCA could be applied to any of these experimental modalities. We thus321

anticipate that the open-source gcPCA toolbox will provide a valuable resource facilitating a broad322

range of biological investigations that require contrasting two experimental conditions.323

Methods324

Generalized contrastive PCA325

Our motivation for the following method stems from eliminating the necessity of the free param-326

eter 𝛼 in the contrastive PCA method. To accomplish this, we introduce a normalization factor327

to mitigate the bias toward high-variance dimensions. We will summarize the process of calculat-328

ing the gcPCs using gcPCA v4.0 as an example, but v2 and v3 are analogous. gcPCA v4.0 has the329

following objective function, as shown in equation (eq. 8):330

argmax
𝐱 ∶ 𝐱⊺𝐱=1

𝐱⊺(𝐂𝐴 − 𝐂𝐵)𝐱
𝐱⊺(𝐂𝐴 + 𝐂𝐵)𝐱

(8)

331

A potential problem of this objective function is the denominator creating numerical instability if332

there are vectors that have eigenvalues approaching zero in the denominator covariance matrix.333

To address this, we consider only the principal components (𝐽 ) of that matrix that have non-zero334

eigenvalues. In this case, the matrix 𝐽 is composed of the principal components of the row-wise335

concatenated datasets 𝐴 and 𝐵 that have non-zero eigenvalues. We then substitute for 𝐱 using336

𝐱 = 𝐉𝛾 , yielding:337

argmax
𝛾 ∶ 𝛾⊺𝛾=1

𝛾⊺𝐉⊺(𝐂𝐴 − 𝐂𝐵)𝐉𝛾
𝛾⊺𝐉⊺(𝐂𝐴 + 𝐂𝐵)𝐉𝛾

(9)

338

The matrix (𝐉⊺(𝐂𝐴 + 𝐂𝐵)𝐉) in the denominator is guaranteed to be positive definite, allowing us to339

find a symmetric matrix𝐌 that is its square root, yielding equation (eq. 10):340
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argmax
𝛾 ∶ 𝛾⊺𝛾=1

𝛾⊺𝐉⊺(𝐂𝐴 − 𝐂𝐵)𝐉𝛾
𝛾⊺𝐌⊺𝐌𝛾

(10)
341

Let 𝐲 = 𝐌𝛾 , yielding:342

argmax
𝐲 ∶ 𝐲⊺𝐲=1

𝐲⊺𝐌−1𝐉⊺(𝐂𝐴 − 𝐂𝐵)𝐉𝐌−1𝐲
𝐲⊺𝐲

(11)
343

This optimization problem can be solved with the eigendecomposition of the numerator matrix.344

The vectors in 𝐗 are then calculated using equation (eq. 12):345

𝐗 = 𝐉𝐌−1𝐲 (12)
346

The column vectors in 𝐗 are referred to as gcPCs, following the term cPCs used in Abid et al. (2018).347

The other versions of gcPCA can be solved in the exact same way, by replacing 𝐂𝐴−𝐂𝐵 with 𝐂𝐴 (v2)348

and replacing 𝐂𝐴 + 𝐂𝐵 with 𝐂𝐵 (v2 and v3).349

In our case, the gcPCs (𝐗) are not guaranteed to be orthogonal due to the presence of the𝐌−1
350

matrix. By default, gcPCA returns non-orthogonal gcPCs. If orthogonality is desired (as in gcPCA351

v4.1), we iteratively shrink matrix 𝐉 to remove the subspace spanned by the gcPCs (i.e. columns of352

𝐗) that have already been found. At each step, we compute the largest eigenvector 𝐱 of equation353

11, then project it into the feature space with equation 12 and concatenate it column-wise into the354

growing matrix 𝐗. To shrink 𝐉, we first regress out the 𝐱 from 𝐉, as shown in equation 13:355

