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Simple Summary: Expression of circular RNAs is known to be deregulated in cancer. Here the
most comprehensive set of differentially expressed RNA circles in medulloblastoma compared to
cerebellum is provided. Additionally, fusion RNAs are also identified in both cancerous and nor-
mal cerebellar tissue. Some of the fusions detected in medulloblastoma are generated by genomic
rearrangements that link different genes. However, fusion RNAs are also detected in normal cere-
bellum. In fact, there are cases where the same fusion RNA is also found in medulloblastoma. This
observation underscores that the formation of fusion transcripts may not be limited to chromosomal
events but could also result from mechanisms that act at the RNA level. These include read-through
transcription of neighboring genes and intermolecular splicing of pre-mRNAs from different genes
Importantly, these RNA “recombination” events occur not only in normal but also in cancerous tissue.

Abstract: Background. The cerebellar cancer medulloblastoma is the most common childhood cancer in
the brain. Methods. RNA sequencing of 81 human biospecimens of medulloblastoma using pipelines
to detect circular and fusion RNAs. Validation via PCR and Sanger sequencing. Results. 27, 56, 28
and 11 RNA circles were found to be uniquely up-regulated, while 149, 7, 20 and 15 uniquely down-
regulated in the SHH, WNT, Group 3, and Group 4 medulloblastoma subtypes, respectively. Moreover,
linear and circular fusion RNAs containing exons from distinct genes joined at canonical splice sites
were also identified. These were generally expressed less than the circular RNAs, however the
expression of both the linear and the circular fusions was comparable. Importantly, the expression of
the fusions in medulloblastoma was also comparable to that of cerebellum. Conclusions. A significant
number of fusions in tumor may be generated by mechanisms similar to the ones generating fusions in
normal tissue. Some fusions could be rationalized by read-through transcription of two neighboring
genes. However, for other fusions, e.g., a linear fusion with an exon from a downstream gene joined 5′

to 3′ with an exon from an upstream gene, more complicated splicing mechanisms, e.g., trans-splicing,
have to be postulated.

Keywords: brain cancer; pediatric cancer; back-splicing; read-through transcription; trans-splicing

1. Introduction

Medulloblastomas are malignant cerebellar tumors occurring in infants, children
and young adults. Proper diagnosis encompasses magnetic resonance imaging, with the
treatment options including resection, chemotherapy, and craniospinal radiation [1–3].
Despite recent advances in therapeutic outcomes the survival rate of medulloblastoma
patients has reached plateau levels [4]. Approximately one third of patients eventually
die from this disease, while survivors may suffer from long-term side effects from the
implemented therapeutic approaches. It is thought that an improved understanding of
medulloblastoma biology may allow the development of novel treatment strategies. In this
direction, gene expression profiling has categorized medulloblastomas into 4 subgroups,
the SHH (Sonic Hedgehog), WNT (Wingless), Group 3, and Group 4 [5].

Exons are usually joined in a 5′ to 3′ direction giving rise to mature linear RNA
molecules. However, in recent years the possibility that a 3′ exon is back-spliced to a 5′
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exon has gained attention. This generally gives rise to a circular RNA containing these
exons, and is particularly stable, since it cannot be attacked by exonucleases [6–10]. There is
an increasing number of cases where circular RNAs have been claimed to exert numerous
biological functions ranging from miRNA sequestration to protein synthesis via internal
ribosomal entry sites [11–15]. In fact, there is convincing evidence that circular RNA
expression is de-regulated in cancer [16]. Moreover, in colorectal, hepatic, prostate and
bladder cancer, de-regulated circular RNAs have been demonstrated to act as oncogenes
or tumor suppressor genes [17–20]. However, there is little information on circular RNA
expression in medulloblastoma [21,22].

There is also evidence that linear RNA molecules can be produced where a 3′ exon
is found spliced upstream of a 5′ exon. The original observations are over twenty years
old [23,24], but have also been identified via next generation sequencing, albeit at a lower
frequency than RNA circles [22,25]. The underlying mechanism is considered to be a
trans-splicing event where a 3′ exon from one transcript is joined to a 5′ exon from another
transcript from the same gene.

There are also data supporting rare events that splice together transcripts from different
genes in the same genomic locus [26–28]. Moreover, in normal tissues splicing of gene
transcripts from different chromosomes has been observed and related with genomic
recombination in cancer [29,30]. Additionally, high-throughput sequencing has expanded
the number of fusion transcripts in normal tissues, some of which are also found in
cancer [31,32].

Here we analyzed, via RNA-seq 81, medulloblastoma samples encompassing all
4 subtypes, as well as 5 samples of normal cerebellum. Implementation of RNA isolation
protocols that do or do not enrich for circular RNAs and of various bioinformatic pipelines
resulted in the identification of not only RNA circles encompassing exons from single genes
but also of linear and circular RNAs encompassing exons from different genes.

2. Materials and Methods
2.1. RNA Sample Information

23, 6, 17 and 35 RNA samples from the SHH, WNT, Group 3 and Group 4 medul-
loblastoma subgroups, respectively, were provided by the Children’s Brain Tumor Network
(https://cbtn.org) (accessed on 1 March 2022), and 5 normal cerebellum RNA samples were
purchased from Takara (Kusatsu, Japan), Amsbio (Abingdon, UK) and BioChain (Newark,
CA, USA) (Table S1).

2.2. RNA-Seq Library Preparations

The RNA samples were subjected to poly(A) and circular RNA enriched library
preparations as described previously [22]. The concentration and quality of the cDNA
libraries were assessed with Qubit (Life Technologies, Carlsbad, CA, USA) and TapeStation
(Agilent Technologies, Santa Clara, CA, USA), respectively. cDNA library preparations from
17 circular RNA enriched samples did not meet quality control criteria and were omitted
from further analyses (Table S1). The cDNA libraries were sequenced on the Illumina
NovaSeq 6000 S4 platform (150 cycles; paired-end reads; ≈25 M reads per sample).

2.3. RNA-Seq Data Analysis

mRNA detection: reads from the poly(A) enriched preparations were aligned to the
Gencode GRCh38 reference genome assembly using the STAR (v2.5.2) aligner. Counts were
assigned to genes using featureCounts (v1.5.1).

Circular RNA detection: reads from the circular RNA enriched preparations were
analyzed with the CIRCexplorer2 to identify back-spliced junctions and aligned to Gencode
GRCh38 using CIRCexplorer2/STAR [33] with the default parameters.

mRNA and circular RNA counts (raw reads) were analyzed with the DESeq2 Biocon-
ductor package (v1.32.0) using the apeglm (v1.14.0) method for effect size shrinkage and log
fold change estimations [34] in R software (R-v4.1.1). As the circular RNA datasets had an
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abundance of low reads, RNA circles with raw mean counts lower than 2 were filtered out.
Gene expression level comparisons (as log2 fold change estimation of DESeq2 normalized
counts) were performed using the Wald test statistics as implemented in DESeq2.

Fusion detection: reads from the poly(A) enriched and circular RNA enriched prepara-
tions were aligned to Gencode GRCh38 using STAR-Fusion [35] with the default parameters.

Due to the very low expression of the fusion reads, it was impossible to calculate size
factors and effectively perform gene expression level comparisons with the DESeq2 method
as done with the circular RNA and mRNA datasets. Consequently, we simply pinpointed
the fusion transcripts with the highest reads.

2.4. Validation of Fusion Transcripts by Sanger Sequencing

The NCOA2–TRAM1 and FBXO25–SEPTIN14 fusion transcripts were validated by
PCR using oligo(dT) primers as described previously [22]. Primers to detect the NCOA2–
TRAM1 fusion junction were: Forward-5′-GCCTCGGCTACAGCTTCGG, Reverse-5′-AGGT
TATGGGGATAAGCCCTCCA, and the FBXO25–SEPTIN14 fusion junction: Forward-5′-
AGGCATGGCTATTGCACCTTG, Reverse-5′-CGAGCTTCCTTATCTCCTCCTGT.

3. Results
3.1. Circular RNAs

81 medulloblastoma and 5 cerebellar RNA samples (Table S1) were first subjected
to standard RNA-seq (Figure S1A,C, File S1). 65 of the medulloblastoma and 4 of the
cerebellar RNA samples could effectively be enriched for circular RNAs via ribosomal
RNA depletion followed by RNAse R treatment (Section 2 Materials and Methods). The
CIRCexplorer2 pipeline [33] was implemented on the RNA-seq data of the circular RNA
enriched preparations to identify back-spliced junctions. Using the stringent cutoffs of
padj < 0.05 and |log2FoldChange| > 1, circular RNAs differentially expressed in the
SHH, WNT, Group 3 and Group 4 medulloblastoma subtypes compared to cerebellum
were identified (Figure 1, Files S2 and S3, Figure S1B). Worth noting is that in the SHH
subtype the uniquely down-regulated circles vastly exceeded the up-regulated, 149 vs. 27,
while the opposite was true for the WNT subtype, 7 vs. 56 (Figure 1B). In general, the
expression of circular RNAs was found to be substantially lower than the expression of their
corresponding linear mRNAs, apart from the cases of the RMST, RIMS1 and CARM1P1
genes where it was more comparable (Figure S2).