�̂� = 𝐉 − 𝐱𝐱⊺𝐉 (13)
356

We then use SVD to get the left singular vectors of �̂�, and we define �̃� as the first 𝑛 − 𝑖 of these (on357

the 𝑖-th iteration). �̃� serves as an orthonormal basis for the subspace of 𝐉 that is orthogonal to 𝐗,358

and we use �̃� as the new 𝐉 in eq. 9 for the next iteration. This process continues until 𝑛 gcPCs are359

found, which can be the number of features in the dataset, the minimum rank of the conditions,360

or a number specified by the user for the gcPCs to be extracted.361

Sparse gcPCA362

We developed an extension for sparse gcPCA using a similar approach as sparse PCA (Zou et al.,363

2006) and sparse cPCA (Boileau et al., 2020). Here we will first review the sparse PCA framework,364

then explain how we adapt it for gcPCA.365

Sparse PCA method366

Sparse PCA was first proposed as a reinterpretation of PCA as a regression problem. In brief, given367

a matrix 𝐗𝑛×𝑘, where the first 𝑘 ordinary PCs are organized column-wise and are orthonormal, PCA368

can be seen as minimizing the following objective:369

argmin
𝐗𝑛×𝑘∶𝐗⊺𝐗=𝐼

||𝐃 − 𝐃𝐗𝐗⊺
||

2 (14)

Where 𝐃 is the data matrix of size features×samples. To achieve sparse loadings in the first 𝑘 PCs,370

Zou et al. (2006) proposes the use of elastic net regularization, as shown in the following objective371

function:372

argmin
𝐘𝑛×𝑘,𝐁𝑛×𝑘∶𝐘⊺𝐘=𝐼

||𝐃 − 𝐃𝐁𝐘⊺
||

2 + 𝜆
𝑘
∑

𝑗=1
||𝜷𝑗||

2 +
𝑘
∑

𝑗=1
𝜆1,𝑗||𝜷𝑗||1 (15)
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Where 𝐁 is the matrix containing the sparse PCs 𝜷𝑗 , and 𝐘 is a column-wise matrix that projects373

data from the sparse PC space to the feature space. The elastic net is the combination of the ridge374

penalty (𝜆∑𝑘
𝑗=1 ||𝜷𝑗||

2) and the lasso penalty (∑𝑘
𝑗=1 𝜆1,𝑗||𝜷𝑗||1). The ridge penalty is used to correct a375

rank-deficient matrix 𝐃 for numerical purposes. In Zou et al. (2006), the same 𝜆 was used for all376

𝑘 components while using a different 𝜆1,𝑗 for every component. To numerically solve equation 15,377

(Zou et al., 2006) use an alternating algorithm in which 𝐘 is held constant as we solve for 𝐁, then 𝐁378

is held constant while we update 𝐘, and this is repeated until the algorithm converges. 𝐘 is initially379

set to be equal to the ordinary PCs (𝐗), then we can find each column of 𝐁 by the following elastic380

net regression:381

𝜷𝑗 = argmin
𝜷𝑗

||𝐃𝐲𝑗 − 𝐃𝜷𝑗||
2 + 𝜆||𝜷𝑗||

2 + 𝜆1,𝑗||𝜷𝑗||1 (16)

Next, 𝐁 is fixed, meaning the penalty terms can be ignored, and the new 𝐘 is defined as:382

argmin
𝐘⊺𝐘=𝐼𝑘×𝑘

||𝐃 − 𝐃𝐁𝐘⊺
||

2 (17)

The solution to 17 can be found by a reduced rank form of Procrustes rotation. Using SVD, we find383

(𝐃⊺𝐃)𝐁 = 𝐔𝐒𝐕⊺ (18)

We then set �̂� = 𝐔𝐕⊺. To solve eq. 16, Zou et al. (2006) has shown that is only necessary to know384

the Gram matrix 𝐃⊺𝐃. For a fixed 𝐘, finding 𝜷𝑗 is equivalent to minimizing:385

||𝐃𝐲𝑗 − 𝐃𝜷𝑗|| + 𝜆||𝜷𝑗||
2 + 𝜆1,𝑗||𝜷𝑗||1

= (𝐲𝑗 − 𝜷𝑗)⊺𝐃⊺𝐃(𝐲𝑗 − 𝜷𝑗) + 𝜆||𝜷𝑗||
2 + 𝜆1,𝑗||𝜷𝑗||1

(19)