Moreover, circular RNAs differentially expressed in each medulloblastoma subtype
compared to the other three subtypes (including cerebellum) were also identified
(Figure S3, File S4). These lists included a substantial number of the uniquely de-regulated
circles of Figure 1B, detailed in File S4. providing statistical significance in that context.

Samples 2, 5, 6 and 9 of the SHH medulloblastoma subtype are progressive tumors,
with the initial tumors being samples 3, 4, 7 and 10, respectively (Table S1). Using the
same stringent cutoffs of padj < 0.05 and |log2FoldChange| > 1, a predominance of down-
regulated to up-regulated mRNAs, 90 vs. 32, in the progressive compared to the initial
tumors was observed (Figure S4A,B, File S5). However, no de-regulated circular RNAs were
identified, possibly because progressive sample 9 was not effectively enriched in circular
RNAs and consequently excluded from further analysis, along with the corresponding
initial sample 10, reducing the samples to three pairs. Implementation of the more relaxed
cutoff of p < 0.05 and |log2FoldChange| > 1 identified 1 down-regulated and 12 up-
regulated circular RNAs (Figure S4C,D, File S5). Of note, from these 122 and 13 de-
regulated mRNAs and circular RNAs only 33 and 1, respectively, were present within the
de-regulated mRNAs and circular RNAs in the SHH medulloblastoma subtype compared
to cerebellum (Files S1 and S2), with some, e.g., circular RNA AKT3, being de-regulated in
the opposite direction.
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Figure 1. Differentially expressed circular RNAs in human medulloblastoma and normal cerebel-
lum. (A) Volcano plots of the RNA-seq data of the SHH, WNT, Group 3 and Group 4 medulloblas-
toma tumor and normal cerebellum samples. Cutoff thresholds are assessed with the DESeq2 
method, where the Wald significance test is applied as |log2 fold change| > 1, padj < 0.05. Annotated 
are selected circular RNAs defined as the top 5 with highest normalized mean count across samples, 
the top 5 with lowest padj value, the top 5 with highest log2 fold change and the top 5 with lowest 
log2 fold change. (B) Venn diagrams depicting uniquely and commonly up- and down-regulated 
circular RNAs (circRNA) in SHH, WNT, Group 3 and Group 4 medulloblastoma subtypes com-
pared to normal cerebellum. (C–E) Violin plots of the expression of uniquely up- or down-regulated 
circular RNAs (circRNA) in the SHH (C), WNT (D), Group 3 (E) and Group 4 (F) medulloblastomas 
that are also annotated as selected circular RNAs in (A). 

Samples 2, 5, 6 and 9 of the SHH medulloblastoma subtype are progressive tumors, 
with the initial tumors being samples 3, 4, 7 and 10, respectively (Table S1). Using the 
same stringent cutoffs of padj < 0.05 and |log2FoldChange| > 1, a predominance of down-
regulated to up-regulated mRNAs, 90 vs. 32, in the progressive compared to the initial 
tumors was observed (Figure S4A,B, File S5). However, no de-regulated circular RNAs 
were identified, possibly because progressive sample 9 was not effectively enriched in 
circular RNAs and consequently excluded from further analysis, along with the corre-
sponding initial sample 10, reducing the samples to three pairs. Implementation of the 
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regulated mRNAs and circular RNAs only 33 and 1, respectively, were present within the 
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to cerebellum (Files S1 and S2), with some, e.g., circular RNA AKT3, being de-regulated 
in the opposite direction. 

Figure 1. Differentially expressed circular RNAs in human medulloblastoma and normal cerebellum.
(A) Volcano plots of the RNA-seq data of the SHH, WNT, Group 3 and Group 4 medulloblastoma
tumor and normal cerebellum samples. Cutoff thresholds are assessed with the DESeq2 method,
where the Wald significance test is applied as |log2 fold change| > 1, padj < 0.05. Annotated are
selected circular RNAs defined as the top 5 with highest normalized mean count across samples,
the top 5 with lowest padj value, the top 5 with highest log2 fold change and the top 5 with lowest
log2 fold change. (B) Venn diagrams depicting uniquely and commonly up- and down-regulated
circular RNAs (circRNA) in SHH, WNT, Group 3 and Group 4 medulloblastoma subtypes compared
to normal cerebellum. (C–E) Violin plots of the expression of uniquely up- or down-regulated circular
RNAs (circRNA) in the SHH (C), WNT (D), Group 3 (E) and Group 4 (F) medulloblastomas that are
also annotated as selected circular RNAs in (A).