If the covariance matrix of 𝐃 is known (denoted below as 𝚺), the term 𝐃⊺𝐃 can be replaced with386

𝚺. For solving the eq. 16, the 𝐃matrix can be replaced by 𝚺
1
2 , which is the square root matrix of 𝚺.387

Resulting in the updated equation 20388

𝜷𝑗 = argmin
𝜷𝑗

||𝚺
1
2 𝐲𝑗 − 𝚺

1
2 𝜷𝑗||

2 + 𝜆||𝜷𝑗||
2 + 𝜆1,𝑗||𝜷𝑗||1 (20)

Sparse gcPCA method389

We can implement sparse gcPCA by adapting the sparse PCAmethod presented and following sim-390

ilar steps proposed in Boileau et al. (2020). For sparse gcPCA, the covariance matrix 𝚺 is replaced391

with the matrix 𝚯 which reflects the appropriate objective function of the version used. Following392

gcPCA objective function 11, 𝚯 = 𝐌−1 (𝐂𝐴 −𝐂𝐵) 𝐌−1, where𝐌 is the square root matrix of 𝐂𝐴 +𝐂𝐵 .393

For version 1 (equivalent to cPCA), we instead use 𝚯 = 𝐂𝐴 − 𝛼𝐂𝐵 , and for versions 2 and 3 we394

change𝚯 to match their respective objective functions, as mentioned previously. We removed the395

𝐉matrix from the objective function so the sparsity is enforced in the features and not in the prin-396

cipal components. The components 𝐗 are the gcPCs identified by the ordinary gcPCA algorithm.397

Following the numerical solution for sparse PCA presented before, the sparse gcPCA is obtained398

by the following alternating algorithm until convergence:399

B given Y: Each sparse gcPC (denoted here as 𝜷𝑗 ) was found according to the following elastic net400

solution:401

�̂�𝑗 = argmin
𝜷𝑗

||𝚯
1
2 𝐲𝑗 −𝚯

1
2 𝜷𝑗||

2 + 𝜆||𝜷𝑗||
2 + 𝜆1,𝑗||𝜷𝑗||1 (21)

Where 𝐲𝑗 is the 𝑗th gcPC, and 𝜷 is the sparse gcPC. The ridge penalty 𝜆 is used to fix rank-deficient402

matrices. To simplify our approach, we used the same 𝜆1 for all components instead of a different403

𝜆1,𝑗 for every 𝑗th component. Therefore, the eq. 21 is reduced to a lasso regression and is solved404

through least angle regression, similar to Zou et al. (2006).405
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Y given B: Using fixed 𝐁, we can find a new �̂� with a Procrustes rotation using SVD:406

𝚯
1
2𝚯

1
2𝐁 = 𝐔𝐒𝐕⊺ (22)

We can then determine �̂� = 𝐔𝐕⊺. These steps are repeated until loadings converge. The main407

caveat with this approach is that for gcPCA v3 or v4, the matrix 𝚯 can have negative eigenvalues,408

which prevents the calculation of the square root matrix 𝚯
𝟏
𝟐 . To overcome this problem we follow409

similar steps to Boileau et al. (2020), which we briefly replicate here. In gcPCA v3 or v4, positive410

and negative eigenvalues have a clear interpretation: for thematrix𝚯, positive eigenvalues denote411

vectors with larger variance in condition 𝐴, while negative eigenvalues denote vectors with larger412

variance in condition 𝐵. We can then perform eigendecomposition of 𝚯 and replace any negative413

eigenvalue with zeros to make 𝚯+ positive semi-definite:414

𝚯 = 𝐕𝚲𝐕⊺

𝚯+ = 𝐕𝐒𝐕⊺

where 𝐒𝑖 =
⎧

⎪

⎨

⎪

⎩

𝚲𝑖 if 𝚲𝑖 > 0

0 otherwise

(23)