3.2. Fusion RNAs–Cerebellum

To identify fusion transcripts the STAR-Fusion pipeline [35] was implemented on the
data obtained from the circular and the poly(A) enriched RNA preparations in cerebellum
and medulloblastoma. Overall, the number of fusion junctions (File S6) was lower than
that of the back-spliced junctions (File S2), arguing for a predominance of circular relative
to fusion RNAs. Importantly, the raw counts of the fusions from the circular enriched
preparations were found to be comparable to those of the fusions from the poly(A) enriched
preparations (Figure 2A, File S6). This is in contrast to the general observations of circular
RNAs being expressed less than linear poly(A) mRNAs [36]. The 20 most abundant
fusion transcripts from each of the linear and circular RNA preparations in cerebellum
and medulloblastoma were selected (Figure S5, File S6). These were further filtered for
validated splice sites at fusion junctions in validated exons of NCBI transcripts within the
curated RefSeq database (File S7). This resulted in a list of 5 linear and 1 circular fusions in
cerebellum and 4 linear and 3 circular fusions in medulloblastoma (Table 1, Figure 2B,C).
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(CB) and medulloblastoma (MB). The y-axis shows the total counts per sample of all fusion transcripts
(black rhombi indicate outlier samples). (B,C) Violin plots of the expression of the selected fusions
(Table 1) in the linear (mdata) and circular (cdata) datasets from cerebellum (B) and medulloblastoma
(C). Note that the selected TFG–ADGRG7 linear fusion in medulloblastoma is also found in the
circular dataset. The lack of expression of a selected fusion in a dataset is not shown.

Table 1. Selected linear and circular fusions.

Genes in Fusion Chromosomal
Position Exon number at Fusion Junction Relative Orientation

Cerebellum-linear

SEPTIN7P14–PSPH Chr4-Chr7 1(NR_037630.1)-4(NM_004577.4) NA

FBXO25–SEPTIN14 Chr8-Chr7 5(NM_183420.2)-10(NM_207366.3) NA

NCOA2–TRAM1 Chr8, neighboring genes 1(NM_006540.4)-5(NM_014294.6) —> —>

PAUPAR–RCN1 Chr11, neighboring genes 1(NR_033971.1)-2(NM_002901.4) —> —>

RPS10–NUDT3 Chr6, neighboring genes 5(NM_001014.5)-3(NM_006703.4) —> —>

Cerebellum-circular

ADAMTSL3–SH3GL3 Chr15, neighboring genes 3(NM_207517.3)-7(NM_003027.5) —> —>

Medulloblastoma-linear

KANSL1–ARL17A Chr17, neighboring genes 3(NM_015443.4)-3(NM_001113738.2) —> —>

TFG–ADGRG7 Chr3, neighboring genes 3(NM_006070.6)-2(NM_032787.3) —> —>

SPSB4–PXYLP1 Chr3, neighboring genes 2(NM_080862.3)-2(NM_001037172.3) —> —>

PVT1–CASC8 Chr8, neighboring genes 1(NR_003367.3)-6(NR_117100.1) <——>

Medulloblastoma-circular

ARL17A–KANSL1 Chr17, neighboring genes 3(NM_001113738.2)-3(NM_015443.4) —> —>

KANSL1–ARL17A Chr17, neighboring genes 3(NM_015443.4)-3(NM_001113738.2) —> —>

ARL17B–KANSL1 Chr17, neighboring genes 3(NM_001039083.5)-3(NM_015443.4) —> —>

NA: not applicable; NCBI accession number provided after exon number; The arrows, —> and —>, depict the
relative orientation in the chromosome of the first and second gene found in the fusion.

The two most abundant of the 5 selected linear fusions in cerebellum that originate
from protein coding genes, namely FBXO25–SEPTIN14 and NCOA2–TRAM1 (Table 1,
File S7), were validated by PCR and Sanger sequencing (Figures 3 and S6). Interestingly,
the SEPTIN14 sequence in the fusion has an A nucleotide instead of G at position 12. This
suggests that the origin of that sequence may not be the SEPTIN14 gene at chromosome 7
but one of the expressed SEPTIN14 pseudogenes P6 (NR_109817.1) or P20 (NR_040415.1)
in chromosomes 6 and 20, respectively, both of which are identical to SEPTIN14 in the
sequenced region except for that A nucleotide. Irrespective of what may be the true origin,
the fact remains that transcripts from the FBXO25 gene in chromosome 8 are spliced to
transcripts from a different chromosome.

Importantly, the NCOA2 gene is downstream of TRAM1 in chromosome 8 (Table 1,
File S8). Consequently, the validated NCOA2–TRAM1 linear fusion can not originate
from read-through transcription beyond the end of the TRAM1 gene that extends into the
NCOA2 gene. Rather more complicated splicing mechanisms, e.g., trans-splicing, have
to be involved, in line with the mechanisms required to rationalize fusions from exons in
different chromosomes.
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ples 83 and 86 for the NC0A2--TRAM1 and FBXO25--SEPTIN14 fusions, respectively, using primer 
pairs specific for each fusion (Materials and Methods). MW, molecular weight markers. The elec-
tropherograms of the sequenced PCR products, with the fusion junction indicated, is shown. Note 
the presence of an A nucleotide at position 12 of the SEPTIN14 sequence, indicated by an arrow, 
instead of the anticipated G nucleotide. 

Importantly, the NCOA2 gene is downstream of TRAM1 in chromosome 8 (Table 1, 
File S8). Consequently, the validated NCOA2--TRAM1 linear fusion can not originate 

Figure 3. Electrophoresis and sequence of the NC0A2–TRAM1 and FBXO25–SEPTIN14 fusion PCR
products. Agarose gel electrophoresis of PCR products generated from cDNA of the cerebellar
samples 83 and 86 for the NC0A2–TRAM1 and FBXO25–SEPTIN14 fusions, respectively, using primer
pairs specific for each fusion (Section 2 Materials and Methods). MW, molecular weight markers.
The electropherograms of the sequenced PCR products, with the fusion junction indicated, is shown.
Note the presence of an A nucleotide at position 12 of the SEPTIN14 sequence, indicated by an arrow,
instead of the anticipated G nucleotide.

Two of the 5 selected linear fusions in cerebellum, namely SEPTIN7P14–PSPH and
PAUPAR–RCN1, were also found in medulloblastoma. However, none of these 5 selected
fusions were found in the circular enriched RNA preparations (Figure 2B, File S6).

The selected circular fusion ADAMTSL3–SH3GL3 in cerebellum originates from two
neighboring genes in the same orientation at chromosome 15 (Table 1, File S8). Conceiv-
ably, read-through transcription from the SH3GL3 gene extends into the ADAMTSL3
gene, followed by back-splicing that joins the end of ADAMTSL3 exon 3 to the start
of SH3GL3 exon 7 (Figure 4A). Supporting the claim of SH3GL3 transcripts extending
into the ADAMTSL3 gene is the fact that two SH3GL3–ADAMTSL3 linear fusions have
recently been identified in normal testis [32]. Worth noting is that the ADAMTSL3–
SH3GL3 circular fusion is also found in medulloblastoma (Figure 2B), along with two
other ADAMTSL3–SH3GL3 circular fusions encompassing the same SH3GL3 exon and one
SH3GL3–ADAMTSL3 circular fusion encompassing the same ADAMTSL3 exon (File S6).
However, the ADAMTSL3–SH3GL3 fusion was not found in the linear enriched RNA
preparations (File S6).



Cancers 2022, 14, 3134 9 of 14

Cancers 2022, 14, x FOR PEER REVIEW 9 of 15 
 

 

from read-through transcription beyond the end of the TRAM1 gene that extends into the 
NCOA2 gene. Rather more complicated splicing mechanisms, e.g., trans-splicing, have to 
be involved, in line with the mechanisms required to rationalize fusions from exons in 
different chromosomes. 

Two of the 5 selected linear fusions in cerebellum, namely SEPTIN7P14--PSPH and 
PAUPAR--RCN1, were also found in medulloblastoma. However, none of these 5 selected 
fusions were found in the circular enriched RNA preparations (Figure 2B, File S6). 