We can then define the square root matrix 𝚯+ = 𝚯
1
2
+𝚯

1
2
+ . We note that this matrix is only able to415

solve sparse gcPCA for vectors enriched in condition 𝐴. Here we propose a solution for finding416

the vectors also in condition 𝐵. As mentioned previously, the sign of the eigenvalues of matrix 𝚯417

indicates whether they are more expressed in condition 𝐴(+) or 𝐵(-). To solve the sparse gcPCA for418

condition 𝐵, we turn any positive eigenvalue to zero and switch the sign of negative eigenvalues to419

positive:420

𝚯 = 𝐕𝚲𝐕⊺

𝚯− = 𝐕𝐃𝐕⊺

where 𝐃𝑖 =

⎧

⎪

⎨

⎪

⎩

−𝚲𝑖 if 𝚲𝑖 < 0

0 otherwise

(24)

Although 𝚯− does not contain negative eigenvalues, it still represents the dimensions most ex-421

pressed in condition 𝐵. This procedure is equivalent to switching the order of conditions 𝐴 and 𝐵422

as the eigenvalues would be flipped in sign. The sparse gcPCs are found separately for 𝚯+ and 𝚯−423

and are later concatenated for the final sparse gcPCs.424

Synthetic data generation425

In the synthetic data, we generated two conditions with 1 × 105 samples and 100 dimensions. The426

dimensions were sampled from a Gaussian distribution (mu = 0 and sigma = 1) and then orthogo-427

nalized using singular value decomposition and picking the left singular vectors. In each condition,428

we created a pattern in the samples that was to be discovered. In condition 𝐴, we took dimensions429

71 and 72 and drew the samples from a uniform distribution ([0, 1]). In dimension 71 we replaced430

any value from 0.3 and 0.7 with a different uniform distribution ([0, 0.4]). In dimension 72 all the431

values between 0.4 and 0.6 were replaced with another uniform distribution ([0, 0.4]). This created432

the square with a square hole in the middle in Fig. 1 A. The values were then offset by 0.5, the sam-433

ples were sorted by the angle they formed in each dimension, calculated by the inverse tangent434

(tan inverse 𝑋71
𝑋72

). The samples in each dimension were normalized by their 𝑙2-norm. In condition 𝐵,435

we generated the samples of dimensions 81 and 82 from a uniform distribution ([0, 1]), sorted the436

sample values based on dimension 81, and rotated both dimensions by 45 degrees. This created437
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the diamond shape seen in Fig. 1 A. The sample values were later normalized by their 𝑙2-norm.438

The samples for all the other dimensions were drawn from a Gaussian distribution (𝜇 = 0 and439

𝜎 = 1), and then normalized by their 𝑙2-norm. The magnitude of each dimension was established440

as a line with a negative slope, starting at value 10 in the 1st dimension and ending at 0.001 in441

the 100th dimension. For condition 𝐴, we doubled the magnitude in dimensions 71 and 72, while442

in condition 𝐵 we doubled the magnitude in dimensions 81 and 82. Identifying these changes in443

magnitude is the goal of contrastive methods. Because the samples were drawn from a normal444

distribution, the dimensions will display correlations among them. To estimate the total variance445

explained by each dimension, we use a QR decomposition approach described in Zou et al. (2006).446

In brief, let 𝑍 be a matrix containing scores of each dimension generated, the variance is usually447

calculated through tr(𝑍⊺𝑍), where tr is the trace of the matrix. However, in correlated scores, this448

estimate is too optimistic. Using regression projection, it is possible to find the linear relationships449

of the dimensions and correct to find the adjusted total variance. Zou et al. (2006) shows that this450

is equivalent to using QR decomposition in 𝑍, such that 𝑍 = 𝑄𝑅 where 𝑄 is orthonormal and 𝑅 is451

upper triangular, and calculating the adjusted variance as follows:452

adjusted variance 𝑖 =
𝑘
∑

𝑗=1
𝑅2

𝑖𝑗 (25)