The selected circular fusion ADAMTSL3--SH3GL3 in cerebellum originates from two 
neighboring genes in the same orientation at chromosome 15 (Table 1, File S8). Conceiva-
bly, read-through transcription from the SH3GL3 gene extends into the ADAMTSL3 gene, 
followed by back-splicing that joins the end of ADAMTSL3 exon 3 to the start of SH3GL3 
exon 7 (Figure 4A). Supporting the claim of SH3GL3 transcripts extending into the 
ADAMTSL3 gene is the fact that two SH3GL3--ADAMTSL3 linear fusions have recently 
been identified in normal testis [32]. Worth noting is that the ADAMTSL3--SH3GL3 cir-
cular fusion is also found in medulloblastoma (Figure 2B), along with two other 
ADAMTSL3--SH3GL3 circular fusions encompassing the same SH3GL3 exon and one 
SH3GL3--ADAMTSL3 circular fusion encompassing the same ADAMTSL3 exon (File S6). 
However, the ADAMTSL3--SH3GL3 fusion was not found in the linear enriched RNA 
preparations (File S6). 

 
Figure 4. Schematic representation of molecular events leading to the observed ADAMTSL3--
SH3GL3 circular fusion and the KANSL--ARL17A/B linear and circular fusions. (A) Read-through 
transcripts from the SH3GL3 gene extend into the downstream ADAMTSL3 gene, followed by back-

Figure 4. Schematic representation of molecular events leading to the observed ADAMTSL3–SH3GL3
circular fusion and the KANSL–ARL17A/B linear and circular fusions. (A) Read-through transcripts
from the SH3GL3 gene extend into the downstream ADAMTSL3 gene, followed by back-splicing of
exon 3 of ADAMTSL3 to exon 7 of SH3GL3. The resulting circle may or may not include additional
ADAMTS3 or SH3GL3 exons, indicated by hatched lines on the diagram. (B) Transcripts from the
KANSLI1 and ARL17A/B gene bring in proximity the exon 3 of KANSL1 to the exon 3 of ARL17A/B.
The 3′ end of KANSLI1 exon 3 trans-splices to the 5′ end of ARL17A/B exon 3 producing the observed
KANSLI1–ARL17A/B linear fusion. In cases where a back-splicing event also occurs, with the 3′ end
of ARL17A/B exon 3 joining the 5′ end of KANSL1 exon 3, a circular RNA composed of these two
exons is produced.

3.3. Fusion RNAs–Medulloblastoma

The most abundant of the selected linear fusions in medulloblastoma is the KANSL1–
ARL17A (Table 1, File S7). This has been observed in acute lymphoblastic leukemia [37,38]
but also recurrently in normal tissues [31]. The KANSL1 gene is downstream to the
ARL17A gene in chromosome 17, which prohibits a transcriptional read-through mecha-
nism (File S8). Importantly, the same exons of this linear fusion are also found in the most
abundant selected circular fusions in medulloblastoma, namely the ARL17A–KANSL1
and the KANSL1–ARL17A (Table 1, File S7). Since no linear ARL17A–KANSL1 fusions
are observed (File S6), the circular fusions with exon 3 of ARL17A spliced to exon 3 of
KANSL1 and with exon 3 of KANSL1 spliced to exon 3 of ARL17A may represent the
same circle, which could be composed solely of these two exons. This is supported by
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the fact that medulloblastoma samples expressing the ARL17A–KANSL1 circular fusion
generally also express the KANSL1–ARL17A circular fusion, in fact, 11 out of 13 cases
(Figure 2C, File S6). Moreover, out of these 11 medulloblastoma samples, 9 also express the
linear KANSL1–ARL17A fusion (File S6), suggesting that the mechanisms generating the
KANSL1–ARL17A linear and circular fusions may be related.

Additional selected linear fusions in medulloblastoma that cannot be interpreted via
read-through transcription are the TFG–ADGRG7 and the PVT1–CASC8 (Table 1, File S8).
The former is similar to the cases described above, with an exon from a downstream
gene spliced to an exon from an upstream gene. Importantly, the same TFG–ADGRG7
fusion is found in the analysis of 53 different normal tissues [32]. Moreover, the same
TFG–ADGRG7 fusion is also found in the circular RNA preparations (Figure 2C, File S6).
In fact, the 2 medulloblastoma samples expressing the TFG–ADGRG7 circular fusion also
express the TFG–ADGRG7 linear fusion (File S6). This supports the claim that exons from
a downstream gene can splice to exons from an upstream gene, with the process being able
to generate not only linear but also circular fusions, as seen with KANSL1–ARL17A.

However, in the latter case, PVT1 and CASC8 are in opposite strands and in a head to
head orientation (Table 1, File S8). Interestingly, this fusion is present in only two samples,
with one (sample 67) having the highest number of all fusion reads, 2620, out of which
1811 are the selected PVT1–CASC8 fusion, with other reads in the sample having the
same PVT1 exon spliced to additional exons in the same locus (File S6). Moreover, in
another medulloblastoma sample (sample 74), the same PVT1 exon is spliced to a number
of exons about 35Mb away from the PVT1 locus (File S6). Importantly, PVT1, a non-coding
oncogene, neighbors the MYC oncogene (File S8), with both genes known to be amplified in
cancer [39], and the medulloblastoma samples harboring the observed PVT1 fusions belong
to the Group 3 medulloblastoma subtype, characterized by MYC amplifications [40].

For the last selected circular fusion in medulloblastoma, the ARL17B–KANSL1, it
should be noted that the coding sequences of ARL17A (NM_001113738.2) and ARL17B
(NM_001039083.5), including the exon 3 at the fusion, are identical. Consequently, the
pipeline cannot, in principle, discriminate which of these tandem and in the same orienta-
tion genes is spliced to the KANSL1 gene (File S8). Moreover, this observation increases the
number of medulloblastoma samples expressing both the ARL17A/B–KANSL1 and the
KANSL1–ARL17A/B circular fusions from 11 to 14, with all of the 3 new samples express-
ing the linear KANSL1–ARL17A/B fusion (File S6), further supporting the interrelation of
linear and circular fusions in this context.

Worth noting is that in the three documented linear fusions having exons from a
downstream gene spliced to exons from an upstream gene, namely, NCOA2–TRAM1,
KANSL1–ARL17A/B, and TFG–ADGRG7, the expression of the downstream gene is
higher than the upstream (File S1). This is particularly pronounced in the last two cases,
with KANSL1 and TFG having at least an order of magnitude higher expression than
ARL17A/B and ADGRG7, respectively (File S1).

4. Discussion

Here the profile of circular and fusion RNA expression in medulloblastoma was
interrogated. Using stringent statistical criteria, 367, 185, 188 and 210 circular RNAs
de-regulated in the SHH, WNT, Group 3 and Group 4 subtypes of medulloblastoma,
respectively, in comparison to cerebellum, were identified. Earlier studies have detected
3 up- and 30 down-regulated circular RNAs in medulloblastoma [21] and 17 circular RNAs
down-regulated in the SHH subtype of medulloblastoma [22]. Worth noting is that an
abundant circular RNA originating from the RMST gene was found to be down-regulated in
the SHH but up-regulated in the WNT subtype (Figure 1C,D, File S2 and S3). Additionally,
there were 579, 135, 69 and 347 de-regulated RNA circles in the SHH, WNT, Group 3
and Group 4 subtypes, respectively, in comparison to both the remaining subtypes and to
cerebellum (Figure S3, File S4). The uniquely de-regulated circles (Figure 1B) found in these
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lists (File S4) have a good potential as possible biomarkers for subtype-specific disease
development [36].

Moreover, using stringent cutoffs, linear and circular fusion RNAs were identified
in both cerebellum and medulloblastoma. The presence of fusion RNAs in normal tissue,
some of which were also validated by PCR and Sanger sequencing, raises questions as to
whether chromosomal rearrangements are involved. In general, DNA in normal cells is
considered stable. However, it is still conceivable that, in a small number of cells present in
the sample analyzed, such an event might have occurred. This would be in line with the
low number of reads for the fusion RNAs in comparison to the much higher number of
reads, observed in standard RNA-seq, for the mRNAs of the two genes that are involved in
the fusion.

On the other hand, there are alternative scenarios that are also compatible with the
observed low number of fusion reads. In cases where the genes are in the same locus and
in the same orientation some transcripts from the first gene may extend into the second
gene. Forward splicing of these read-through transcripts can generate fusions with exons
of the first gene spliced to exons of the second gene, as seen in the linear PAUPAR–RCN1
and RPS10–NUDT3 fusions. Moreover, back-splicing of the read-throughs can generate
circular RNAs with exons from the second gene spliced to exons from the first gene, as
seen in the circular ADAMTSL3–SH3GL3 fusion.