453

Face dataset454

For the facial expression analysis, we used the Chicago Face Database Ma et al. (2015). This455

database consists of neutral and emotional expression faces, and for the analysis we used a sub-456

set of samples that had happy and angry faces alongside neutral ones. We used only male faces457

to reduce variability in feature positioning. The images used were cropped by an ellipse (length458

of 75 pixels and width of 45 pixels) centered in the face to focus on the facial expression rather459

than other features such as hairstyle or shoulders. Each sample image was flattened from a two-460

dimensional matrix to a vector, and all the flattened samples were then concatenated, resulting in461

amatrix of samples x features. Each feature was z-scored and normalized by its 𝑙2-norm. Condition462

𝐴 consisted of all the samples of happy and angry facial expressions, while condition 𝐵 samples463

were neutral expressions.464

Hippocampal electrophysiology data465

We used a previously published hippocampal electrophysiology dataset, with the experimental466

details listed in the original publication Girardeau et al. (2017). In brief, Long-Evans rats were im-467

planted with silicon probes in the dorsal hippocampus CA1 region (either left or right hemisphere),468

and neuronal activity was isolated through automatic spike sorting andmanually curated. Animals469

were trained to collect water rewards at the end of a linear track, and an air puff was introduced470

at a fixed location for every lap, in only one of the directions. Recordings consisted of task, where471

the animal learned the air puff location, and periods of pre- and post-task activity. For testing the472

contrastive methods, we used pre-task recordings as condition 𝐵 and post-task recordings as con-473

dition 𝐴. For our analysis, we only used neurons that had a minimum firing rate of 0.01 spikes/s474

during the task. We binned the neural data using a bin size of 10 ms and smoothed using a rolling475

average with a Gaussian window of size 5 bins. The data was then z-scored and normalized by the476

norm before testing the contrastive methods. The task data was then projected on the contrastive477

dimensions for evaluation.478

Pancreatic single-cell RNA sequencing479

For the single-cell RNA sequencing data analysis, we used a previously published datasetMartínez-480

López et al. (2023), available at GEO accession GSE153855, consisting of scRNA-seq data from481

human pancreatic islet cells from patients with type II diabetes and healthy controls. We used482
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the annotated dataset to identify the beta cells, which were identified previously by the authors483

Martínez-López et al. (2023). For condition 𝐴 we used the beta cells from subjects that had type II484

diabetes, and for condition 𝐵 we used the beta cells from healthy patients. We used the expres-485

sion values in reads per kilobase of the gene model and million mappable reads (RPKMs). The486

values were log-transformed, and all the features were centered before the analysis. gcPCA was487

performed using the same set of genes used in the analysis byMartínez-López et al. (2023).488
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Figure 1—figure supplement 1. The range of cPCA 𝛼 values yielding correct solutions can be
very narrow. AWe generated synthetic data with enriched variance in both high and low variance
dimensions simultaneously. In condition A we enriched the variance of two dimensions (dimen-
sions 19 and 92), and condition B in two other dimensions with high and low variance (dimensions
31 and 82). This panel shows the finite and infinite data results for 𝐂𝐴 − 𝐂𝐵 . Stars represents the
finite data value in the enriched dimensions. Even though the high variance dimensions are easy
to detect with this method, the low variance ones are still occluded by spurious variability in high
variance dimensions. B cPCA can reveal enriched high variance dimensions, but enriched low vari-
ance dimensions are hard to identify. C gcPCA can find all enriched dimensions simultaneously for
conditions 𝐴 and 𝐵. D The range of 𝛼 values yielding the correct solution becomes narrow because
the enriched dimensions have different absolute variance. E gcPCA correctly identifies all enriched
dimensions in both conditions.
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