However, linear fusions have also been observed from genes in the same locus and in
the same orientation, but with exons from the second gene spliced to exons from the first
gene, e.g., NCOA2–TRAM1. In these cases, a read-through mechanism can not interpret the
observations. Consequently, scenarios that involve intermolecular splicing of transcripts
from different genes, i.e., trans-splicing, have to be postulated. Such mechanisms may also
rationalize splicing from genes in different chromosomes/loci or in opposite orientations
from the same locus [28–30].

In tumor tissues, it is well-known that chromosomal rearrangements can drive tumor
growth [41,42]. Therefore, the fusions observed in medulloblastoma may result from such
events. On the other hand, it should be noted that the overall number of fusion reads in the
medulloblastoma compared to the cerebellar samples is quite similar, apart for a few outliers
(Figure 2A). The outlier with the highest number of fusion reads in medulloblastoma is
sample 67 from the Group 3 subtype, with most of these reads originating from the PVT1–
CASC8 linear fusion (File S6). The PVT1 gene, positioned in proximity to the MYC oncogene
(File S8), is known to engage in chromosomal events and drive tumorigenesis [43]. On the
other hand, the outlier with the second highest number of fusion reads in medulloblastoma
is sample 37 from the Group 4 subtype, with most of these reads originating from a
KHDRBS2-OT1–KHDRBS2 circular fusion (File S6). Close scrutiny, however, reveals that
the “KHDRBS2-OT1 gene” is simply an alternative transcript of the annotated RefSeq
gene KHDRBS2 (www.ncbi.nlm.nih.gov/gene/202559) (accessed on 1 March 2022). In
fact, a KHDRBS2 circular RNA, highly expressed in Group 4 medulloblastomas, has been
identified in our analysis (File S2). Thus, some but not all outliers in the medulloblastoma
fusion reads may indeed represent chromosomal events. However, the majority of the
medulloblastoma samples have fusion read counts that are comparable to cerebellum.
Moreover, selected fusions found in cerebellum were also present in medulloblastoma, i.e.,
SEPTIN7P14–PSPH, PAUPAR–RCN1 and ADAMTSL3–SH3GL3, and selected fusions in
medulloblastoma are known to be expressed in normal tissues, i.e., KANSL1–ARL17A/B
and TFG–ADGRG7, leaving open the possibility that molecular events that can generate
fusion transcripts in normal tissue, e.g., read-through transcription or trans-splicing, may
also act in tumors.

Of particular interest is the KANSL1–ARL17A/B fusion, as both linear and circular
forms are observed in numerous medulloblastoma samples. In fact, the KANSL1 exon 3 of
the fusion is also involved in back-splicing events generating two KANSL1 circular RNAs,
the only two KANSL1 circles identified in our analysis (File S2). Exon 3 is preceded by an
over 76 kb intron, the largest of the KANSL1 gene (File S8), and may be especially prone

www.ncbi.nlm.nih.gov/gene/202559
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to non-typical splicing events. These may allow complex trans-splicing/back-splicing
interactions resulting in not only linear but also circular fusions (Figure 4B). The fact that
KANSL1 is expressed to a much higher extent than ARL17A/B may have a role in the
directionality of the fusion, i.e., KANSL1–ARL17A/B but not ARL17A/B–KANSL1 linear
fusions are detected. A similar scenario is seen with the presence of a TFG–ADGRG7
but not a ADGRG7–TFG linear fusion and the much higher expression of TFG relative
to ADGRG7.

5. Limitations

The number of RNA samples in the cerebellar and the WNT medulloblastoma groups
is small, at 5 and 6, respectively, and this can impact the robustness of the RNA-seq analysis.
Additionally, the abundance and the number of fusion RNAs detected is quite small and
this does not permit an effective statistical analysis of differential expression in cerebellum
versus the medulloblastoma subtypes. Increasing the read depth, currently at 25 M reads
per sample, should provide the means to overcome this limitation. It is also possible
that certain fusion RNAs, similarly to certain circular RNAs, may have limited impact on
disease development and could simply represent “passenger” molecules, reflecting the
stochasticity of the gene expression and splicing processes [22,36]. Even in such a scenario,
differentially expressed circles, due to their stability, could still be effective as diagnostic
markers [36,44].

6. Conclusions

Here, de-regulated circular RNAs in the four subtypes of medulloblastoma have been
identified. Additionally, linear and circular fusions RNAs have also been observed. For
some of these, e.g., PVT1–CASC8, chromosomal events are implicated. However, for a large
number of these fusions, a plausible interpretation is molecular mechanisms similar to the
ones generating fusions in normal tissue, i.e., read-through transcription and trans-splicing.
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